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Unstable equilibria and invariant manifolds in quasi-two-dimensional Kolmogorov-like flow
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Recent studies suggest that unstable, nonchaotic solutions of the Navier-Stokes equation may provide deep
insights into fluid turbulence. In this article, we present a combined experimental and numerical study exploring
the dynamical role of unstable equilibrium solutions and their invariant manifolds in a weakly turbulent,
electromagnetically driven, shallow fluid layer. Identifying instants when turbulent evolution slows down, we
compute 31 unstable equilibria of a realistic two-dimensional model of the flow. We establish the dynamical
relevance of these unstable equilibria by showing that they are closely visited by the turbulent flow. We also
establish the dynamical relevance of unstable manifolds by verifying that they are shadowed by turbulent
trajectories departing from the neighborhoods of unstable equilibria over large distances in state space.
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I. INTRODUCTION

Understanding fluid turbulence has remained a long-
standing problem in classical physics [1–3]. Recently, sub-
stantial progress was made using a theoretical framework that
was originally developed [4,5] for low-dimensional chaotic
systems, such as the Lorentz system [6]. This framework,
which goes back to the work of Poincaré on celestial mechanics
[7], uses a hierarchy of unstable temporally simple solutions
(e.g., equilibria or periodic orbits) of the governing equations
to provide both a dynamical and statistical description of
a chaotic system. Computing such solutions of the Navier-
Stokes equation—called exact coherent structures (ECSs)—
has become feasible only recently, following the development
of novel numerical methods [8,9].

The dynamical role of ECSs in turbulence is best illustrated
using a geometrical description [1], where the flow field in
physical space at any given instant is represented as a single
point in a high-dimensional state space, as illustrated by
Fig. 1. The evolution of the turbulent flow corresponds to
a tortuous trajectory this point traces out in the state space
[10]. An infinite hierarchy of ECSs is conjectured to exist
in regions of state space explored by turbulent trajectories.
Near an ECS, the turbulent flow mimics both its spatial and
temporal structure [10–12], which is referred to as shadowing.
However, being unstable, ECSs are visited only fleetingly
[12,13], and turbulent flow patterns never become identical
to those corresponding to ECSs.

The geometry of state space around ECSs appears to
be shaped by their invariant manifolds [10,14,15]: tur-
bulent trajectories approach an ECS following its sta-
ble manifold and depart following its unstable manifold
[12], at least when the spectrum associated with that ECS
is not strongly non-normal [16,17]. Finally, heteroclinic
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(homoclinic) connections—which originate at one ECS and
terminate at another (the same) ECS—are conjectured to
guide turbulent trajectories between neighborhoods of ECSs
[10,18,19]. We will refer to both heteroclinic and homo-
clinic connections collectively as dynamical connections. In
summary, turbulence can be viewed as a deterministic walk

FIG. 1. Low-dimensional projection of the state space (cf. Ap-
pendix A). Black curve is a trajectory describing the temporal
evolution of a turbulent flow and red spheres represent different ECSs
(equilibria in this particular case). The thick black line shows the
portion of a turbulent trajectory shadowing (a portion of) the unstable
manifold (blue surface) of an ECS. The flow (vorticity) fields in the
physical space, corresponding to a particular point on the turbulent
trajectory (black ball) and the nearest ECS, are shown on the left.
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between neighborhoods of ECSs, guided by their invariant
manifolds and dynamical connections.

Numerical simulations of three-dimensional (3D) wall-
bounded shear flows, such as plane Couette [20], channel
[21], and pipe flows [22,23] at moderate Reynolds numbers
(Re) provide strong support for the dynamical relevance of
ECSs. Equilibrium and traveling wave (TW) solutions [20–23]
computed for minimal flow domains [24] capture prominent
spatial features (streamwise rolls and streaks) of near-wall
coherent structures observed in experiments [25]. Certain
periodic orbit (PO) and relative periodic orbit (RPO) solutions
[26,27] have been shown to describe self-sustained processes
[24,28] responsible for destruction and reformation of near-
wall coherent structures. Statistics of turbulent flows have also
been found to agree well with those estimated using only a
few ECSs [26,27], suggesting statistical measures computed
using a sufficiently large set of ECSs may indeed converge to
those estimated using turbulent time series, providing a direct
connection between dynamical and statistical description of
turbulence.

While the framework has been developed primarily using
numerical simulations, experimental evidence for the existence
and dynamical relevance of ECSs in three-dimensional (3D)
shear flows remains scarce. Typically, in pipes and channels,
the flow is measured using stereoscopic particle image ve-
locimetry (PIV) within a planar cross section normal to the
direction of mean flow. Taylor’s hypothesis is then invoked
to reconstruct spatially resolved 3D velocity fields as flow
structures are advected past the imaging plane. Using this
technique, flow fields resembling TW solutions [22,23,29]
were identified in pipe [30–32] and channel [33] flow
experiments. Taylor’s hypothesis, however, breaks down where
the mean flow is slow (e.g., near stationary walls), and no direct
measurements of spatially and temporally resolved 3D velocity
fields in experiments have been reported so far.

While numerous ECSs in various 3D shear flows have been
computed, very few studies [13,15] have tested how closely
turbulent flows approach ECSs. Those studies, however, were
limited to direct numerical simulations in short (less than
10 diameters long) pipes with periodic boundary conditions.
Kerswell and Tutty [13] have shown that turbulent flow at
Re = 2400 was found in the neighborhoods of TW solutions
with m-fold (m = 2, 3, 4) symmetry for about 10% of the time.
An upper bound of about 20% for TWs at similar Re was
suggested by Schneider et al. [34]. More recently, Budanur
et al. [15] have tested how closely an RPO, the type of ECS
conjectured to be dynamically more relevant than TWs, was
shadowed by turbulent trajectories. No estimates are currently
available for how closely turbulent trajectories in experiments
approach ECSs.

The majority of the studies exploring invariant manifolds
[10] focused on their role in direct laminar-turbulent transition
[35,36] in 3D shear flows. Several TWs [13,14,29,37–39]
and POs [18,26,27,40–42] were found to lie on the laminar-
turbulent boundary. The boundary itself can be constructed as
the union of stable manifolds of these “edge states” and deter-
mines which nearby state space trajectories become turbulent
and which relaminarize. However, the dynamical relevance
of invariant manifolds in sustained 3D turbulence—either in
simulation or experiment—is yet to be verified.

The dynamical relevance of ECSs (unstable equilibria) and
their invariant manifolds, however, was recently established
by Suri et al. [12] in the context of quasi-two-dimensional
(Q2D) turbulence. Q2D flows, generated in shallow elec-
trolyte layers driven by a horizontal electromagnetic force,
are often studied as models of geophysical flows [43,44]. In
experiments, spatially and temporally resolved velocity fields
can be easily measured (at the electrolyte-air interface) using
two-dimensional (2D) PIV, while the flow can be modeled
using a strictly 2D equation [45]. This allowed Suri et al.
to compute 16 unstable equilibria of a Q2D Kolmogorov-like
flow, directly using PIV data. Furthermore, it was shown that
the evolution of turbulent trajectories, in both simulation and
experiment, in the neighborhood of an ECS can be forecast by
constructing its unstable manifold.

The goal of this article is to address some open questions
regarding the dynamical role of unstable equilibria and their
invariant manifolds, once again using the Q2D Kolmogorov-
like flow as the test bed. Specifically, we show that turbulent
flow in both the experiment and simulations comes quite
close to almost all the unstable equilibria of the model that
have been computed so far. Using a pair of representative
equilibria we illustrate that, after turbulent trajectories enter
the neighborhood of these ECSs they closely shadow the
corresponding unstable manifolds for an extended period of
time. The article is structured as follows: In Secs. II and III
we present a brief overview of the experimental setup and
numerical simulations, respectively. Our results are presented
in Sec. IV and conclusions in Sec. V.

II. EXPERIMENTAL SETUP

The Kolmogorov flow used in classical investigations of
hydrodynamic stability [46,47] refers to a strictly 2D flow
driven by a sinusoidal forcing. Such a flow, however, is
an idealization that is impossible to reproduce exactly in
experiment. We will describe here an experimental setup that
preserves, to the extent possible, its key features.

To create a nearly sinusoidal forcing, we arrange 14 Nd-
FeB magnets (grade N42) to form an array of dimensions
15.24 cm × (14 × 1.27 cm) × 0.32 cm, as shown in Fig. 2(a).
Adjacent magnets have opposite polarity, resulting in a nearly
sinusoidal magnetic field B ≈ Bzẑ with Bz ≈ e−κz sin(κy) at
the center of the array. Here κ = π/w and w = 1.27 cm is
the width of each magnet. The magnet array is placed on
a horizontal aluminum plate and is padded with 0.32-cm-
thick aluminum bars to create a flat surface. A 50-μm-thick
black contact paper is placed over this flat surface to provide
a uniform black background for better flow visualization.
Acrylic bars and electrodes, running parallel to the y and x

axes, respectively, are glued on top of contact paper to create a
rectangular container of dimensions 17.8 cm × 22.9 cm with
the magnet array at its center.

To create a nearly 2D flow, we use the two-immiscible-fluid
layer configuration shown in Fig. 2(b). The bottom layer is a
dielectric (perfluorooctane with density ρ = 1769 kg/m3 and
viscosity μ = 1.3 mPa s) and the top one is an electrolyte
(1 M CuSO4 with 40% glycerol by weight with density
ρ = 1160 kg/m3 and viscosity μ = 5.7 mPa s); each layer
is 0.3 cm thick. Passing a uniform direct current density
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(a)

(b)

FIG. 2. Schematic of the experimental apparatus. (a) Top view
showing a magnet array with adjacent magnets (dashed lines) having
magnetization in opposite directions (up/down/up/...). The array is
placed over an aluminum plate and a container is constructed using
acrylic end walls and copper electrode side walls. (b) Side view
showing the cross section of the apparatus holding two immiscible
fluid layers: a heavy dielectric and a lighter electrolyte. A direct
current density J passing through the electrolyte interacts with the
magnetic field B produced by the magnet array, exerting the Lorentz
force F = J × B. Spatiotemporally resolved 2D velocity fields are
obtained using particle image velocimetry by imaging the tracer
particles at the electrolyte-air interface with a camera (not shown)
suspended above the container.

J = J ŷ through the electrolyte generates a nearly sinusoidal
Lorentz force F ≈ Je−κz sin(κy) x̂ that drives the flow in
both layers. The flow in the experiment is visualized by
seeding the electrolyte-air interface with glass bubbles (K15)
manufactured by 3M. Spatiotemporally resolved images of the
entire lateral extent of the flow are recorded at 15 Hz using the
DMK 31BU03 camera which has a 1024 × 768 pixel CCD
sensor. Velocity field u(x, y, t ) at the electrolyte-air interface
is calculated using the Prana PIV package [48] employing
the “Deform” multigrid PIV algorithm. The grid resolution

of the resulting PIV measurements is about 120 × 160, or
approximately nine grid points per magnet width.

The dynamical regimes in the experiment are parametrized
using the Reynolds number

Re = ūw

ν̄
. (1)

Here, ν̄ = 3.26 mm2/s is the depth-averaged kinematic viscos-
ity of the two fluid layers [45] and the characteristic velocity
ū is defined as the spatial root-mean-square average of u over
the central 8w × 8w region which is subsequently temporally
averaged over the entire time series.

III. THEORETICAL MODEL

The evolution of the flow is modeled using a strictly 2D
equation [45]

∂u
∂t

+ βu · ∇u = −∇p + 1

Re
(∇2u − γ u) + 〈F‖〉z, (2)

derived from first principles by averaging the 3D Navier-Stokes
equation along the confined (z) direction. In the above equation
〈F‖〉z is the depth-averaged 2D force density while p is the 2D
kinematic pressure. The velocity field u = (ux, uy ) in the 2D
model is assumed to be incompressible (∇ · u = 0), which is
a good approximation for Re � 40 [45]. In the experiment,
the solid boundary at the bottom causes a vertical gradient
in the magnitude of the horizontal velocity [45,49]. Equation
(2) describes the change in inertia of the fluid layers due to
this gradient using prefactor β < 1 to the nonlinear term and
the term −γ u represents the associated viscous shear stresses
in the bottom fluid layer. For the fluid layer configuration in
our experiment, β = 0.83 and γ = 3.22 deviate significantly
from values corresponding to a strictly 2D flow (β = 1,γ = 0).
Lastly, Eq. (2) was nondimensionalized by choosingw (magnet
width), ū, w/ū, and ū2 as scale factors for length, velocity, time,
and kinematic pressure p, respectively [50].

While the forcing profile near the center of the magnet
array in experiment is sinusoidal, it is fairly complicated near
the lateral boundaries. To accurately replicate such forcing
profile, the effective forcing 〈F‖〉z in the 2D model is computed
following a first-principles approach. The magnet array in the
experiment is modeled as a 3D lattice of uniformly magnetized
dipoles, with dipoles in adjacent magnets pointing oppositely
along ẑ and − ẑ. The net magnetic field Bz(x, y, z) produced
by the dipole lattice is calculated and the 3D Lorentz force
density F = JBz x̂ is depth averaged to obtain the 2D force
density [50].

In the case of uniform magnetization, the forcing profile
is antisymmetric under the coordinate transformation Rxy :
(x, y) → (−x,−y), i.e., Rxy〈F‖〉z = −〈F‖〉z. Rxy is equiv-
alent to rotation by π about the z axis passing through the
center of the domain. Under Rxy , the velocity field transforms
as Rxyu(x, y) → −u(−x,−y) which leads to Eq. (2) being
equivariant under Rxy . However, since the magnets used in the
experiment are not uniformly magnetized and the bottom of the
container is not perfectly horizontal, Rxy is weakly broken.

Direct numerical simulations based on the 2D equation (2)
in its semidiscrete form [51] are performed on a computational
domain with lateral dimensions and no-slip velocity boundary
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conditions identical to those in the experiment. Velocity and
pressure fields are spatially discretized on a 2D marker and
cell (MAC) staggered grid of dimensions 280 × 360. This
corresponds to a resolution of 20 cells per magnet width with
grid spacing δx = δy = 0.05. Spatial derivatives in Eq. (2)
are approximated using finite differences: the 2D Laplacian
operator with a five-point central difference formula and the
nonlinear term with a modified MAC formula [52]. Temporal
integration of Eq. (2) is performed using the P2 projection
scheme to enforce incompressibility of the velocity field at
each time step [53,54]. Temporal update of linear terms uses
the implicit Crank-Nicolson scheme and that of the nonlinear
term uses the explicit Adams-Bashforth scheme [54]. For all
numerical data presented in this article, a time step δt = 1/110
was used for temporal integration to ensure the Courant-
Friedrichs-Lewy number max{ux, uy}δt/δx � 0.5. More de-
tails regarding numerical simulations can be found in Suri et al.
[12] and Tithof et al. [50].

Since the lateral dimensions and boundary conditions in the
experiment and the simulation are identical flow fields from
the experiment, satisfying certain specific criteria described
below, can be used to compute dynamically relevant ECSs. To
facilitate this, the PIV measurements on the coarser 120 × 160
grid are interpolated onto the finer 280 × 360 simulation
grid. The interpolated fields (uexp

∗ ) are then projected onto
the divergence-free subspace employing Helmholtz-Hodge
decomposition to obtain initial conditions uexp

ic for the simu-
lations [55]. The maximum difference between uexp

∗ and uexp
ic ,

computed as ‖uexp
ic − uexp

∗ ‖/‖uexp
∗ ‖, across all initial conditions

tested, was less than 0.025. This confirms the flow at the
electrolyte-air interface is nearly incompressible at Re = 22.5
(the Reynolds number considered herein).

IV. RESULTS

A quantitative study of the transition from laminar flow to
turbulence in this system (using both experiment and numerical
simulations) has recently been performed by Tithof et al. [50].
As Re increases, the flow undergoes a sequence of bifurcations
and becomes weakly turbulent at Re ≈ 18. In the remainder of
this article, we will focus on the dynamics and the role of ECSs
at Re = 22.5. To illustrate the characteristic dynamics and flow
structures at this Re, we have included videos showing the
evolution of vorticity fields from experiments and simulations
in the Supplemental Material (videos 1 and 2) [56]. Temporal
autocorrelation computation shows that the correlation time
at this Re is τc = 27 ± 1 s (cf. Appendix B). In the experi-
ment, five separate 125τc-long (3600 s) runs were performed
to search for signatures of invariant solutions. In addition,
two 1000τc-long (28 000 s) time series were generated using
numerical simulations. Velocity fields in both simulations and
experiment were sampled at uniform intervals of �t = 0.037τc

(1 s) for analyzing the dynamics.
A leading theory assumes that dynamically dominant ECSs

underlying fluid turbulence correspond to temporally periodic
solutions of the governing equations [5,15,26,57] and there
is some evidence supporting this assumption. In particular, a
previous numerical investigation [47] of a 2D Kolmogorov
flow (described by Eq. (2) with β = 1 and γ = 0) with periodic
lateral boundary conditions found many tens of (relative)
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FIG. 3. A sample recurrence plot used to identify signatures of
ECSs in weakly turbulent flow produced by our simulations. Low
(high) values of R(t, τ ) indicate that flow fields at two instants t

and t + τ are similar (different). The dashed line corresponds to the
correlation time τc.

temporally periodic solutions visited by turbulent dynamics.
Unlike the flow on a periodic domain, which has both contin-
uous and discrete symmetries [47,50], the laterally bounded
system here has only a discrete symmetry Rxy and so it has no
relative solutions.

To identify signatures of time-periodic solutions guiding
turbulent flow we perform recurrence analysis [58] of the
velocity field time series. A recurrence diagram, like the one
shown in Fig. 3, represents a measure of how similar the flow
field at an instant t is compared with the flow field at a later
instant t + τ , quantified using the function

R(t, τ ) = min
g

‖u(t ) − gu(t + τ )‖
‖u(t )‖ , (3)

where τ > 0 and g = {1,Rxy} are the elements of the group of
discrete symmetries of the flow. While turbulent flow fields are
not invariant under Rxy , a flow field u and its rotated version
Rxyu can recur in time with equal (comparable) likelihood
in the simulation (experiment). Equation (3) accounts for this
by identifying the closest recurrence among symmetry-related
copies.

In Fig. 3, a region representing a low value of R(t, τ )
indicates a near recurrence, which means that flow fields
at instants t and t + τ are similar. Deep local minima at
τ > τc (dark red islands) suggest that turbulent flow shadows
a periodic orbit with temporal period T ≈ τ . To our surprise,
both in simulation and experiment, very few (�10) such near
recurrences were observed, suggesting time-periodic solutions
are not the most dynamically important ECSs at Re = 22.5.

Instead, the most prominent feature was the presence of
dark red triangular regions with their base at τ = 0 and height
comparable to τc, like the ones at t ≈ −10, 0, 5, 10 in Fig. 3.
Such features reflect significant slowing down of the evolution
during which the flow becomes nearly time independent.
This is a signature of the turbulent trajectory in state space
visiting the neighborhood of an unstable equilibrium solution.
This inference can be rationalized using the analogy of a
rotating pendulum slowing down near its inverted position,
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t/τc
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FIG. 4. State space speed s(t ), with symbols indicating the deep
local minima. Filled symbols designate a nearby unstable equilib-
rium was computed when the Newton-Krylov solver was initialized
using the corresponding turbulent flow field. Different filled symbols
represent convergence to distinct equilibria (cf. Fig. 5). Open circles
indicate the solver failed to converge to an equilibrium.

which corresponds to an unstable equilibrium. The discussion
hereafter will focus on identifying such unstable equilibria,
their stability properties, and the dynamical role they play in
shaping the evolution of nearby turbulent trajectories.

A. Unstable equilibrium solutions

Unlike the inverted pendulum example, unstable equilibria
of the governing equations describing the flow considered
here are not known a priori. Hence, we hypothesize that the
turbulent trajectory passes close to an equilibrium when it
is evolving sufficiently slowly. To identify such instants, we
define the instantaneous state space speed s(t ) [12,59] of the
turbulent trajectory as the properly normalized rate of change
in velocity fields

s(t ) = τc

‖u(t )‖
∥∥∥∥du

dt

∥∥∥∥ ≈ τc

�t

‖u(t + �t ) − u(t )‖
‖u(t )‖ . (4)

In the above equation, �t = 0.037τc (1 s) is the interval be-
tween successive samples of velocity fields in both simulation
and experiment.

Figure 4 shows the state space speed for the same segment
of turbulent trajectory analyzed in Fig. 3. The position of
the deep minima (s � 0.7), identified with symbols, closely
corresponds to the location of the prominent red triangular
regions in the recurrence plot. Note that the deepest minimum
mint s(t ) = 0.08 is significantly lower than the temporal av-
erage of s, which is nearly unity. To determine whether these
minima are associated with a nearby unstable equilibrium, we
initialized a Newton-Krylov solver [60,61] using the turbulent
flow fields which correspond to the respective minima. In
several cases, labeled with filled symbols in Fig. 4, the solver
identified a nearby unstable equilibrium u0. For some initial
conditions uic, however, the solver failed to converge to an
equilibrium solution. Several different unstable equilibria were
found this way, which we indicated using distinct symbols in
Fig. 4. Here and below, t = 0 denotes the global minimum of
s(t ) within the temporal window shown.

−6.5 0 6.5

(a)

(b)

FIG. 5. Equilibria (a) E01 and (b) E10 (see Table I). The left
column shows initial conditions from the numerical simulation cor-
responding to local minima (a) t = 0 (black circle) and (b) t = −10
(black diamond) in Fig. 4. The right column shows the corresponding
equilibria. The normalized distances from the initial conditions to E01
and E10 are Dic

0 = 0.20 and 0.61, respectively.

The initial conditions, represented by contour plots of
vorticity ω = (∇ × u) · ẑ, are compared with the respective
unstable equilibria of the 2D model in Fig. 5. The visual
similarity of the corresponding flow states in the physical space
is striking and unequivocally illustrates that turbulent trajectory
passes very close to unstable equilibria, which is consistent
with the dramatic slowdown in evolution. Notice that, since
Rxyω(x, y) → ω(−x,−y), the equilibrium E01 is invariant
under Rxy , while E10 is not. In all, flow fields at 350 deep
minima of s(t ) were tested for convergence in the simulation
and 55 (about 15%) of these converged to 18 distinct unstable
equilibria. While the temporal window in Fig. 4 shows a higher
percentage of convergence, it was chosen since it includes the
deepest minima across all the data.

Failure of the Newton-Krylov solver to converge to an
unstable equilibrium from a given initial condition does not
necessarily indicate that there is no unstable equilibrium
nearby, since convergence is only guaranteed for sufficiently
close initial conditions. It is quite likely that a more robust
solver, such as an adjoint-based one [62], might identify
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FIG. 6. Equilibrium E20: (a) Initial condition from the experi-
ment and (b) the corresponding solution. The normalized difference
between the two flow fields is Dic

0 = 0.33. The colormap used here
and below is the same as in Fig. 5.

additional unstable equilibria. It is also worth noting that the
success or failure of the Newton-Krylov method is correlated
with the value of s(t ) at the local minimum (i.e., the success
rate is the highest for the deepest minima), but the correlation is
not perfect, as illustrated by Fig. 4. This is not surprising, given
the highly anisotropic structure of chaotic sets, such as the one
underlying turbulent dynamics of the Kolmogorov flow, in the
state space.

Following a similar methodology, several equilibria of the
2D model were also computed by initializing the Newton-
Krylov solver with processed PIV data from experiment. As
an illustration, Fig. 6 shows the flow field corresponding to a
minimum of s(t ) and the corresponding equilibrium. Due to
the relatively short duration (125τc) of each experimental run,
a higher threshold s � 1.1 was chosen to identify a number of
minima comparable to that in the simulations. From about 300
initial conditions from the five experimental runs, 24 (about
8%) converged to 19 distinct equilibria.

Among all of the equilibria calculated, six were found using
both experimental and numerical initial conditions, resulting in
a total of 31 distinct equilibria. Due to the equivariance of the
governing equation under Rxy , if u0 is an equilibrium which
is not invariant under Rxy , then its rotated copy Rxyu0 ( 	= u0)
is also an equilibrium. Consequently, distinct initial conditions
may converge to either u0 orRxyu0. Hence, the converged equi-
libria were tested for the presence of symmetry-related copies
to determine the total number of distinct ones. Table I lists
all the distinct equilibria we computed, labeled in ascending
order of their L2 norm ‖u0‖. Also listed are the data sets which
contained the initial conditions that converged to a particular
solution: simulation (S), experiment (E), or both (S,E).

The Newton-Krylov solver initialized using uic can, in
principle, converge to an equilibrium u0 that lies far away from
that initial condition. The degree of similarity between these
two states can be quantified using the normalized distance

Dic
0 = ‖uic − u0‖

‖u0‖ (5)

and is listed in Table I for each equilibrium. When several
different initial conditions converged to an equilibrium, the
smallest Dic

0 was used. To relate the magnitude of Dic
0 with

the visual similarity between the flow fields uic and u0 in the
physical space, we have included in the Supplemental Material
the vorticity fields of all the equilibria and the nearest initial
conditions. A quick comparison suggests that uic and u0 appear
similar when D0 � 0.60. Indeed, the converged solution E10
and the corresponding initial condition shown in Fig. 5(b) bear
a striking resemblance despite differing by Dic

0 = 0.61.
To test how close the turbulent flows in experiments and

simulations approach each equilibrium, we computed the
minimal (normalized) distance

D0(t ) = min
g

‖u(t ) − gu0‖
‖u0‖ . (6)

Table I lists the minimal distances mint D
sim
0 (t ) and

mint D
exp
0 (t ) from each equilibrium to turbulent trajectories in

simulation and experiment, respectively. Based on a threshold
of 0.6, all but four (E05, E07, E17, and E19) equilibria
were visited by the turbulent flow in both experiment and
simulations, validating their dynamical relevance. Moreover,
despite a shorter time series in the experiment, mint D

exp
0 (t )

is not systematically higher than mint D
sim
0 (t ) (except for

E01), confirming that equilibria of the 2D model are indeed
dynamically relevant in the experiment. We note that only four
equilibria computed—E01, E05, E06, and E26—are invariant
under Rxy and trajectories in the experiment, where Rxy is
weakly broken, may not approach these solutions as closely as
numerical trajectories might.

B. Invariant manifolds of equilibria

The dynamical role of equilibria goes beyond causing
slowdowns in the evolution of turbulent trajectories entering
their neighborhoods. Their stable and unstable manifolds shape
the state space geometry, guiding nearby turbulent trajectories,
which follow the stable manifold of an equilibrium on approach
and the unstable manifold on departure. The local orientation
and the dimensionality of the stable and unstable manifolds are
determined, respectively, by the stable and unstable eigenvec-
tors of the corresponding equilibrium. As Table I shows, the
number of unstable directions Nu is small: it varies between 2
and 9 for all the equilibria we identified, which is a tiny fraction
of the dimensionality of the full state space, Nf ≈ 2 × 105.

On the contrary, the total number of stable directions,
Nf − Nu, is very large, which appears to suggest a dramatic
asymmetry between stable and unstable manifolds. However,
only a tiny fraction of the degrees of freedom associated with
the stable manifold play a role in sustained fluid turbulence,
with dissipation constraining the dynamics to a relatively
low-dimensional chaotic attractor [1,63,64]. The number of
dynamically relevant degrees of freedom in the neighborhood
of an equilibrium can be estimated by computing the local
Kaplan-Yorke dimension [65]

NKY = k0 + 1

|
(λk0+1)|
k0∑

k=1


(λk ), (7)
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TABLE I. Unstable equilibria (u0) computed using initial conditions (ICs) from simulation (S) and experiment (E), sorted by their
L2 norm ‖u0‖. minic Dic

0 is the distance from an equilibrium to the nearest initial condition (experimental or numerical) that converged
to it under Newton’s iteration. The corresponding flow fields in the physical space are shown in the Supplemental Material. mint D

sim
0 (t )

[mint D
exp
0 (t )] are the distances of the closest approach of turbulent trajectory in simulation [experiment] to an equilibrium. Nu is the number of

unstable eigenvalues and NKY is the local Kaplan-Yorke dimension. Eigenvalues are ordered by their real parts, with λ1 being the most unstable
one.

Sol ‖u0‖ IC min
ic

Dic
0 min

t
Dsim

0 (t ) min
t

D
exp
0 (t ) Nu NKY λ1

Nu∑
k=1

λk

E01 254.7 S,E 0.14,0.69 0.13 0.57 2 4.53 0.0272 0.0517
E02 258.2 S 0.50 0.27 0.40 8 13.6 0.1508 0.2420
E03 258.4 S,E 0.24,0.39 0.19 0.35 7 13.0 0.1492 0.1922
E04 259.5 S 0.41 0.35 0.40 6 11.1 0.1422 0.2053
E05 261.1 E 0.82 0.72 0.67 7 14.4 0.1926 0.4916
E06 261.6 S 0.38 0.34 0.50 6 9.90 0.0521 + 0.0458 0.1257
E07 263.4 E 0.69 0.61 0.53 8 15.7 0.1222 0.3868
E08 264.1 S 0.50 0.49 0.47 3 6.81 0.0344 + 0.0708i 0.0828
E09 267.0 S 0.60 0.46 0.48 6 17.5 0.1514 + 0.1097i 0.6892
E10 267.3 S 0.61 0.47 0.50 5 13.3 0.1074 + 0.0243i 0.3991
E11 267.4 S,E 0.42,0.48 0.41 0.47 5 12.2 0.0896 0.2216
E12 267.6 S 0.70 0.44 0.49 3 10.7 0.0775 + 0.0390i 0.1726
E13 267.7 S 0.61 0.45 0.45 5 10.1 0.0231 + 0.1900i 0.0914
E14 267.9 S 0.42 0.39 0.50 6 14.0 0.0922 + 0.0312i 0.3493
E15 268.3 E 0.61 0.48 0.50 6 15.9 0.1911 + 0.0737i 0.5934
E16 268.7 E 0.63 0.53 0.37 5 10.9 0.0749 + 0.0775i 0.2482
E17 268.8 E 0.63 0.63 0.57 6 16.2 0.1249 + 0.1935i 0.4468
E18 269.2 S,E 0.49,0.54 0.49 0.46 6 16.9 0.1608 0.4230
E19 270.7 E 0.64 0.61 0.49 8 17.0 0.1106 + 0.1261i 0.4072
E20 272.4 S,E 0.53,0.33 0.41 0.33 4 15.3 0.1014 + 0.1787i 0.2977
E21 273.3 E 0.49 0.48 0.46 6 19.6 0.1786 + 0.0852i 0.5520
E22 274.0 E 0.71 0.54 0.56 9 20.3 0.2440 0.7611
E23 274.1 S 0.40 0.36 0.41 7 18.6 0.1318 + 0.1681i 0.3942
E24 275.7 E 0.61 0.56 0.49 7 16.0 0.1847 0.3497
E25 275.8 S,E 0.54,0.53 0.38 0.40 8 17.2 0.1134 + 0.1611i 0.4019
E26 276.1 S 0.33 0.33 0.49 3 8.99 0.0284 + 0.1235i 0.0752
E27 277.2 S 0.43 0.40 0.48 4 8.56 0.0394 + 0.0896i 0.1165
E28 278.6 E 0.70 0.50 0.49 6 17.7 0.1037 + 0.0325i 0.4475
E29 278.8 E 0.48 0.49 0.44 5 14.6 0.1015 + 0.2180i 0.3721
E30 279.8 E 0.60 0.46 0.49 7 17.9 0.2433 0.4565
E31 279.9 E 0.58 0.39 0.42 9 19.4 0.0723 0.3135

where the eigenvalues λk are sorted by their real parts 
(λk )
in descending order and k0 is the largest integer for which
the sum on the right-hand side of Eq. (7) is non-negative.
For the equilibria considered here, NKY(≈2Nu) varies roughly
between 4 and 20, suggesting that the number of dynamically
relevant stable directions NKY − Nu is O(10). To test if NKY

corresponding to dynamically relevant ECSs is comparable to
that of the attractor, we computed the Lyapunov spectrum of
the chaotic attractor using continuous Gram-Schmidt orthogo-
nalization [66]. The temporal average of the spectrum showed
NKY ≈ 15, which is indeed comparable to NKY corresponding
to the equilibria we computed.

Although the numbers of dynamically relevant stable and
unstable directions in the neighborhood of the equilibria listed
in Table I are comparable, in the remainder of this article
we will focus on unstable manifolds. They can be computed
more easily using forward time integration and are also more
useful in practice, e.g., allowing forecasting of the evolution
of turbulent flows [12]. Two different examples, one with a

pair of unstable eigenvalues with comparable magnitude and
another characterized by a dominant real eigenvalue, will be
used below to illustrate the dynamical role of the manifolds.

1. Two-dimensional unstable manifold

Equilibrium E01 shown in Fig. 5(a) has just two unstable
eigenvectors ê1 and ê2, both with real eigenvalues λ1 =
0.0272 and λ2 = 0.0245. The perturbations corresponding to
ê1 and ê2 in physical space are included in Appendix A.
The 2D unstable manifold of E01 is locally tangent to the
plane defined by ê1 and ê2, but deviates from this plane
farther away due to nonlinearity. It was therefore computed
using a dense set of 1440 trajectories uθ (t ′) with initial
conditions uniformly distributed around a circle uθ (0) = u0 +
ε cos(θ ) ê1 + ε sin(θ ) ê2 with ε = 10−4 × ‖u0‖. The time t ′
and angle θ uniquely parametrize this 2D manifold.

A few of the manifold trajectories uθ (t ′) along with a portion
of the unstable manifold are shown in Fig. 7, which was
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FIG. 7. Turbulent trajectories (T1, T2, and T3) from numerical
simulation shadowing the 2D unstable manifold (blue surface) of
equilibrium E01 (red sphere). Black spheres on T1, T2, and T3

mark minima in s(t ). The portion of the unstable manifold shown
was constructed using a one-parameter family of trajectories. Blue
ribbons and red curves represent manifold extensions and reference
manifold trajectories that T1, T2, and T3 follow. The procedure used
to construct this low-dimensional projection and the definition of
basis vectors ci are described in Appendix A. Supplemental Material
video 3 compares evolution along T1 and the corresponding reference
trajectory.

constructed by projecting the high-dimensional state space
onto an orthonormal basis spanned by the unstable eigenvec-
tors ê1, ê2, and a stable eigenvector ê5 (cf. Appendix A). Note
that all the trajectories lying in the manifold exhibit very little
curvature near the equilibrium, which is a consequence of the
two unstable eigenvalues being nearly equal. However, away
from E01, the nonlinearity of the governing equation results in
significant curvature of the manifold and nearby trajectories.

As we mentioned previously, sufficiently close passes to
E01 were not observed in the experiment. In contrast, turbulent
trajectories u(t ) in the simulation were found to approach E01
very closely on numerous occasions. Three such trajectories
with mint D0 = 0.13 (T1), 0.26 (T2), and 0.26 (T3) are shown
in Fig. 7. The segments of these trajectories shown are approx-
imately 10τc, 8τc, and 7τc long, respectively. The trajectory
T1 corresponds to the deepest minimum of s(t ) as well as the
closest approach to E01 across the entire time series (cf. Fig. 4).

Figure 7 shows that nearby turbulent trajectories indeed ap-
proach E01 along the stable manifold (in this projection along
c5) and subsequently depart following its unstable manifold.
The segment of each turbulent trajectory as it approaches E01 is
plotted using a dashed curve, while that following the unstable
manifold is plotted using a solid curve. Notice that turbulent
trajectories departing the neighborhood of E01 are guided by
the unstable manifold even very far away from E01, where the
linearization used to compute the eigenvalues and eigenvectors

t/τc

-2.5 0 2.5 5 7.5

θ

2π

π

0

T1

T2

T3

FIG. 8. The angle θ for the manifold trajectory which is closest
to the points u(t ) on a nearby turbulent trajectory.

completely breaks down, as illustrated by the curvature of the
manifold.

To make sure that the low-dimensional projection ac-
curately reflects the dynamics in the full state space, we
performed a quantitative analysis of the turbulent trajectories
passing through the neighborhood of E01. We started by
computing the instantaneous distance D1 between a turbulent
trajectory u(t ) and each manifold trajectory uθ (t ′):

D1(t, θ ) = min
t ′

‖u(t ) − uθ (t ′)‖
‖u(t )‖ . (8)

For a point u(t ) on the turbulent trajectory, D1 is the distance
to the closest point—parametrized by t ′—on a manifold
trajectory uθ (t ′). We then computed the instantaneous distance
from the turbulent trajectory to the entire 2D unstable manifold
parametrized by θ and t ′:

D2(t ) = min
θ

D1(t, θ ) = min
θ,t ′

‖u(t ) − uθ (t ′)‖
‖u(t )‖ . (9)

D2 can be used to identify the manifold trajectory uθ which is
the closest to the turbulent trajectory u(t ) at a given instant.

Figure 8 shows the value of θ that corresponds to D2(t ) for
the three turbulent trajectories that appear in Fig. 7. In each
case, t = 0 corresponds to a minimum of s(t ), and only the
temporal interval during which θ does not experience abrupt
changes is plotted. We find that there is a fairly long time

-2.5 0 2.5 5 7.5
0

0.25

0.5

T3

T2

T1

t/τc

D1

FIG. 9. The distance between the turbulent trajectory u(t ) and the
corresponding manifold trajectory uθc

(t ′) (see text).
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FIG. 10. Flow fields for (a) the turbulent trajectory T1 in Fig. 7
at t/τc = 3.75 and (b) the nearest point on the reference manifold
trajectory.

interval centered around t = 0 over which θ ≈ θc = θ |t=0 is
essentially constant, i.e., each turbulent trajectory follows a
specific reference trajectory uθc

(t ′) lying in the manifold. The
reference trajectories in the unstable manifold corresponding
to T1, T2, and T3 are plotted in red in Fig. 7.

The distance between each turbulent trajectory and the cor-
responding manifold reference trajectory is given by D1(t, θc ).
In Fig. 9 we plot D1(t, θc ) for each of the three turbulent
trajectories shown in Fig. 7. Solid curves indicate the time
intervals over which θ ≈ θc and so D1(t, θc ) ≈ D2(t ) is an
accurate estimate of the distance from the turbulent trajectory
to the entire unstable manifold. The relatively low values
of the distance indicate that turbulent trajectories follow the
corresponding manifold trajectories quite closely in the full
state space for at least 3.5τc following the instant at which s(t )
is a minimum.

Additional evidence for the dynamical role of the unstable
manifold is provided in Fig. 10, which compares the flow
field on T1—at a location which is far from E01 in the full
state space—with the nearest point on the reference manifold
trajectory. These states correspond to the ends of the respective
trajectories in Fig. 7, where D1 ≈ 0.3. The striking similarity
between these flow fields once again confirms the hypothesis
that turbulent flow is guided in state space by the unstable
manifold (of E01 in this case) even when the flow has evolved
substantially far away from the unstable equilibrium. Side-by-
side comparison of evolution along turbulent trajectory T1 and
the corresponding manifold trajectory is included as video 3
in the Supplemental Material.

As Fig. 9 shows, all three turbulent trajectories continue to
approach the unstable manifold as they evolve farther away
from the equilibrium. Indeed, the unstable manifold should
be locally attracting for all initial conditions in the immediate
neighborhood of the corresponding equilibrium. The unusual
aspect here is that none of the three turbulent trajectories come
particularly close to E01: the separations D2(0) ≈ D1(0) are
between 0.1 and 0.3, which is outside the linear neighborhood
of E01. Since the flow is chaotic, the unstable manifold
becomes repelling far from the equilibrium. So even turbulent
trajectories that approach the unstable manifold fairly closely

t/τc

-2.5 0 2.5 5 7.5

t /τc

-2.5

0

2.5

5

7.5

T2

T3

T1

FIG. 11. Comparison between the rates of evolution along mani-
fold and turbulent trajectories.

eventually diverge away from it (cf. Fig. 9). This divergence
imposes an inherent limit on the distance in state space over
which turbulent trajectories are guided by any of the unstable
manifolds.

In conclusion of this section, we comment on a dynamical
aspect of the problem. The evidence we presented illustrates
the geometrical role of the unstable manifold of E01 and
particular manifold trajectories. However, one can ask whether
the rates of evolution along a turbulent trajectory u(t ) and
the corresponding manifold trajectory uθc

(t ′) are the same.
Figure 11 shows the evolution of the “manifold time” t ′, which
corresponds to points along uθc

closest to u(t ). Note that
the origin for t ′ is arbitrary and was chosen to minimize the
difference between t and t ′. Although, for all three turbulent
trajectories, the graphs of t ′(t ) cluster around the diagonal,
which corresponds to identical rates of evolution for t and t ′,
there are notable deviations. For instance, we find a rather unex-
pected feature in the evolution of the turbulent trajectory T2: t ′
decreases for 3 � t/τc � 4. Indeed, during the corresponding
time interval, this turbulent trajectory makes a small loop in
Fig. 7. This odd behavior has to do with weakly stable degrees
of freedom, which feature oscillatory dynamics.

2. Seven-dimensional unstable manifold

The analysis presented in the previous section suggests that
turbulent evolution, following a deep minimum in s(t ), can be
forecast for a few correlation times by constructing the unstable
manifold of the nearby equilibrium. Such forecasting in both
experiment and simulation for a close pass to E03 (cf. Fig. 12)
was previously reported by Suri et al. [12]. Here, we extend
that study by providing quantitative estimates for the separation
between the unstable manifold of E03 and nearby turbulent
trajectories.

Equilibrium E03 has a seven-dimensional unstable
manifold with a leading real eigenvalue λ1 = 0.1492
and three pairs of unstable complex conjugate eigenval-
ues λ2,3 = 0.0147 ± 0.1680i, λ4,5 = 0.0045 ± 0.1104i, and
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FIG. 12. (a) A flow field from the experiment during a close
pass to (b) equilibrium E03 which has a seven-dimensional unstable
manifold.

λ6,7 = 0.0009 ± 0.4500i. Due to its relatively high dimen-
sionality, constructing the corresponding unstable manifold is
exceedingly data intensive. However, the spectral gap between
the eigenvalues implies that not all unstable degrees of free-
dom are equally important dynamically [10,18]. Trajectories
starting from generic initial conditions close to E03 should
quickly align in the direction of the leading eigenvector ± ê1

(the corresponding perturbation in the physical space is shown
in Appendix A).

The strong focusing effect implies that the dynamically
relevant portion of the unstable manifold of E03 is effectively
one dimensional (1D) and is shaped by the pair of trajectories
u±(t ′) departing from E03 along ± ê1. The union of these two
trajectories, which will be referred to as the dominant unstable
submanifold in the following discussion, is shown as solid and
dashed red curves in Fig. 13. Also shown are E03 (red sphere)
and turbulent trajectories from simulation (T4) and experiment
(T5) in its neighborhood. The figure is a projection of the state
space onto an orthogonal basis constructed using ê1 and the
eigenvectors ê6 and ê7 associated with the complex conjugate
eigenvalue pair λ6,7 (cf. Appendix A). It is interesting to point
out that u+(t ′) appears nearly straight even well outside of the
linear neighborhood of E03, while u−(t ′), which is initially
oriented in the opposite direction, turns around not far from
the equilibrium and starts following u+(t ′). This somewhat odd
observation is not an artifact of the projection, as confirmed by
the evolution of the corresponding flow fields in the physical
space (video 4 in the Supplemental Material), which appear
quite similar for an extended period of time.

Both turbulent trajectories shown in Fig. 13 follow the 1D
submanifold quite closely in the full state space, as the plot of
the distance D1(t ) shown in Fig. 14 illustrates. In particular,
the numerical trajectory follows u+(t ′) with D1 � 0.3 along
the entire interval −0.5τc � t � 3.5τc shown in Fig. 13 (this
can also be seen in video 4). Note that, once again, we set t = 0
at the instant when s(t ) achieves a minimum for each of the
turbulent trajectories visiting the neighborhood of E03. The
experimental trajectory follows the 1D submanifold (video 4
in the Supplemental Material) over a shorter interval −0.5τc �
t � 2.5τc, after which it diverges from the submanifold as

FIG. 13. The dominant unstable submanifold u+(t ′) (solid red)
and u−(t ′) (dashed red) of equilibrium E03 (red sphere). Also shown
are turbulent trajectories from simulation (T4 in black) and experiment
(T5 in green) that shadow u+(t ′) and u−(t ′), respectively. Details of
the projection coordinates are provided in Appendix A.

indicated by the value of D1 exceeding our empiric threshold
of 0.6. Notice that u(t ) initially follows u+(t ′), but at t ≈ τc it
switches and starts following u−(t ′). At that point u+(t ′) and
u−(t ′) are themselves quite close.

To illustrate how well the 1D submanifold reproduces tur-
bulent dynamics far away from E03, we compare in Figs. 15(a)
and 15(b) the flow field at the instant t ′m marked using the red
diamond on u+(t ′m) in Fig. 13 with the nearest point (black

-1 0 1 2 3 4
0

0.5

1

FIG. 14. Distance D1(t ) from turbulent trajectories u(t ) in simu-
lation (T4) and experiment (T5) to the 1D submanifold. Solid [dashed]
curves correspond to distance from u+(t ′) [u−(t ′)]. The diamond and
square highlight separation between states indicated using the same
symbols in Fig. 13.
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FIG. 15. Comparison of flow fields far from E03. States on 1D
submanifold trajectories (a) u+(t ′

m), marked using a red diamond in
Fig. 13 and (c) u−(t ′

m) (red square). Turbulent flow fields u(tm) from
(b) simulation (black diamond onT4) and (d) experiment (green square
on T5).

diamond) on the turbulent trajectory u(tm) from simulation. A
similar comparison between u−(t ′m) and u(tm) in experiment
(red and green squares in Fig. 13) is shown in Figs. 15(c) and
15(d). The instant tm for each turbulent trajectory corresponds
to the smaller of the distances

D±
1 = min

t

‖u(t ) − u±(t ′m)‖
‖u(t )‖ (10)

from u(t ) to u±(t ′m).
These flow fields associated with u±(t ′m) in the physical

space are significantly different from that associated with E03
(cf. Fig. 12), confirming that u±(t ′m) are far away from E03 in
state space. This can be quantified more directly in terms of
the distance to u±(t ′m) along the submanifold, defined as an arc
length in state space

Dm = 1

‖u0‖
∫ t ′m

−∞

∥∥∥∥du±(t ′)
dt ′

∥∥∥∥dt ′ ≈ 1

τc

∫ t ′m

−∞
s(t ′)dt ′, (11)

where u0 = u±(−∞) is the equilibrium. The corresponding
distances Dm ≈ 2.16 for u+(t ′m) (red diamond) and Dm ≈ 2.3
for u−(t ′m) (red square) are substantially larger than the empiric
limit of D0 ≈ 0.6 for closeness in state space. Hence we can
conclude that the submanifold guides the evolution of these

0 0.5 1
0

0.5

1

mint D0

D±
1

T5

T4

FIG. 16. Distances from turbulent trajectories to the 1D subman-
ifold. Axes mint D0(t ) and D±

1 are the minimum distances to E03
and u±(t ′

m), respectively. Diamonds (D+
1 ) and squares (D−

1 ) indicate
closeness to u+ and u−, respectively.

turbulent trajectories over large distances in the full state space,
not just in its low-dimensional projection shown in Fig. 13.

In the discussion so far, we have demonstrated the dy-
namical role of the 1D submanifold using a pair of turbulent
trajectories, one in simulation and the other in experiment, that
approach E03 the closest. In fact, we found that all turbulent
trajectories that come sufficiently close to this equilibrium
always depart following its 1D submanifold. In the numerical
simulations, we identified about 75 distinct instances when
turbulent trajectories came within a distance D0 � 0.6 of E03.
To check whether each trajectory follows the 1D submanifold
after it leaves the neighborhood of E03, we compute the
distances D±

1 to the reference points u+(t ′m) (red diamond)
and u−(t ′m) (red square). Comparing these distances, we can
identify whether a turbulent trajectory follows u+ or u−.

Figure 16 shows D±
1 for each of the 75 trajectories versus

mint D0(t ). Following the notations of Figs. 13 and 14, we
use black diamonds (green squares) to indicate that u(t )
follows u+ (u−). For reference, D+

1 (D−
1 ) corresponding to

the trajectory T4 (T5) is labeled in Fig. 16. All trajectories
that approach E03 within a distance D0 � 0.45 follow the 1D
submanifold quite closely, with D±

1 � 0.6. Hence, although
the 1D submanifold is not locally attracting, it shapes the
geometry of a relatively large region of state space around E03.
Even for D0 � 0.45, a large fraction of turbulent trajectories
still follows the 1D submanifold (D±

1 � 0.6); however, the
submanifold stops being a reliable predictor of the evolution.

V. CONCLUSIONS

A vast majority of studies investigating fluid turbulence
from a dynamical systems perspective have focused on the role
of ECSs—mainly unstable traveling waves and time-periodic
states—in the transition between laminar flow and turbulence,
primarily using numerical simulations. In comparison, the
dynamical role of other types of invariant sets (e.g., equi-
libria and stable/unstable manifolds associated with different
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ECSs) in turbulent evolution has received very little attention.
Our combined experimental and numerical investigation of a
canonical two-dimensional flow suggests that these invariant
sets are important themselves.

Specifically, we found that unstable equilibria are responsi-
ble for the frequently observed slowdowns in the evolution
of a weakly turbulent flow, making their presence felt far
outside of their linear neighborhoods. On the other hand, no
dynamically relevant time-periodic solutions with periods of
up to 30 correlation times were found, despite a thorough and
systematic search. By computing how closely turbulent tra-
jectories approach each equilibrium, we have also determined
that at least 27 of the 31 equilibria that we have computed are
dynamically relevant, marking the first time a key piece of the
dynamical systems approach has been directly validated in an
experimental setting.

While equilibria themselves, being pointlike objects in
the state space, cannot shape the geometry of the chaotic
set underpinning fluid turbulence, the associated stable and
unstable manifolds do. We have demonstrated that unstable
manifolds guide the evolution of turbulent flows that happen to
pass through rather large neighborhoods of the corresponding
equilibria, which makes these manifolds important building
blocks in the deterministic, geometrical description of turbu-
lence.

In particular, unstable manifolds associated with the dy-
namically dominant equilibria are relatively low-dimensional,
which substantially constrains the shape of trajectories in their
vicinity. The evolution can be constrained even further for
unstable manifolds with a leading eigenvalue which is well
separated from the rest. As an example, we have shown that
several turbulent trajectories entering the neighborhood of
an equilibrium with a seven-dimensional unstable manifold
depart following a one-dimensional submanifold associated
with the leading eigenvector.

The dynamical role of stable manifolds of equilibria has
not been discussed in any detail in the present study. They do
appear to play an important role, however. A recent numerical
study of channel flow has shown that the hairpin vortices—
perhaps the most recognizable example of coherent struc-
tures in wall-bounded turbulent fluid flows—actually arise
due to transient amplification of small, but finite-amplitude,
disturbances in the stable manifold associated with a traveling
wave solution (relative equilibrium) [17]. This intriguing result
suggests that a more rigorous exploration of the role of stable
manifolds is necessary for a better understanding of state space
geometry.

The shape of both stable and unstable manifolds plays a key
role in generating the chaotic dynamics underpinning turbu-
lence. Heteroclinic tangles of stable and unstable manifolds of
different ECSs are responsible for the stretching and folding of
state space volumes that is an essential mechanism of chaos. On
the other hand, intersections of stable and unstable manifolds
of different ECSs define the heteroclinic connections, which
connect neighborhoods of different ECSs and are expected to
guide and constrain the evolution of turbulent flow as it moves
between these neighborhoods. While the role of heteroclinic
connections in fluid turbulence has also received little attention,
they could potentially provide as much insight into the inner
workings of turbulence as ECSs do. The present study is but a

first step in computing and understanding the dynamical role
of these underappreciated invariant sets.
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APPENDIX A: STATE SPACE PROJECTIONS

In this appendix, we provide details on constructing state
space visualizations in Figs. 7 and 13. Near an equilibrium
u0, we express the turbulent and manifold trajectories in state
space as a linear combination of the eigenvectors êk of the
equilibrium:

u(t ) = u0 +
∑

k

ak êk. (A1)

Typically, eigenvectors êk are not mutually orthogonal, i.e.,
êk · êl 	= δk,l , where δk,l is the Kronecker delta. Hence, coor-
dinates ak are given by using the scalar product

ak = ê†k · [u(t ) − u0] (A2)

with adjoint eigenvectors ê†k such that ê†k · êl = δk,l . To project
the state space onto a subspace spanned by any three eigenvec-
tors êk, êl , êm, we construct orthonormal vectors ê′

k = Tkl êl .
Here, Tkl is computed using the orthonormality condition
ê′
k · ê′

l = δk,l . The coordinates

ck = Tklal (A3)

along vectors ê′
k are then used to generate the projection

figures.
The choice of the three eigenvectors is guided by their

dynamical relevance as well as the amplitudes ak of nearby
turbulent trajectories. In particular, the 2D unstable manifold
of E01 shown in Fig. 7 is locally tangent to the plane spanned
by ê1 and ê2, so these two eigenvectors are a natural choice.
For the third direction, we chose the stable eigenvector ê5,
since the manifold trajectories far away from E01 tend to have
large components along ê5. This proved useful in showcasing
the curvature of the unstable manifold. The shapes of ê1, ê2,
and ê5 in the physical space are shown in Fig. 17.

In the neighborhood of E03 (cf. Fig. 13), we project the state
space onto a basis spanned by the leading unstable eigenvector

FIG. 17. Eigenvectors of E01 used to construct the 3D projection
of the state space shown in Fig. 7: (a) ê1, (b) ê2, and (c) ê5.
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FIG. 18. Eigenvectors of E03 used to construct the 3D projection
of the state space shown in Fig. 12: (a) ê1, (b) ( ê6 + ê7)/2, and (c)
( ê6 − ê7)/(2i ).

ê1 and the eigenvectors ê6, ê7 associated with the complex
conjugate eigenvalue pair λ6 = λ∗

7. Like in the 2D manifold
example, eigenvectors ê6, ê7 were chosen because they well
represent the curvature of the 1D submanifold away from E03.
The shapes of ê1 and the real and complex parts of ê6, ê7 in
physical space are shown in Fig. 18.

APPENDIX B: TEMPORAL AUTOCORRELATION

The estimate for how long it typically takes for a turbulent
flow field to change significantly in the course of its evolution
can be obtained from the temporal autocorrelation of the
velocity field:

C(τ ) = 〈�u(t ) · �u(t + τ )〉t
〈�u(t ) · �u(t )〉t , (B1)

τ (s)
0 25 50 75

C(τ)

0

0.5

1

1/e

FIG. 19. Temporal autocorrelation of the velocity field at
Re = 22.5. The solid (dashed) curve corresponds to simulation
(experiment).

where 〈·〉t indicates temporal average,�u(t ) = u(t ) − 〈u(t )〉t ,
and the scalar product of two fields u and v is defined as

u · v =
∑
i=x,y

∫
�

ui (x)vi (x)d2x, (B2)

where � is the flow domain.
Figure 19 shows a plot of the normalized temporal auto-

correlation as a function of τ at Re = 22.5. The normalization
criterion C(0) = 1, takes into account that a flow field at every
instant is identical (and hence perfectly correlated) to itself.
The correlation time τc can be defined as the smallest root of
C(τ ) = 1/e, denoted by the black dashed line in Fig. 19. For
the simulation as well as the experiment the correlation time
τc ≈ 12.5 (27 ± 1 s in dimensional units).
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