List of errors

The first print of the book **Robotics: Fundamental Concepts and Analysis** (2006) contained several typing and other mistakes which may lead to confusion for the reader. **All** these and other minor ones have been corrected in the *second print* published in May 2008. For those readers who have a copy of the *first print*, here is a list of some of the *major* typographical errors and mistakes in the text, formulas and figures.

- Equation (2.16) on page 29, the (2,2) in the matrix has a sign mistake. The term " $-s_1c_2s_3 c_1c_3$ " should be " $-s_1c_2s_3 + c_1c_3$ ".
- Page 35, third line from bottom "(see Section 2.9....)" should be "(see Section 2.8....)".
- Line below equation (2.38) part of the statement "and that the four-dimensional is an eigenvector of $\frac{A}{B}[T]$." is *incorrect*. This has been deleted in the second print.
- First line of equation (2.49) on page 48 should read as

 $_{i}^{i-1}[R] = [R(\hat{\mathbf{X}_{i-1}}, \alpha_{i-1})] \quad [R(\hat{\mathbf{Z}_{i}}, \theta_{i})]$

square brackets and "," are missing.

- In Example 2.5, the coordinate systems $\{L_i\}$, i = 1, 1, 2, 3 are not defined or shown in figure 2.22. The coordinate systems $\{L_i\}$, i = 1, 2, 3 are attached to the three rotary joints R_i , i = 1, 2, 3 at the base of the parallel manipulator. Hence, a line has been *added* below the table on page 56 "It may be noted that $\{L_1\}$, $\{L_2\}$, and $\{L_3\}$ are coordinate systems attached to the three rotary joints R_1 , R_2 , and R_3 , respectively."
- In figure 2.23 on page 58, the symbol "1" near the arrowhead denoting the axis of θ_3 rotation should be removed.
- In Exercise 2.1, the symbols " ${}^{A}\mathbf{P}_{1}$, ${}^{A}\mathbf{P}_{2}$, and ${}^{A}\mathbf{P}_{3}$ " should be " ${}^{A}\mathbf{p}_{1}$, ${}^{A}\mathbf{p}_{2}$, and ${}^{A}\mathbf{p}_{3}$ ". The uppercase ${}^{A}\mathbf{P}$ denotes 4×1 vector.
- In Exercise problems 2.3 and 2.11, it is easier to visualize the orientations and estimate by using any 3D CAD software. It may be noted that the opposite faces of a dice add up to 7.
- In Exercise problem 2.15 The arrangement of first three joints is similar to a PUMA 560.
- Page 68, the reference by Sangamesh D. R. is now available as

R. Sangamesh Deepak and A. Ghosal 2006, "A note on the diagonalizability and the Jordan form of the 4 × 4 homogeneous transformation matrix", *Trans. of ASME, Jou. of Mechanical Design*, Vol. 128, No. 6, pp. 1343-1348.

- Second line from bottom, page 73 " 1. n = 6or n < 3 for a ..." should read as " 1. n = 6or n = 3 for a ..."
- Figure 3.3, page 76 $\hat{\mathbf{Y}}_A$ should read as $\hat{\mathbf{Y}}_0$.

- Page 76, first line of Example 3.5 "... shown in Figs 2.17 and 2.18,..." should read as "... shown in Figs 2.18 and 2.19,....".
- Page 78, in the Algorithm $r_{ij} \Rightarrow \theta_4, \theta_5$ and θ_6 , the values of θ_5 are *incorrect*. It should read as:

 $\theta_5 = 0,$ and $\theta_5 = \pi$

- Page 79, equation after equation (3.23), the subscript K_4 should read as K_3 .
- Page 83, the superscript on the first rotation matrix is *incorrect*. Equation (3.26) should read as

$${}^{3}_{6}[R] = {}^{0}_{3}[R] {}^{1}_{6}[R]$$

• Page 84, (3, 1) is incorrect. θ_4 is obtained as

$$\theta_4 = \operatorname{Atan2}((3,3)/s_5, -(1,3)/s_5)$$

- Page 85, two lines below equation (3.29) "[see Eqn 2.7..." should read as "[see Eqn (2.5.1)]...".
- Page 85, last paragraph the line "...first matrix $\binom{i-1}{i}[T]_{jt}$." should read as "...first matrix $\binom{i-1}{i}[T]_{st}$."
- Page 86, two lines below equation (3.32) should read as "...the remaining five variables, θ_1 , θ_2 , θ_3 , θ_4 , and θ_5 in ..."
- Page 88, third line from bottom "manipulator (Example 3.1, the" should read as "manipulator (Example 3.3, the ..."
- Figure 3.5, the heading "Joint 2 restricted120°" should be deleted. The figure is redrawn in the reprint.
- Page 93, line 7 from top should read as " $\pm(\frac{1}{\sqrt{2}},\frac{1}{\sqrt{2}})$ " instead of " $\pm(\frac{1}{2},\frac{1}{2})$ ".
- Page 94, in equation (3.46) a_0 and b_o , in general, can be a function of y. Hence, " a_0 " and " b_0 " is to be replaced by " $a_0(y)$ " and " $b_0(y)$ ", respectively.
- Page 95, equation (3.51) should read as

$$(a_{m-1}b_n - a_m b_{n-1})x^{m-1} + (a_{m-2}b_n - a_m b_{n-2})x^{m-2} + \dots + a_0b_n = 0$$

- Page 99, Exercise 3.13 "....compare with Exercise 3.11." should read as "....compare with Exercise 3.12.".
- Page 105, in Fig. 4.1, the symbol " θ_2 " is to replaced by " ϕ_2 ".
- Page 106, sixth line from top the sentence "...can have 12 different loops..." is misleading as there can be more than 12 loops. It is to be *replaced by* "....can have many different loops for example, five".

• Page 109, equation (4.9) – the last equation should read as

$$\theta_1 + \phi_2 = \phi_1 + \phi_3 + \pi$$

- Page 109, equation (4.10) the superscript T is missing.
- Page 111, seventh line from top "dialectic" should be spelt as "dialytic".
- Page 113, line 7 from top "from Eqns (4.15) and (4.23)..." should read as "from Eqns (4.21) and (4.23)....".
- Page 114, Example 4.2 It should be "(see Fig. 2.22)."
- Page 114, the last equation in (4.25) should read as

$$(^{Base}\mathbf{S}_3 - ^{Base}\mathbf{S}_1) \cdot (^{Base}\mathbf{S}_3 - ^{Base}\mathbf{S}_1) = k_{31}^2$$

- Page 115, the last three lines should read as
 - "... constants. The second equation in Eqn (4.26) also yields a *quadratic* in x_2 with the coefficients as functions of θ_3 , l_2 , l_3 and constants. Following Sylvester's dialytic method, we can eliminate θ_2 between the quartic and the quadratic...."
- Page 116, a bracket (is missing in first equation in Eqn (4.31). It should read as

$$q_8 = (p_0a^4 + p_1a^3 + p_2a^2 + p_3a + p_4)^2 \times (p_0a^4 - p_1a^3 + p_2a^2 - p_3a + p_4)^2$$

- Page 120, in equation (4.40) the symbol " \times " should be replaced by "+".
- Page 126, line after equation (4.54) should read as "and again using Eqns (4.51) and (4.51),..." should be "and again using Eqns (4.51) and (4.54),...".
- Page 126, line 4 after equation (4.54) "p, p" should read as "p, q".
- Page 128, Equation (4.56) should read as

$$\phi = \theta_1 + \phi_2 - 2\pi$$

and *likewise* the term $\theta_1 + \phi_2$ in 2 lines below equation (4.58) should read as $\theta_1 + \phi_2 - 2\pi$. This follows from how the angles are marked in Fig. 4.8.

- Page 129, Example 4.6 "in Fig. 2.22..." should read as "in Fig. 2.23...".
- Page 129, equation (4.60) should be corrected to

$$^{Base} \mathbf{S}_1 = ^{Base}_{Object} [R]^{Object} \mathbf{S}_1 + ^{Base} \mathbf{p}_{Object}$$

The last term was left out.

• Page 132, figure 4.10 for exercise 4.2 – The angle ϕ_3 and ϕ_2 are the angles between "Link 2 and Link 3" and between "Link 3 and Link 4" respectively. These are not marked in the figure. In addition, the symbol " $O_f R$ " should be " O_R ".

- Page 134, Fig. 4.13 "Moving platfrom" should read as "Moving platform".
- In Section 5.2, the development of angular velocity matrix is discussed starting from $[R][R]^{-1}$. It is more correct and conventional to use $[R][R]^T$ and then take derivatives etc. Hence, in all equations involving angular velocity in Chapter 5 wherever $[R]^{-1}$ occurs it is to be replaced by $[R]^T$.
- Page 142, equation (5.13), the subscript 0 should be superscript 0. The equation should read as

$${}^{0}\mathbf{V}_{p} = {}^{0}_{i} \begin{bmatrix} R \end{bmatrix} {}^{T}_{i} \begin{bmatrix} R \end{bmatrix}^{T} {}^{0}\mathbf{p}$$

- Page 144, line below equation (5.25) should read as "Equations (5.21), (5.24) and (5.25) can be used to obtain,...."
- item Page 144, one line below Example 5.1 "Figure 2.16.." should read as "Figure 2.17...".
- Page 144, last line "(5.25), we have" should read "(5.24, we have".
- Page 145, two lines below equations "...as shown in Fig. 2.16." should read as "...as shown in Fig. 2.17".
- Page 151, equation (5.36) should read as

$$g_{11} = g_{22}$$
 and $g_{12} = 0$

- Page 152, two lines from bottom "Example 4.1" should read as "Example 4.2".
- Not to confuse the symbol " $[\mathbf{K}^*]$ " used in Chapter 5 with the symbol used in Chapter 10, all " $[\mathbf{K}^*]$ " in Chapter 5 is *replaced* with light face symbol " $[K^*]$ ". See also Exercise problems 5.8, 5.9, 5.13. *Likewise* in some places the symbol used for the Jacobian matrix is incorrectly bold. It should be uniformly light face J
- Page 156, 4 lines below equation (5.53) "...given in Eqn (4.32)." should read as "...given in Eqn (4.33)."
- Page 159, line below Fig. 5.6 "From Eqn (5.53)..." should read as "From Eqn (5.55)...".
- Page 162, 2 lines below equation (5.60) "...equation in Eqn (4.2)..." should read as "...equation in Eqn (4.3...".
- Page 163, the expression for $\cos \theta_1$ above figure 5.8 should be

$$\cos \theta_1 = \frac{l_0^2 + l_1^2 - (l_2 + l_3)^2}{2l_0 l_1}$$

• Page 172, " = " symbol is missing between the second and the third term. The equation (5.75) should read as

$${}^{B_0}\mathcal{F}_{Tool} \stackrel{\Delta}{=} \left(\begin{array}{c} {}^{B_0}\mathbf{F}_{Tool} \\ --- \\ {}^{B_0}\mathbf{M}_{Tool} \end{array} \right) = \left[\begin{array}{c} {}^{\sum_{i=1}^6 B_0}\mathbf{s}_i f_i \\ --- \\ {}^{\sum_{i=1}^6 (B_0}\mathbf{b}_i \times {}^{B_0}\mathbf{s}_i) f_i \end{array} \right]$$

- Page 173, in equation (5.78), the second " $^{B_0}\mathbf{s}_1$ " should be " $^{B_0}\mathbf{s}_2$ ".
- Page 178, equation (5.88) the superscript "-1" should be *deleted*. It should read as

$${}^{0}\mathcal{V}_{Tool} = {}^{0}_{Tool}[J(\boldsymbol{\Theta})]\dot{\boldsymbol{\Theta}}$$

- Page 179, Exercise 5.1 "....angular velocity would be but to use?" should read s ".....angular velocity would be *put* to use?".
- Page 179, 180, Exercise problems 5.9 and 5.14 "...discussed in Example 5.2" should read as "...discussed in Example 5.3"
- Page 187, Equation (6.5) The rotation matrix should be ${}^{0}_{i}[R]$ instead of ${}^{i}_{0}[R]$.
- Page 190, Equation (6.19) The symbol "-" is over *L* and not over **q**. The left-hand side of equation (6.19) should read as *L*(**q**, **q**)
- Page 190, Equation (6.22) The derivative symbol "" should be over Ψ and not over \mathbf{q} .
- Page 192, Equation (6.30) The mass matrix should have a bold M.
- Page 202, Equation (6.36) The Jacobian matrix is a light face J. The derivative symbol "" " is over J and not over **q**.
- Page 205, Equations (6.37) and (6.38) The symbol "M" in the mass matrix should be bold "**M**".
- Page 211, Equation (6.45) The last term is ${}^{0}\omega_{i} \times ({}^{0}\omega_{i} \times {}^{0}_{i}[R]^{i}\mathbf{p})$
- Page 211, line below equation (6.45) The line should read as "If ${}^{i}\mathbf{p}$ is a constant, then ${}^{i}\mathbf{V}_{p} = {}^{i}\mathbf{\dot{V}}_{p} = 0$ and".
- Page 212, first line of the algorithm "...in Section 5.2..." should read as "...in Section 5.3...".
- Page 225, line below equation (7.11) $\theta_i u$ should read as $\theta_i(u)$.
- Page 230, equation (7.17) The term $(x(t) x_0)$ should read as $(x(t) x_f)$. This error is there in the second print also!.
- Page 231, equation (7.19) The third equation should read as

$$a_2 = \frac{3}{t_f^2}(x_f - x_0) - \frac{2}{t_f}\dot{x}_0 - \frac{1}{t_f}\dot{x}_f$$

• Page 232, equations (7.23) should read as

$$\begin{aligned} x(t) &= a + r\cos(\phi(t)) \\ y(t) &= b + r\sin(\phi(t)) \\ z(t) &= c \end{aligned}$$

- Page 233, step 2 2 should be a superscript as in C^2 .
- Page 243, Fig. 8.3 The input to the top right block diagram is $T_d(s)$ and not $V_a(s)$.
- Page 246, Fig. 8.4 The input should be $\Omega_d(s)$ and not $\Omega_d(t)$
- Page 247, equation (8.18) the last term should read as

$$\frac{\omega_n^2}{s^2 + 2\xi\omega_n s + \omega_n^2}$$

- Page 256, line 1 "Eqn (6.14)" should read as "Eqn (6.30)".
- Page 260, line 4 "... θ_i (i = 1)..." should read as "... θ_i (i = 1, 2).."
- Page 268, Equation after equation (8.42) The second term is $\hat{\Theta}_d$.
- Page 268, second last line $-\theta_{1d}^*$ should be replaced by θ_{id}^* .
- Page 274, equation (8.52) The term $\ddot{\phi}$ is to replaced with $\ddot{\phi}_d$.
- Page 278, figure 8.29 There should be no arrow *into* the model based block with Coriolis, centripetal and gravity term.
- Page 283, two lines above Section 8.8.2 "Section 8.7" should be Section "8.6".
- Page 285, figure 8.32 At the top, it should be f_x, f_y, n_z . f_x is repeated.
- Section 8.9 In the text [S]' should be replaced by [S'] as in figure 8.34.
- Page 299, Exercise 8.7 In inequality in the third line should read as $\pi/2 \le \phi \le \pi$.
- Page 306, last but one block The denominator is J_l and not J_1 .
- Page 313, 5 lines below figure $9.5 l_t$ should be l(t).
- Page 317, Equation (9.22) One extra = is to be removed.
- Page 344, third line after equation (9.92) The symbol $\dot{\mathcal{X}}$ should be $\dot{\mathcal{X}}_d$.
- Page 345, Equation (9.93) should read as

$$\mathbf{G}_r(\mathbf{q}_r, \mathbf{q}_f) = -[J_{\mathbf{q}_r}^r]^T [K_p]_{\mathcal{X}} \delta \mathcal{X} + \mathbf{G}_r(\mathbf{q}_{r_d}, \mathbf{q}_{f_d})$$

- Page 359, The reference "Chandra Shaker, M." is now available as Chandra Shaker, M. and A. Ghosal 2006, "Nonlinear modeling of flexible manipulators using non-dimensional variables", ASME Trans., Jou. of Nonlinear and Computational Dynamics, Vol. 1, pp. 123-134.
- Page 370, Figure 10.3 The plot and the axis numbers are to be shifted up and to the right.
- Page 396 In equation (10.36) and line below, the symbol Ψ should be bold face as Ψ .

• Page 406, three lines below figure 10.30, the expression should read as

 $(u_g, v_g, a_0 \cos(\omega_1 u_g) \sin(\omega_2 v_g))$

I wish to thank the readers who have pointed out many of the mistakes. Pointing out any additional mistakes would be *highly* appreciated.