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In this article, we discuss flows in shallow, stratified horizontal layers of two im-
miscible fluids. The top layer is an electrolyte which is electromagnetically driven
and the bottom layer is a dielectric fluid. Using a quasi-two-dimensional approxima-
tion, which assumes a horizontal flow whose direction is independent of the vertical
coordinate, we derive a generalized two-dimensional vorticity equation describing
the evolution of the horizontal flow. Also, we derive an expression for the vertical
profile of the horizontal velocity field. Measuring the horizontal velocity fields at the
electrolyte-air and electrolyte-dielectric interfaces using particle image velocimetry,
we validate the theoretical predictions of the horizontal velocity and its vertical pro-
file for steady as well as for freely decaying Kolmogorov-like flows. Our analysis
shows that by increasing the viscosity of the electrolyte relative to that of the di-
electric, one may significantly improve the uniformity of the flow in the electrolyte,
yielding excellent agreement between the analytical predictions and the experimental
measurements. C© 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4873417]

I. INTRODUCTION

The study of two-dimensional (2D) flows has received significant attention in recent decades
with the aim of understanding turbulence.1 Compared to their three-dimensional (3D) counterparts,
2D flows are more amenable to analytical and numerical analysis. However, fluid flows in practice are
never strictly 2D, in the sense that the velocity field describing the flow depends on all three spatial
coordinates and has non-zero components along all three spatial directions. However, flows in which
the velocity along one of the spatial directions is greatly suppressed have been realized in a variety
of systems which include flows in shallow electrolytic layers,2 superfluid helium,3 liquid metals,4, 5

soap films,6 and electron plasmas.7 The mechanism that leads to this suppression is different in each
of these systems, demanding a specialized approach.

In this article, we discuss quasi-two-dimensional (Q2D) flows in shallow electrolytic layers.
By quasi-two-dimensional, we mean flows which satisfy the following two conditions: (i) the
components of velocity parallel to a plane (horizontal) are much stronger than the component
perpendicular to it (vertical)8 and (ii) the direction of the horizontal velocity does not depend
on the vertical coordinate. Such flows have been studied extensively due to the simplicity of the
experimental setup.

Fluid flows in shallow electrolytic layers have been realized experimentally in homogeneous2 as
well as stratified layers of fluids.9, 10 It was first observed by Bondarenko et al.,2 for an experimental
realization of the Kolmogorov flow (a planar unidirectional flow with a sinusoidal velocity profile)11

in a homogeneous electrolytic layer, that the interaction of the flow with the solid boundary at the
bottom resulted in dissipation that was not accounted for in the 2D Navier-Stokes equation (NSE).
It was suggested that the addition of a linear term (−αu) to the 2D NSE modeled the dissipation
satisfactorily;2 this term is commonly referred to as the “Rayleigh friction” term. The stability of
the laminar flow predicted by the 2D NSE with friction (NSE-WF) was in good agreement with the
one experimentally observed. A more thorough discussion of related theoretical and experimental
results is provided in the articles by Obukhov12 and Thess.13
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The questions of whether the experimental flows can be considered Q2D and whether the
2D NSE-WF is accurate attracted significant attention in the mid-1990s. Measuring the horizontal
velocity field of a decaying dipolar vortex in an electrolyte layer, Paret et al.14 inferred that the
horizontal velocity, following a brief transient, relaxed to a Poiseuille-like profile in the vertical
direction. The measured rate of decay was also in good agreement with that of plane Poiseuille flow.15

However, there was no mention of the range of Reynolds numbers within which the experimental
results agreed with those predicted by theory. Jüttner et al.16 performed a direct numerical simulation
(DNS) of the 2D NSE-WF, using experimental data to initialize the simulation, and showed that it
did capture the evolution of the decaying flow, at least qualitatively. Later, Satijn et al.17 analyzed
the decay of a monopolar vortex using a full 3D DNS and reported a regime diagram showing that a
weakly driven flow in shallow electrolytic layers (both homogeneous and stratified) remained Q2D
during its decay. Following this study, Akkermans et al. performed experimental measurements
of 3D velocity fields using Stereo Particle Image Velocimetry in a single layer setup18, 19 and a
two-layer setup20 at high Reynolds numbers (Re ≈ 2000). Their results indicated that, at these
Reynolds numbers, the vertical velocity component was comparable to the horizontal components
and hence the flow could no longer be considered Q2D. To understand the transition of a Q2D
flow to a 3D one, Kelley and Ouellette21 performed experiments over a wide range of Reynolds
numbers (30 < Re < 250) and showed that there is a critical Reynolds number (Rec ≈ 200), both
for homogeneous and stratified layers, below which the flow can be considered Q2D. These studies,
aimed at understanding the three-dimensionality of flows in shallow electrolytic layers, suggest that
there are three mechanisms that lead to three-dimensionality. Ekman pumping,19, 21 which results
from the variation of vorticity with depth, and interfacial deformations which drive gravity waves20

are in play at all Reynolds numbers. Shear instability, on the other hand, sets in above a critical
Reynolds number.21

Most experiments studying flows in shallow electrolytic layers were aimed at understanding
2D turbulence from a statistical perspective, requiring high Reynolds numbers to be realized.9, 14, 22

However, in recent years, there has been moderate success, both on theoretical23–26 and experimental
fronts,27, 28 in understanding transitional and weak turbulence (both 2D and 3D) as dynamics guided
by exact but unstable solutions (often referred to as exact coherent structures (ECS)) of the NSE. For
instance, Chandler and Kerswell29 have recently identified around 50 different ECS at low Reynolds
numbers (Re ≈ 40) in a 2D DNS of turbulent Kolmogorov flow. This is a very significant result,
since experimental flows at this Reynolds number can be considered Q2D.17, 21 However, aside from
the study of Figueroa et al.,30 to the best of our knowledge, there have been no attempts at making a
quantitative comparison between experiments and numerical simulations of forced flows in shallow
electrolytic layers. Hence, building a framework for a direct comparison between a Q2D flow and a
2D model used to describe such a flow is imperative. In particular, such a framework is necessary to
describe how the flow is affected by the experimental parameters such as fluid layer depths, viscosity,
density, and the forcing.

To compare the theoretical estimates from a 2D model with a Q2D experimental flow, we use an
experimental realization of the Kolmogorov-like flow in a thin layer of electrolyte driven by a linear
array of magnets with alternating polarity. Q2D flows driven by linear, as well as rectangular and
triangular arrays of magnets, have been studied rigorously in the context of 2D turbulence.13, 31, 32 The
regularity of the laminar flow profiles in these systems allows considerable analytical and numerical
progress, which makes them ideal for comparing with experiments. As opposed to the rectangular
and triangular vortex arrays, the laminar Kolmogorov-like flow is essentially devoid of vortices
and hence one can safely ignore the effects of both Ekman pumping and interfacial deformation,
yielding a truly Q2D flow and enabling direct quantitative comparison between analytical solutions
and experimental measurements at relatively low Reynolds numbers.

This article is organized as follows. In Sec. II, we derive a generalized 2D vorticity equation,
describing the evolution of weakly driven flows in shallow electrolytic layers. We then present,
in Sec. III, a brief description of our experimental realization of Kolmogorov flow in a stratified
two-immiscible-layer configuration. In Sec. IV, we derive the equation for the vertical profile of
the horizontal velocity field for two special flow configurations, the Kolmogorov-like flow and
unidirectional flow. Using this profile, we evaluate analytical expressions for the coefficients that
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appear in the vorticity equation. Using the Kolmogorov-like flow, in Sec. V, we validate the model
by comparing theoretical predictions of the horizontal velocity with those measured experimentally.
We discuss the effects of viscosity, magnetic field, and thickness of fluid layers on the coefficients
that appear in the vorticity equation. Furthermore, we define a measure of two-dimensionality in the
(forced) upper layer and show that it is possible to make the flow in that layer essentially 2D by
increasing its viscosity relative to the (lubricating) lower layer. Section VI presents our conclusions
and discusses the applications and the limitations of the 2D model.

II. GENERALIZED 2D VORTICITY EQUATION

Consider a shallow layer of fluid, with thickness h, in a laterally extended container with a
flat bottom. By shallow, we mean that the characteristic horizontal length scale L is substantially
larger than the thickness h. We assume the xy-plane is parallel to the bottom of the container and
the z-axis is in the vertical direction, with z = 0 chosen at the bottom of the fluid layer and z = h
corresponding to the fluid-air interface (cf. Figure 1(b)). The velocity field in such flows is inherently
three-dimensional, in the sense that it generally depends on all three coordinates, V = V(x, y, z, t).
This inherent three-dimensionality is due to the fact that the bottom of the fluid layer (z = 0) is
constrained to be at rest due to the no-slip boundary condition. The velocity field in such a system
is governed by the 3D Navier-Stokes equation for an incompressible fluid (∇ · V = 0),

ρ(∂t V + V · ∇V) = −∇ p + μ∇2V + f + ρg, (1)

where ρ is the density of the fluid under consideration, μ is the dynamic viscosity, ρg is the
gravitational force (along the z-axis), and f is the electromagnetic force in the plane of the fluid (the
xy-plane).

Equation (1), combined with the incompressibility condition, describes the evolution of the full
3D velocity field. However, for flows in shallow layers of fluid, driven by weak, in-plane forcing,
the vertical velocity component is much smaller compared to the horizontal one.17 In such flows the
characteristic times describing equilibration of momentum in the vertical direction (ρh2/μ) are much
smaller than those associated with the horizontal directions (ρL2/μ). This tends to align an unforced
flow at a particular horizontal position (x, y) and different z along the same direction. Furthermore,
if the direction of the forcing f is independent of z, this forcing will not destroy the alignment and
we can assume the direction of the velocity to be independent of the height z allowing the velocity
field to be factored as30, 33

V(x, y, z, t) = P(z)U(x, y, t) ≡ P(z)[ux (x, y, t)x̂ + uy(x, y, t)ŷ], (2)

where P(z) describes the dependence of the horizontal velocity on z, and the unit vectors x̂ and ŷ lie
in the horizontal plane. A thorough discussion on the validity of this Q2D approximation can found
in Satijn et al.17 The presence of the solid boundary at the bottom (z = 0) and of a free surface at the
top (z = h) are accounted for by choosing P(0) = 0 and P′(h) = 0, where P′ = dP/dz. Furthermore,
we impose the normalization condition

P(h) = 1 (3)

to make the factorization unique, so U(x, y, t) can be interpreted as the velocity of the free surface
(z = h).

Substitution of (2) into (1) gives

ρ P∂t U + ρ P2U · ∇‖U = −∇‖ p + Pμ∇2
‖ U + Uμ∇2

⊥ P + f, (4)

∇⊥ p = ρg,

along with ∇‖ · U = 0, where the subscripts ‖ and ⊥ represent the horizontal and vertical components,
respectively. In general, the profile P(z) depends on the exact form of forcing f and the horizontal flow
profile U. However, we further assume that the profile P(z) is independent of U. This assumption,
though not intuitive, proves to be valid at moderate Re, as we shall show for a couple of test cases
below.
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Integrating the first of the two equations in (4) over the z coordinate, i.e., from the bottom of
the fluid layer (z = 0) to the free surface (z = h), and taking the curl, we obtain an equation for the
vertical (z) component of the vorticity ω = ∂xuy − ∂yux,

∂tω + βU · ∇‖ω = ν̄∇2
‖ω − αω + W. (5)

The parameters β, ν̄, and α are defined as follows:

β =
∫ h

0 ρ P2dz∫ h
0 ρ Pdz

, ν̄ =
∫ h

0 μPdz∫ h
0 ρ Pdz

, α =
(
μP ′)

z=0∫ h
0 ρ Pdz

. (6)

The source term W on the right-hand side of (5) corresponds to the z-component of the curl of the
depth-averaged force density

W =
∫ h

0 (∂x fy − ∂y fx )dz∫ h
0 ρ Pdz

. (7)

In Eq. (5), the prefactor β to the advection term has been assumed equal to unity in all previous
studies.2, 34 For a Poiseuille-like profile

P(z) = sin

(
π z

2h

)
, (8)

which has traditionally been used to describe Q2D flows,17 we have computed β using Eq. (6). It
turns out that β = π /4 ≈ 0.79 is significantly different from unity. The deviation of β from unity
captures the decrease in the inertia of the fluid flow, since the velocity of the fluid closer to the solid
boundary at the bottom is smaller than that near the free surface.

The parameter ν̄ is the depth-averaged kinematic viscosity. For a shallow, homogeneous layer
of fluid, the depth-averaged kinematic viscosity (ν̄) is equal to the kinematic viscosity (ν) of the
fluid. However, for stratified layers, fluid properties (μ, ρ) depend on z. In such a case, the integrals
in Eqs. (6) and (7) are computed taking the variation in ρ and μ into account.

The linear friction term −αω, which accounts for the presence of a solid boundary at the bottom
of the fluid layer, is a direct consequence of ansatz (2) and depth-averaging. This is distinctly different
from how previous studies have included this term in the 2D NSE-WF.2, 8 Using the Poiseuille-like
profile (8), we can recover the expression α = π2ν/4h2 for the Rayleigh friction coefficient without
assuming a decaying flow.16, 17

Finally, in electromagnetically driven shallow electrolytic layers, the forcing f may depend on
z, most commonly due to a decay in the magnetic field strength. The source term W takes the effect
of such decay into account.

It is important to point out that the vorticity equation (5) is a 2D equation that quantitatively
describes 3D flows in regimes where ansatz (2) is valid. In particular, ω describes the vorticity at
the top surface of the electrolyte, facilitating direct comparison between experiment and analytical
or numerical solutions.

III. EXPERIMENT

As mentioned earlier, Q2D flows in shallow layers of electrolytes have been realized experimen-
tally in homogeneous as well as stratified electrolytic layers. The rationale behind using stratified
layers is that the top layer—which is used for all the measurements—is shielded from the no-slip
boundary condition at the bottom by a lubricating layer. Three stable configurations of stratified
fluid layers have been employed for experimental realization of flows in shallow electrolyte layers.
The first of these22 used two miscible layers of saltwater having different densities, with the fluid in
the bottom layer being heavier than the one in the top layer. In the second configuration, which is a
variation of the one mentioned above, the electrolyte in the top layer was replaced by pure water.21, 35

The third stable configuration, suggested by Rivera and Ecke,10 used a heavier, immiscible dielectric
fluid as the lubricating bottom layer and a layer of electrolyte above it. Immiscibility comple-
ments stratification in suppressing vertical motion, thus enhancing two-dimensionality of the flow in
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FIG. 1. The (a) top view and (b) transverse cross-section view of the experimental setup for quasi-2D Kolmogorov-like
flow. The system contains two immiscible fluid layers: the bottom one is a dielectric fluid of thickness hd and the top one
is an electrolyte of thickness hc. As a uniform, steady current with density J flows between the two electrodes through the
electrolyte layer, a shear flow, represented by arrows in (a), is induced in the fluids by spatially alternating Lorentz forces.
The arrows in (b) indicate the direction of magnetization.

the electrolyte. The two-immiscible-layer configuration also allows for achieving higher Reynolds
numbers10 compared with the miscible-layer setups. Numerical studies17 comparing the vertical
velocity components in these configurations have suggested that stratification and immiscibility
indeed suppress 3D motion. Hence, we have chosen to use the two-immiscible-layer configuration
to generate Q2D flows.

The setup, shown in Figure 1, consists of an array of magnets placed at the center of an acrylic
box of dimensions 25.4 cm × 20.3 cm × 3.8 cm. A thin sheet (thickness ≈ 0.05 mm) of black
contact paper is placed on top of the magnets to provide a uniform background for imaging. The
top surface of the contact paper corresponds to the plane z = 0. The region 0 < z < hd is filled
with perfluorooctane, a dielectric fluid of viscosity μd = 1.30 mPa s and density ρd = 1769 kg/m3.
Above this is a layer of a conducting fluid (electrolyte) of thickness hc (hd < z < hd + hc), which is
completely immiscible with the dielectric fluid. For all experimental runs, the height of the dielectric
fluid is chosen to be hd = 0.3 ± 0.01 cm. However, across different runs the thickness of the
electrolyte layer is varied from hc = 0.2 ± 0.01 cm to hc = 0.4 ± 0.01 cm. For the electrolyte, we
use either of the following: a “low-viscosity electrolyte” consisting of a 0.3 M solution of CuSO4

(with viscosity μc = 1.12 mPa s and density ρc = 1045 kg/m3) or a “high-viscosity electrolyte”
consisting of a 0.3 M solution of CuSO4 with 50% glycerol by weight (with viscosity μc =
6.06 mPa s and density ρc = 1160 kg/m3). Immiscibility and density stratification maintain the
relative configuration of the two layers. A small amount of surfactant (dish soap) is added to the
electrolyte to decrease the surface tension, and a glass plate is placed on top of the box to limit
evaporation. Two 24.1 cm × 0.3 cm × 0.6 cm copper electrodes fixed along the longitudinal
boundaries on either side of the box are used to drive a steady current through the electrolyte. The
Lorentz forces acting on the electrolyte set the fluid layers in motion.

To create a spatially periodic magnetic field, we construct a magnet array with 14 NdFeB
magnets (Grade N42), each 15.2 cm long, 1.27 cm wide, and 0.32 cm thick (cf. Figure 1(a)). The
magnetization is in the vertical (z) direction, with a surface field strength close to 0.3 T. The magnets
are positioned side-by-side along their width to form a 15.2 cm × (14 × 1.27 cm) × 0.32 cm array
such that adjacent magnets have fields pointing in opposite directions, along the z-axis. The resulting
net magnetic field B(y, z), close to the surface of the magnets, is quite complicated. However,
experimental measurements (using a F. W. Bell Model 6010 Gaussmeter) show that the profile for
the z-component of the magnetic field, Bz, is approximately sinusoidal in y beyond a height of z =
0.25 cm (the measurements for the center pair of magnets are shown in Figure 2(a)). The spatial
period of the magnetic field sets the horizontal length scale L = 1.27 cm equal to the width of one
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FIG. 2. (a) Experimental measurements of the transverse variation of the z-component of the magnetic field, Bz, above the
middle two magnets of the magnet array, normalized by the maximum value of Bz for fixed z, Bz, max. A sine wave with
periodicity equal to the width of one magnet pair is shown for comparison. (b) Experimental measurements of the decay of
Bz with increasing height (z) from the magnets’ surface. Error bars indicate one standard deviation.

magnet. Furthermore, we find Bz above the magnets to decay approximately linearly with z within
the typical position of the electrolyte layer (0.3 cm ≤z ≤ 0.6 cm) (see Figure 2(b)). The parameters
we find for the fit Bz = B1z + B0 (at the maximum in y) are B1 = −30.6 ± 0.5 T/m and B0 = 0.276
± 0.01 T.

In the electrolyte-dielectric setup described above, using tracer particles of different densities,
one can visualize the flow either at the electrolyte-dielectric interface or at the free surface.14 To
visualize the flow at the free surface we use Glass Bubbles (K15) manufactured by 3M, sieved to
obtain particles with mean radius r = 24.5 ± 2 μm and mean density ρ ≈ 150 kg/m3. For seeding
the interface, we use Soda Lime Solid Glass Microspheres manufactured by Cospheric with mean
radius r = 38 ± 4 μm and mean density ρ = 2520 kg/m3. The soda lime microspheres, though
denser than the dielectric fluid, stay trapped between the dielectric and electrolyte layers due to
interfacial tension. The top surface of the electrolyte and the interface are not seeded simultaneously,
but in separate experimental realizations. We use blue light-emitting diodes to illuminate the tracer
particles.

The images of the flow are recorded using a Unibrain Fire-i Board B/W digital camera which has
a CCD sensor with a resolution of 640 × 480 pixels. The flow field captured corresponds to a region
at the center of the magnet array with dimensions 4.7 cm × 3.5 cm. Images are captured at equal
intervals of 0.133 s, which corresponds to a frame rate of 7.5 Hz. Particle Image Velocimetry (PIV)
was performed on the recorded images using Open Source Image Velocimetry software package
(version 2.1, available at http://osiv.sourceforge.net/).

As mentioned earlier, the flow is driven by Lorenz forces resulting from the interaction between
the magnetic field and a direct current passing through the electrolyte layer. In the experiments
using the low-viscosity electrolyte, where the thickness of the electrolyte layer is varied from
0.2 cm to 0.4 cm, a direct current of 2.1 mA is passed through the electrolyte. Increasing the
thickness of the electrolyte layer, keeping the total current constant, corresponds to decreasing
the current density from J = 4.26 A/m2 to J = 2.13 A/m2. Similarly, in the experiments
using the high-viscosity electrolyte, a direct current of 5.0 mA is passed through the electrolyte. The
current density, for electrolyte thickness between 0.2 cm and 0.4 cm, ranges from J = 10.16 A/m2 to
J = 5.08 A/m2.

We conclude this section by defining the Reynolds number characterizing the Q2D flows
discussed in this article. Since U(x, y, t) (cf. Eq. (2)) is the horizontal velocity field at the free
surface (z = hd + hc), which directly corresponds to our experimentally measurements, we define

the velocity scale characterizing the flow as U = √〈U · U〉 =
√〈

u2
x + u2

y

〉
, where 〈. . . 〉 denotes

the spatial average. The Reynolds number is then defined as Re = U L/ν̄. This is similar to the

http://osiv.sourceforge.net/
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definition used in the article by Kelley and Ouellette21 discussing the onset of three-dimensionality,
thus facilitating a straightforward inference regarding when the flow starts to deviate from being
Q2D.

IV. VELOCITY PROFILE IN THE TWO-IMMISCIBLE-LAYER SETUP

In this section, we solve for the vertical profile P(z) of the horizontal velocity (cf. Eq. (2)) in
two special cases, a Kolmogorov-like flow and a unidirectional flow. The case of the Kolmogorov-
like flow allows direct comparison of theoretical predictions with experimental measurements. The
unidirectional flow cannot be realized in experiment, but allows derivation of simple expressions
for α, ν̄, and β in the generalized 2D vorticity equation (5), which are helpful in understanding the
parametric dependence of these coefficients.

A. Kolmogorov-like flow

To solve for the velocity profile P(z) in (2) within the two immiscible layers described in the
experiment, we assume that the magnet array is infinitely long in the x (longitudinal) direction and
periodic in the y (transverse) direction. By symmetry, the array of magnets produces a field that has
no component along the longitudinal direction:

B = By(y, z)ŷ + Bz(y, z)ẑ. (9)

Within the electrolyte, the z-component of the magnetic field can be modeled to vary linearly
with z and sinusoidally with y (cf. Figure 2). Hence we can write

Bz = (B1z + B0) sin(κy), (10)

where κ = π /L. A uniform and constant current with density J = J ŷ passing through the electrolyte
along the transverse direction results in a Lorentz force density along the x̂ direction which is given
by

f = J × B =
{

J (B1z + B0) sin(κy)x̂, hd < z < hd + hc,

0, 0 < z < hd
(11)

in the electrolyte and the dielectric, respectively.
For a current density (J) smaller than some critical value, the direction of the horizontal flow

profile U(x, y, t) follows that of the forcing (11), so we can look for laminar solutions of the form

U(x, y, t) = u0 sin(κy)x̂. (12)

Substituting this into (4) yields a hydrostatic pressure distribution and a boundary value problem for
the vertical profile P(z),

P ′′ − κ2 P = − J

u0μc
(B1z + B0), hd < z < hd + hc,

P ′′ − κ2 P = 0, 0 < z < hd ,

(13)

where the prime denotes differentiation with respect to z.
The boundary conditions that P(z) must satisfy are the no-slip boundary condition at the bottom

of the dielectric (z = 0), the continuity of the velocity and stress at the dielectric-electrolyte interface
(z = hd), and the stress-free boundary condition at the top (free) surface of the electrolyte (z = hd +
hc),

P(0) = 0, P(h−
d ) = P(h+

d ), μd P ′(h−
d ) = μc P ′(h+

d ), P ′(hd + hc) = 0. (14)
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The solution to the differential equations (13) is given by

Pκ =
{

Ceκz + De−κz + J B1
u0μcκ2 z + J B0

u0μcκ2 , hd < z < hd + hc,

Eeκz + Fe−κz, 0 < z < hd .
(15)

In Eq. (15), in addition to the coefficients C, D, E, and F, the amplitude u0 of the sinusoidal velocity
profile at the free surface of the electrolyte is not known a priori. To uniquely define Pκ (z) we also
require the normalization condition Pκ (hc + hd) = 1, which is the analog of Eq. (3). This gives us the
fifth equation, in addition to the four defined by Eq. (14), necessary to solve for the five unknowns
C, D, E, F, and u0.

As stated earlier, the motivation behind using stratified layers of fluids to realize Q2D flows
is that the top layer is shielded from the no-slip boundary condition at the bottom by a lubricating
layer. For a perfectly two-dimensional flow, one would expect the velocity field in the top layer
to be independent of the z coordinate. Hence, for the two-immiscible-layer setup we can use the
ratio of velocity at the free surface to that at the electrolyte-dielectric interface as a measure that
characterizes the inherent deviation from two-dimensionality

s = P(hd + hc)

P(hd )
. (16)

For a monotonically varying profile, the value of s describes how strongly the magnitude of the
horizontal velocity field varies with z in the electrolyte, with s = 1 corresponding to a z-independent
velocity profile. This measure of deviation from two-dimensionality is different from the one used
in previous studies,17, 18 where the ratio of kinetic energy contained in the secondary flow to that in
the primary (horizontal) flow was chosen as a measure of three-dimensionality. The functional form
of expression (16) for the Kolmogorov-like flow is quite unwieldy and does not allow one to easily
deduce the dependence on experimental parameters. Furthermore, closed form expressions for the
coefficients (6) in the generalized 2D vorticity equation also turn out to be too complicated to yield
much insight.

B. Unidirectional flow

We can derive a relatively simple analytical expression for the ratio of velocities in the special
case where we ignore the y-dependence of the magnetic field Bz, i.e., Bz = B1z + B0. The laminar
flow is then unidirectional, i.e., U(x, y, t) = u0x̂. This flow can be interpreted as a limiting case of
the Kolmogorov-like flow when the magnets are very wide (κ → 0), and one confines observation
to a small region near the centers of the magnets (κy → nπ /2). The solution (15) is then replaced by

P0 =
{

− J B1
6u0μc

z3 − J B0
2u0μc

z2 + Cz + D, hd < z < hd + hc,

Ez + F, 0 < z < hd .
(17)

We have calculated the unknown coefficients C, D, E, F, and u0 in the above equation using
the boundary conditions (14) and have included analytical expressions in the Appendix. Although
the functional forms (15) and (17) of the velocity profile are quite different for the Kolmogorov
flow and the unidirectional flow, their shape is virtually indistinguishable, as Figure 3 illustrates.
This suggests that Q2D flows with arbitrary horizontal flow profiles U(x, y, t) and moderately high
Reynolds numbers (up to Re ≈ 40) may be accurately described using the simple velocity profile (17).

Using P0(z) we now calculate an analytical expression for the ratio (s) of the velocity at the free
surface to that at the electrolyte-dielectric interface

s = 1 + 1

2

μd hc

μchd

(
1 + 1

6


B

〈B〉
)

, (18)

where 
B = B1hc is the change in magnetic field across the electrolyte and 〈B〉 = B0 + B1hd +
1
2 B1hc is the mean magnetic field in the electrolyte.

The coefficients (6) that appear in the generalized 2D vorticity equation (5), in addition to
depending explicitly on the experimental parameters, depend on the profile P(z) as well. Since the
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FIG. 3. Analytical results for the vertical profile of the horizontal flow field in both layers, with hd = hc = 0.3 cm, for (a)
the low-viscosity electrolyte and (b) the high-viscosity electrolyte. The ratios of the velocities, as defined by (16), are: (a)
uniform flow: slow = 1.52, Kolmogorov flow: slow = 1.54, and (b) uniform flow: shigh = 1.10, Kolmogorov flow: shigh =
1.08.

shapes of the profiles P0(z) and Pκ (z) are virtually indistinguishable, we can evaluate analytical
expressions for the coefficients (6) using P0(z). For the Rayleigh friction coefficient, using the
velocity profile P0(z) we obtain

α =
μd

ρc

1
hd hc

1 + 1
2

hd
hc

ρd

ρc
+ 1

3
hc
hd

μd

μc

(
1 + 1

8

B
〈B〉

) . (19)

For the depth-averaged kinematic viscosity, we obtain

ν̄ = νc

1 + 1
2

hd
hc

μd

μc
+ 1

3
hc
hd

μd

μc

(
1 + 1

8

B
〈B〉

)
1 + 1

2
hd
hc

ρd

ρc
+ 1

3
hc
hd

μd

μc

(
1 + 1

8

B
〈B〉

) . (20)

The exact expression for β is too complicated to yield much insight, but it can be evaluated using
the profile P0(z) and the coefficients listed in the Appendix for any set of experimental parameters.
It should be noted that, for the values of parameters used in the experiment, the coefficients s, α, ν̄,
and β have a very weak dependence on ε = 
B/〈B〉: setting ε = 0 changes the values by less than
5%. In the limit where the ε = 0, we find

β =
1 + 1

3
hd
hc

ρd

ρc
+ 2

3
hc
hd

μd

μc
+ 2

15
h2

c

h2
d

μ2
d

μ2
c

1 + 1
2

hd
hc

ρd

ρc
+ 5

6
hc
hd

μd

μc
+ 1

4
ρd

ρc

μd

μc
+ 1

6
h2

c

h2
d

μ2
d

μ2
c

. (21)

Similarly, the dependence on κ is also very weak: evaluating the coefficients using Pκ (z) instead of
P0(z) changes their values by less than 6% (for the high-viscosity electrolyte).

V. RESULTS

A. Enhanced two-dimensionality in the electrolyte

Expression (18) suggests that even if the magnetic field across the electrolyte were uniform,
i.e., 
B = 0, the flow in the electrolyte would still deviate significantly from being perfectly 2D.
For a typical case where μc = μd and hc = hd, one obtains s = 1.5. Using instead the value ε =
−0.6 corresponding to the experiment gives s = 1.45. Hence, the decay in the magnetic field does
not contribute significantly to the deviation from two-dimensionality. Expression (18) also suggests
that the shallower the electrolyte layer is (relative to the dielectric layer), the closer one comes to a
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FIG. 4. Experimental measurements of the horizontal flow profile in the electrolyte layer, with hd = hc = 0.3 cm, taken
separately at the free surface (black circles) and at the electrolyte-dielectric interface (gray squares). The plots correspond to
(a) the low-viscosity electrolyte and (b) the high-viscosity electrolyte. PIV measurements are plotted for the time-independent
laminar flow near the center of the magnet array; each data point is time-averaged over 5 min and spatially averaged over
4.5 cm along the x-direction to obtain an accurate estimate of the mean. A sine wave with fixed periodicity is fit to each data
set, and the velocities are normalized by the amplitude of the top layer fit, u0. Error bars are smaller than the size of the
symbols.

vertically uniform profile in the electrolyte (s = 1). However, electrolyte layers with thickness less
than 0.25 cm are found to be unstable in the experiment, as they break open to form configurations
that correspond to lower total surface energy. Alternatively, one may increase the thickness hd of
the dielectric layer. This has the drawback that one moves farther from the magnets, requiring larger
currents to drive the flow. Also, the Q2D approximation, an assumption whose validity depends
partially on strong geometric confinement, is compromised. Hence, the most straightforward way
to make the flow in the electrolyte nearly two-dimensional is by increasing the ratio of viscosities.
The optimal choice of the electrolyte viscosity is not obvious. For the variation in the velocity of the
electrolyte to be at most 10%, μc should exceed the solution of (18) with s = 1.1. Substituting the
typical values of μd = 1.30 mPa s, ε = −0.6 and hd = hc gives μc ≥ 5.85 mPa s. Indeed, comparison
of the analytical velocity profiles presented in Figure 3 shows that the uniformity of the velocity in
the conducting layer should be substantially enhanced when a more viscous electrolyte (with μc =
6.06 mPa s) is used. This is experimentally validated by comparing the measured horizontal velocity
of the laminar flow at the top and bottom surfaces of the electrolyte layer. As Figure 4 shows, the
flow in the high-viscosity electrolyte is much closer to being vertically uniform (shigh = 1.08) than
in the low-viscosity electrolyte (slow = 1.54).

A higher viscosity means a higher current is necessary to reach a desirable Reynolds number;
a potential drawback of this is the possibility of excess Joule heating, which can cause significant
variation in the viscosity. However, 60 minute-long experiments using the high-viscosity electrolyte,
where a steady current forces a flow with Re ≈ 40, have shown that the fluid temperature increases
only by around 1 ◦C. Hence in the regime of interest the effects of Joule heating are rather small.

B. Comparison between theory and experiment

Figure 5 shows experimental measurements of the velocity amplitude of the laminar flow at
the free surface and the electrolyte-dielectric interface as the thickness hc of the electrolyte layer
is varied, while keeping the current I constant. For the experimental runs using the low-viscosity
electrolyte (cf. Figure 5(a)) the Reynolds number of the flow decreases from Re = 26.6 to Re = 17.1
as the thickness of the electrolyte layer is increased from 0.2 cm to 0.4 cm. Similarly, for those using
the high-viscosity electrolyte (cf. Figure 5(b)) the Reynolds number decreases from Re = 7.9 to Re =
3.1. Also plotted for comparison are the theoretical predictions of u0Pκ (hd + hc) = u0 and u0Pκ (hd)
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FIG. 5. Comparison of experimental and theoretical results for u0Pκ (hc + hd) and u0Pκ (hd), which correspond to the
amplitude of the sinusoidal velocity profile at the free surface and the electrolyte-dielectric interface, respectively. Here, hc is
varied while hd = 0.3 cm is held constant. Plots correspond to (a) the low-viscosity electrolyte (with constant current I = 2.1
mA) and (b) the high-viscosity electrolyte (with constant current I = 5.0 mA). PIV measurements of the time-independent
laminar flow are time-averaged over 5 min to reduce experimental noise and then fit with a sine wave with fixed periodicity.
Error bars are smaller than the size of the symbols.

= u0/s, which denote the velocity amplitude at the free surface and that at the electrolyte-dielectric
interface, respectively. Most importantly, all the parameters used in the theoretical calculations have
been measured experimentally. As can be seen from the plots, the relative difference between theory
and experiment, for electrolytes of both viscosities, is less than 5%.

C. Coefficients in the generalized 2D vorticity equation

The motivation behind estimating the shape of the profile P(z) in the two-immiscible-layer
setup was, in part, to determine the coefficients (6) that appear in the generalized 2D vorticity
equation (5). For hc = hd = 0.3 cm, using the low-viscosity electrolyte (μc = 1.12 mPa s), we
obtain β = 0.73, ν̄ = 0.94 × 10−6 m2 s−1, and α = 0.063 s−1. This estimate of the Rayleigh friction
coefficient is a factor of two smaller than the one suggested by Rivera and Ecke.10 For the high-
viscosity electrolyte (μc = 6.06 mPa s), we obtain β = 0.82, ν̄ = 3.35 × 10−6 m2 s−1, and α =
0.068 s−1. It is important to note that the Rayleigh friction coefficient remains fairly insensitive to
the viscosity of the electrolyte. This has a significant consequence that one can change the relative
importance of the diffusion term (ν̄∇2

‖ω) and the friction term (−αω) in the vorticity equation (5)
by changing the viscosity of the upper layer in the experiment. Interestingly, the Rayleigh friction
coefficient for the two-immiscible-layer system is not very different from the one computed for a
homogeneous layer of fluid. Using a Poiseuille-like vertical profile (8) and choosing h = hc + hd =
0.6 cm and ν̄ ≈ 1 × 10−6 m2 s−1 we obtain α = π2ν̄/4h2 ≈ 0.07 s−1.

D. Spin-down comparison

After the forcing is switched off, W = 0, the flow decays to rest exponentially fast, dissipating
energy via bottom friction (−αω) as well as horizontal diffusion of vorticity (ν̄∇2

‖ω). The solution of
(5) corresponding to the initial condition (12) describing Kolmogorov flow and W = 0 is ω(x, y, t)
= ω0exp (−t/τ )cos (κy), where the decay rate is given by

τ−1 = α + κ2ν̄. (22)

As a check of the 2D model, we compare this prediction with the temporal evolution of the flow
in experiment by letting it decay to rest from the steady laminar state by turning the forcing off.
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After a brief transient, the velocity profile U(x, y, t) = u0(t)sin (κy) measured at the free surface
of the electrolyte decays exponentially, u0(t) ∼ exp (−t/τ ). These measurements yield a decay rate
of τ−1

low = 0.14 ± 0.01 s−1 for the low-viscosity electrolyte and τ−1
high = 0.3 ± 0.01 s−1 for the high-

viscosity one. In comparison, the analytical solution (22) yields τ−1
low = 0.12 ± 0.007 s−1 for the

low-viscosity electrolyte and τ−1
high = 0.29 ± 0.009 s−1 for the high-viscosity one. It is important to

note that Eq. (22) does not account for the change in the shape of the profile Pκ (z) during the decay,
which likely explains the slight disagreement between the theory and experiment at low μc. This
indicates that the effect of relaxation of the profile, when the forcing is turned off, is more significant
when using the low-viscosity electrolyte than when using the high-viscosity one, indicating that the
profile in the higher viscosity electrolyte may be robust to time dependence. This is a non-trivial
result: although the flow in the high-viscosity electrolyte is very nearly two-dimensional, the flow
in the dielectric never is.

E. Measured normalized in-plane divergence

Experimentally realized Kolmogorov-like flow exhibits temporally complicated (aperiodic)
dynamics above Re ≈ 30. To verify the validity of the Q2D approximation (2) in this regime, up to
Re ≈ 50, we have computed the normalized in-plane divergence

 = hc
∫∫ ∣∣∇‖ · U

∣∣dxdy

L
∫∫ ∣∣ω∣∣dxdy

, (23)

of the horizontal velocity field, experimentally measured at the free surface (z = hd + hc). This
measure, used by Akkermans et al.,20 characterizes the ratio of the horizontal velocity to the vertical
velocity. For both the low- and high-viscosity electrolyte of typical thickness hc = 0.3 cm,  varies
from about 0.01 to 0.02, with no clear systematic trend. Since small errors in measuring velocities
can contribute significantly to the value of the divergence computed, it is safe to say that  =
0.02 provides an upper bound for the relative strength of the secondary flow for Re ≤ 50. This is
approximately an order of magnitude smaller than values reported for numerical simulations in the
range 1150 < Re < 2000 for the dipolar vortex studied by Akkermans et al.20 This indicates that for
our system, even in the regime with temporally complicated dynamics, the deviation from a Q2D
flow is small.

VI. CONCLUSION

Moderate Reynolds number flows in thin fluid layers supported by a solid surface have long
been modeled by semi-empiric generalizations of the 2D Navier-Stokes equation. In this article,
starting from the 3D Navier-Stokes equation and assuming the flow to be quasi-two-dimensional,
i.e., having only horizontal components of velocity whose direction is independent of the vertical
coordinate, we derive the proper 2D evolution equation for flows in homogeneous as well as stratified
layers of fluid. The Rayleigh friction term in this generalized 2D vorticity equation, which models
the presence of the no-slip boundary condition at the bottom of the fluid layer, appears naturally
as a consequence of depth-averaging the 3D Navier-Stokes equation. Furthermore, we have shown
that the advection term acquires a numerical prefactor which is different from unity. The evolution
equation has been validated by testing it for self-consistency using different analytic solutions for
steady flows and also by comparing its predictions with experiment for steady and freely-decaying
Kolmogorov-like flows.

In addition to deriving the generalized vorticity equation, we have addressed the issue of inherent
three-dimensionality of the two-layer flows, quantifying it in terms of the ratio of the fluid velocity
at the top and bottom surface of the upper (driven) layer. Using this measure, we have shown that
increasing the viscosity of the fluid in the upper layer with respect to the viscosity of the bottom
(lubricating) layer makes the flow in the upper layer much closer to being uniform (2D), which is
advantageous because (i) the agreement between the predictions of the 2D model for both steady
and freely decaying laminar flows improves considerably, suggesting that the model may remain
quantitatively accurate for other time-dependent flows, and (ii) the gradient of the horizontal velocity
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along the vertical direction is greatly reduced, which in turn results in a significant suppression in
the Ekman pumping.

Recent studies29 aimed at understanding 2D turbulence from a dynamical systems perspective
have found an abundance of ECS of the 2D NSE with periodic boundary conditions at Re ≈ 40. The
2D NSE, however, does not govern the evolution of Q2D flows. Our experiments, as well as those of
other groups,21 show that at Re ≈ 40 flows in shallow electrolytic layers are Q2D. Hence to compute
the ECS that are expected to organize the weakly turbulent experimental flows, one has to use the 2D
generalized vorticity equation (5). Whether this 2D model derived here can indeed serve this purpose
remains to be seen. While it has been validated for some forced steady and unforced time-dependent
flows, the next logical step would be to compare its predictions with experimental observations
for forced time-dependent flows. The time-dependent flow in experiment, however, depends rather
sensitively on the lateral boundary conditions. Hence, such comparison would require a numerical
implementation of the model subject to boundary conditions mimicking those in the experiment.
As an alternative, such a comparison could also be performed using a dipolar vortex30 or a periodic
lattice of vortices,16 although this would require a rather accurate model of the magnetic field.
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APPENDIX: ANALYTICAL SOLUTION FOR THE VERTICAL PROFILE P0(z)

Here, we present the analytical expressions for the coefficients C, D, E, F, and u0 that appear
in Eq. (17) for the unidirectional profile P0(z). Using these, one can compute the values of α, ν̄,
and β in the generalized 2D vorticity equation (5). The coefficients have been expressed in terms of
quantities s, 
B, and 〈B〉 defined in Sec. IV B. Using Eq. (17) and the boundary conditions defined
in Eq. (14), we obtain

u0 = s
hchd

μd
J 〈B〉, (A1)

C = 1

s

μd

μc

(
hc + hd

hchd

) (
1 − 1

2

hd

hc


B

〈B〉
)

, (A2)

D = 1

s

μd

μc

hd

hc

[
μc

μd

hc

hd
− hc

hd
− 1

2
+

(
1

4
+ 1

6

hd

hc

)

B

〈B〉
]

, (A3)

E = 1

hds
and F = 0. (A4)

It must be noted that although the value of u0 computed from (A1) does not correspond to the
one experimentally measured for the Kolmogorov-like flow, (A1) captures the scaling of u0 with
experimental parameters.
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