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In laboratory studies and numerical simulations, we observe clear signatures of unstable time-periodic
solutions in a moderately turbulent quasi-two-dimensional flow. We validate the dynamical relevance of
such solutions by demonstrating that turbulent flows in both experiment and numerics transiently display
time-periodic dynamics when they shadow unstable periodic orbits (UPOs). We show that UPOs we
computed are also statistically significant, with turbulent flows spending a sizable fraction of the total time
near these solutions. As a result, the average rates of energy input and dissipation for the turbulent flow and
frequently visited UPOs differ only by a few percent.
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Characteristic flow patterns (coherent structures)
embedded in turbulence play critical roles in both moder-
ately [1] and highly turbulent flows [2,3], including cascade
processes in two and three dimensions [4–6]. However,
inherently statistical descriptions of turbulence, which are
currently widely accepted, fail to describe coherent struc-
tures effectively. Consequently, they are unable to quanti-
tatively predict statistical averages of turbulent flows (e.g.,
energy dissipation rates).
Recent studies suggest that coherent structures in turbu-

lence can be described by recurrent (e.g., time-periodic)
solutions to the deterministic equations governing fluid
flow [1,7–11]. The existence of such solutions embedded
within a chaotic set suggests the possibility of a funda-
mentally dynamical theory, inspired by Hopf’s vision of
turbulence as a walk between neighborhoods of recurrent
solutions [8,12]. For certain (e.g., uniformly hyperbolic)
low-dimensional dynamical systems exhibiting chaos, this
viewpoint has been fleshed out; chaotic trajectories in state
space shadow (follow) a dense set of recurrent solutions in
the form of unstable time-periodic orbits (UPOs). This
property enables short-time forecasting and the computa-
tion [via periodic orbit theory (POT)] of statistical averages
from properly weighted sums evaluated over UPOs, with
higher weights assigned to more frequently visited UPOs
[13–15].
Although the equations governing turbulence are for-

mally infinite dimensional, turbulent flows (due to dis-
sipation) can be represented as state space trajectories
confined to finite-dimensional chaotic sets [12]. This
dimension can be estimated, e.g., based on the number
of unstable directions of UPOs and can be relatively low
½Oð10Þ� for transitional flows in domains of moderate
size [16–19]. While this qualitative similarity with low-
dimensional chaos is encouraging, variability in the number

of unstable directions for UPOs suggests turbulent flows
are nonhyperbolic [20]. The stable and unstable manifolds
of dynamically invariant sets become tangent at some
locations inside the chaotic set, destroying the shadowing
property there and raising questions regarding the utility of
UPOs for both forecasting and computing statistical
averages.
To date, research devoted to developing and testing a

dynamical description of turbulence based on UPOs has
relied exclusively on direct numerical simulations (DNS)
[5,7,10,18,21–27]. Despite the likely presence of non-
hyperbolicity, studies focusing on transitional flows (with
dynamics and statistics dominated by coherent structures)
have generated valuable new insight. In canonical three-
dimensional shear flows (e.g., plane Couette) it was shown
that UPOs capture salient dynamical aspects (e.g., self-
sustaining processes [28]) and statistical averages (e.g.,
mean flow profile) of turbulent flows [5,7,10,21,22].
However, definitive evidence in support of POT has not
emerged even from studies that identified large sets of
(≈50) UPOs [17,29].
Previous numerical studies have imposed numerous

flow restrictions, including spatially periodic boundary
conditions, minimal-flow-unit domains and symmetry
invariance, that are not representative of experiment.
Consequently, direct experimental evidence for shadow-
ing—turbulent flows approaching UPOs and mimicking
their spatiotemporal evolution—has not been reported
previously. Also, some amount of noise is always present
in experiments and how it affects the dynamical relevance
of UPOs is not currently understood. Lastly, the statistical
significance of UPOs in laboratory flows is also an out-
standing question.
In this Letter, we report clear evidence of UPOs in an

experimental quasi-two-dimensional (quasi-2D) flow, in a

PHYSICAL REVIEW LETTERS 125, 064501 (2020)

0031-9007=20=125(6)=064501(6) 064501-1 © 2020 American Physical Society

https://orcid.org/0000-0002-9078-7753
https://orcid.org/0000-0001-6220-4701
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevLett.125.064501&domain=pdf&date_stamp=2020-08-05
https://doi.org/10.1103/PhysRevLett.125.064501
https://doi.org/10.1103/PhysRevLett.125.064501
https://doi.org/10.1103/PhysRevLett.125.064501
https://doi.org/10.1103/PhysRevLett.125.064501


domain whose size is much larger than a minimal flow unit.
DNS of this moderately turbulent (transitional) flow is
performed with no-slip boundary conditions and without
imposing any symmetry constraints. In particular, to test
the shadowing hypothesis, we study the spatiotemporal
evolution of turbulent flows that approach UPOs closely.
We investigate the relation between statistical “weights”
predicted by POT and how frequently turbulent flow
approaches UPOs. Finally, we compare time-averaged pro-
perties of turbulent flows with those computed from UPOs.
A quasi-2D Kolmogorov-like flow in the experiment

is generated in a shallow (6-mm-thick) electrolyte-
dielectric bilayer. The fluids lie in a rectangular container
with lateral (x and y) dimensions 17.8 × 22.9 cm2 (see
Fig. 1). An array of permanent magnets placed beneath
the container generates a near-sinusoidal magnetic field
B ∼ e−πz=w sinðπy=wÞẑ, where w ¼ 1.27 cm is the width of
each magnet. Passing a direct current (Jŷ) through the
electrolyte layer generates a Lorentz force F ¼ Jŷ ×B ∼
e−πz=w sinðπy=wÞx̂ that drives a horizontal flow. The
electrolyte-dielectric interface is seeded with glass micro-
spheres and spatiotemporally resolved 2D velocity fields
uðx; y; tÞ that quantify the horizontal flow are measured
using particle image velocimetry [30]. Details of the
experiment and DNS are provided in the Supplemental
Material (SM) [31].
The quasi-2D flow in experiment is theoretically mod-

eled using the nondimensional 2D equation [32],

∂tuþ βu ·∇u ¼ −∇pþ 1

Re
ð∇2u − γuÞ þ f; ð1Þ

which is derived by averaging the 3D Navier-Stokes
equation in the z direction. Here, uðx; y; tÞ is assumed to
be incompressible (∇ · u ¼ 0) and corresponds to the
velocity field at the free surface in the experiment. p is

analogous to kinematic pressure. The spatial forcing profile
f is obtained by depth averaging and normalizing the
Lorentz force F. Prefactor β ¼ 0.8 to the nonlinear term
and −γu (γ ¼ 3.86) capture the effects due to the solid
boundary at the bottom of the fluid layers. The Reynolds
number Re is related to the strength of electromagnetic
forcing and is the parameter used to control the complexity
of flow (cf. SM [31]).
DNS of the flow governed by Eq. (1) was performed

using a second-order (in space and time) finite difference
code previously employed in Refs. [11,19,33]. The dimen-
sions of the computational domain (14w × 18w), no-slip
velocity boundary conditions, and electromagnetic forcing
in the DNS correspond to those in the experiment,
facilitating direct quantitative comparison between the
two. The 2D forcing profile f in the DNS is antisymmetric
under the inversion transformation Rðx; yÞ → ð−x;−yÞ,
i.e., Rf ¼ −f. Hence, Eq. (1) is equivariant under R. This
twofold symmetry (R2 ¼ 1) is, however, weakly broken in
experiment due to imperfections.
The Kolmogorov-like flow becomes weakly turbulent

above Re ≈ 18. Results presented in this study correspond
to Re ¼ 23.5� 1.5 in experiment. In the DNS, turbulent
time series were generated for Re ∈ ½22.6; 25.1� in steps of
ΔRe ¼ 0.5. The flow is chaotic for these Re, which was
validated in DNS by computing the Lyapunov expo-
nents using continuous Gram-Schmidt orthogonalization
(cf. SM [31]) [34,35]. The corresponding Kaplan-Yorke
dimension isDKY ≈ 12 and the Lyapunov time is τl ≈ 50 s.
We analyzed a 36 000τl-long turbulent time series in the
DNS and experiment to detect signatures of UPOs.
Time-periodic flows are solutions to Eq. (1) that satisfy

the condition upoðt0 þ TÞ ¼ upoðt0Þ. Here, t0 parametrizes
time along the orbit with period T > 0. Because of
equivariance under R, Eq. (1) can also possess “preperi-
odic” solutions such that upoðt0 þ TÞ ¼ Rupoðt0Þ [26].
However, it is not known a priori whether UPOs of either
type exist for our choice of parameters (Re, β, γ) and
whether turbulent flow transiently approaches such
solutions.
To identify signatures of UPOs, we performed recur-

rence analysis on the turbulent time series from DNS by
computing [17,26]

rðt;τÞ ¼D−1
c min

g
kguðtÞ−uðtþ τÞk; g¼ fR;1g: ð2Þ

Here, τ > 0 and k · k represents the L2 norm. The nor-
malization constant Dc ¼ maxt;τ kuðtÞ − uðtþ τÞk is the
empirically estimated diameter of the chaotic set which
ensures rðt; τÞ ≤ 1. Low recurrence values rðt; τÞ ≪ 1
indicate that turbulent flow fields, or their symmetry-related
copies, at instants t and tþ τ are similar. Therefore, during
the interval ½t; tþ τ�, the turbulent trajectory in state space
is possibly near an unstable periodic or preperiodic orbit
with period T ≈ τ. Initializing a Newton-Krylov solver [22]

(a)

(b)

FIG. 1. Experimental setup to generate quasi-2D Kolmogorov-
like flow. (a) Top view indicating magnet array (dashed lines) and
directions of magnetic field B, current density J ¼ Jŷ, and
electromagnetic forcing F. (b) Side view showing stably stratified
immiscible two-layer configuration.
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with 50 initial conditions uðtÞ that correspond to deep
minima in recurrence (r ≤ 0.2), we identified seven distinct
UPOs, labeled as follows: UPO0, UPO1, UPO2A, UPO2B,
UPO2C, UPO3A, and UPO3B. Among these, UPO0 and
UPO1 are R invariant and have been reported previously
[19]. The rest lie in full state space; UPO2A–2C are
preperiodic orbits that lie on the same solution branch
and UPO3B is the symmetry-related copy of UPO3A.
Several properties of the UPOs are tabulated in the
SM [31].
To test the dynamical relevance of a UPO in experiment,

i.e., whether turbulent flows uðtÞ approach the UPO, we
computed the normalized distance [19,36]:

D1ðtÞ ¼ D−1
c min

t0
kuðtÞ − upoðt0Þk: ð3Þ

D1 is the instantaneous separation between uðtÞ and the
closest point on the orbit upoðt0Þ, as shown in Fig. 2(a).
D1 ≪ 1 (D1 ≈ 1) implies the turbulent flow is very close to
(far away from) the UPO in state space. We previously
identified that flow fields in physical space are visually
similar when D1 ≤ 0.45 [36]. Using this metric, we found
many instances when turbulent flow approaches one of the
computed UPOs. For example, Fig. 2 compares snapshots
from experiment and UPO3A at an instant the turbulent
trajectory is near UPO3A (D1 ¼ 0.16). The remarkable
similarity between these flow fields confirms that turbulent
trajectories in experiment indeed approach UPOs very
closely.
Turbulent trajectories near a UPO should shadow its

evolution in state space [7,17,18,22]. To validate this in
experiment, we analyzed a particularly close pass to
UPO3A; the period of this orbit is T ¼ 113.2 s (2.2τl).
Using our closeness criterion, we estimated that the

turbulent trajectory remains in the neighborhood of
UPO3A for a duration equal to about four periods of
UPO3A (−2 < t=T < 2 in Fig. 3). To visualize turbulent
dynamics over this interval, we projected the state space
around UPO3A onto a low-dimensional subspace in Fig. 2.
Indeed, the turbulent trajectory approaches UPO3A, shad-
ows its evolution by tracing four loops, and subsequently
departs from the neighborhood of UPO3A. Video 1 in the
SM shows side-by-side comparison of turbulent flow and
UPO3A in both physical space and state space [31].
Since the shapes of the turbulent trajectory and UPO3A

are similar, one may ask if the corresponding flows evolve
at similar rates. To explore this, for each point on the
turbulent trajectory uðtÞ, we identified the closest point
upoðt0Þ on UPO3A (cf. Fig. 2). We then tested whether the
time t0 increases at the same rate as t; dt0=dt ¼ 1 implies
identical rates of evolution for the turbulent flow and the
UPO it is shadowing. Figure 3(b) shows the relation
between t and t0 during the interval of shadowing. We
defined t0 on the interval 0 < t0 < T due to periodicity of
the UPO. For each of the four periods, t0 (solid black line)
follows the “diagonal” t mod T (dashed gray line). This
shows the turbulent trajectory and UPO3A evolve at com-
parable rates, on average. The noticeable difference in the
instantaneous rates of evolution is related to turbulent
trajectories not approaching UPO3A infinitesimally closely
[36]. We also found that turbulent trajectories in experiment
shadow UPO0 and UPO2B for a duration that is nearly 1 and
3 times their respective periods (see Figs. S2 and S3 in the
SM [31]).
The statistical significance of UPOs has received little

attention in previous numerical studies [29,37], and none in
experiments. To address this, we computed the fraction
PðϵÞ of the total time turbulent trajectories visit the ϵ
neighborhood (D1 ≤ ϵ) of any UPO. Figure 4(a) reveals
that particularly close passes (ϵ ≤ 0.2) to UPOs are rare
(P < 2%) and require very long turbulent time series for
their detection. However, increasing the size of neighbor-
hoods to ϵ ¼ 0.45, we find that turbulent trajectories spend

(a) (b) (c)

FIG. 2. (a) Low-dimensional projection of state space showing
turbulent trajectory from experiment (black curve) shadowing
UPO3A (red loop). Each point on these curves represents a flow
field. The segment in black (gray) lies in (outside) the neighbor-
hood of UPO3A. The sphere and square indicate instantaneously
closest points on the turbulent trajectory and UPO3A. The
corresponding flow snapshots are shown in (b) and (c), where
color represents vorticity ω ¼ ð∇ × uÞz. The projection method
is detailed in the SM [31].

FIG. 3. (a) Instantaneous normalized separation D1 between a
turbulent trajectory in experiment and periodic orbit UPO3A.
The dashed black line (D1 ¼ 0.45) indicates the limit for
closeness in state space. (b) t0 and t parametrize time along
UPO3A and the turbulent trajectory, respectively. T ¼ 113.2 s
is the period of UPO3A.

PHYSICAL REVIEW LETTERS 125, 064501 (2020)

064501-3



a sizable fraction of time near UPOs: about 30% in
experiment and 23% in the DNS. The sensitivity of P to
the choice of ϵ is comparable to that observed by Kerswell
and Tutty for the statistical significance of traveling wave
solutions in turbulent pipe flow at Re ¼ 2400 [38].
Since very close passes to UPOs are rare, quantifying the

relative importance of various UPOs required coarse
partitioning of the state space. A turbulent trajectory can
be simultaneously close to several UPOs which are
adjacent to each other in state space. To distinguish their
statistical significance, we grouped the UPOs into three
clusters which are sufficiently far apart in state space:
UPO0;1, UPO2A–2C, and UPO3A;3B. These clusters were
identified using pairwise separation between UPOs (cf. SM
[31]). For each cluster, we then computed the conditional
probabilityPcðϵÞ=PðϵÞ that a turbulent trajectory is near the
UPOs in that cluster (D1 ≤ ϵ), given it is near one of the
seven UPOs.
The probabilities for turbulent trajectories in experiment

and DNS visiting the three UPO clusters are shown in
Fig. 4(b) for ϵ ¼ 0.45. Clearly, the R-invariant solutions
UPO0;1 are rarely visited. In contrast, UPO clusters that do
not lie in the symmetry subspace are visited frequently and
hence are statistically significant. Changing the neighbor-
hood size between ϵ ¼ 0.4 and ϵ ¼ 0.5 did not affect the
results qualitatively. The discrepancy between experiments
and DNS appears to be a limitation of the 2D model in
reproducing some aspects of an inherently 3D laboratory
flow sufficiently accurately [33].
The relative significance of UPO clusters can be ration-

alized using periodic orbit theory, originally developed for
uniformly hyperbolic low-dimensional chaotic systems

[13,14]. The statistical “weight” associated with a UPO,
and hence the probability of finding a chaotic trajectory in
its infinitesimal neighborhood, is approximately given by
(cf. Sec. II. 7.1 in Ref. [15])

πi ∝
1

jΛi1j · jΛi2j � � � jΛikj
; ð4Þ

where jΛi1j;…; jΛikj are the magnitudes of the unstable
Floquet multipliers of UPOi. The POT weight associated
with each cluster is then Pc=P ¼ P

i πi, where the sum-
mation is over the UPOs in that cluster. The weights πi in
Eq. (4) are defined to within a normalization constant,
which we chose such that the cumulative probability for the
three clusters is the same for POT and DNS. Figure 4(b)
shows that the statistical significance of various UPO
clusters predicted using POT is fairly consistent with
measurements in DNS. This is quite remarkable, given
that turbulent trajectories do not visit these UPOs infini-
tesimally closely. Lastly, alternative weighting formulas
discussed in Refs. [17,37,39,40] also yield similar esti-
mates for the statistical significance of UPO clusters
(cf. SM [31]).
The motivation behind identifying UPOs and quantify-

ing their statistical significance is to compare statistical
averages of turbulent flows with those of UPOs. Following
standard practice [5,7,22], we computed the instantaneous
energy input (I) and dissipation (D) rates,

IðtÞ ¼ hf · uiΩ;

DðtÞ ¼ −
1

Re
hu ·∇2u − γu · uiΩ; ð5Þ

for the turbulent flow and all the UPOs. Here, a · b is the
scalar product between vector fields a, b and h·iΩ repre-
sents the integral

R
Ωð� � �Þdxdy evaluated over the entire

flow domainΩ. In Fig. 5, we plotted the difference between
instantaneous input and dissipation rates (I −D) versus the
energy input rate I for the turbulent flow in experiment. I
and D are normalized by the temporal mean hIit ¼ hDit.
The corresponding quantities for each UPO are overlaid.
Additionally, the probability density function for I from
experiment (as well as DNS) is shown in the inset.
For the statistically significant UPO2A–2C and UPO3A;3B,

both energy input and dissipation rates cluster around
the turbulent mean values, located at I=hIit ¼ 1 and I −
D ¼ 0 in Fig. 5. The I (and D) values for these UPOs vary
over a narrow range (0.95,1.07) that is approximately �σI
of the turbulent mean, where σI ¼ 0.055 is the standard
deviation of I for turbulent flow. Consequently, the mean
energy input (and dissipation) rate for each of these five
UPOs is within �0.6σI of the turbulent average (unity), as
shown in the inset. In contrast, UPO0;1, which are sta-
tistically insignificant, have mean values of I and D that
deviate by over 2σI from the turbulent mean value.

0 0.25 0.5 0.75 1
0

50

100
(a) Expt.

DNS

UPO
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UPO
2A-2C
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3A,3B
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50

100
Expt.
DNS
POT

(b)

FIG. 4. Statistical significance of UPOs. (a) Probability (in %)
to find a turbulent trajectory at a (normalized) distance D1 ≤ ϵ
from the UPOs we computed. Dashed line indicates the upper
limit ϵ ¼ 0.45 for closeness in state space. (b) Conditional
probabilities for turbulent trajectories visiting neighborhoods
(ϵ ¼ 0.45) of UPO clusters. Error bars indicate changes to
probabilities when ϵ is varied between [0.4, 0.5].
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In this Letter, we provided unambiguous experimental
evidence for the dynamical relevance and statistical sig-
nificance of UPOs in a moderately turbulent flow. We
showed that turbulent trajectories in state space transiently
approach UPOs closely and shadow their spatiotemporal
evolution. We also quantified the statistical significance of
various UPOs by computing the fraction of time turbulent
trajectories visit their neighborhoods. The estimates from
DNS are consistent with the “weights” predicted by
periodic orbit theory. Lastly, we showed that statistically
significant UPOs capture time-averaged properties of the
turbulent flows in both experiment and DNS accurately.
Our study identified that turbulent flows spend about

30% of the time near the UPOs we computed. This sug-
gests that UPOs with longer periods as well as other types
of nonchaotic solutions—such as unstable equilibria,
quasiperiodic orbits, and heteroclinic or homoclinic
connections—may also play an important dynamical and
statistical role [10,24,41,42]. Their existence and dynami-
cal relevance, at least in symmetry-invariant subspaces, was
recently demonstrated for both 2D and 3D shear flows
[10,19,41,42]. Hence, a dynamical framework based on
UPOs, as well as other types of recurrent solutions, should
ultimately enable forecasting [11,36] and control (e.g.,
Lüthje et al. [43]) of turbulent dynamics, besides accurately
predicting its statistical properties.
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