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ABSTRACT

We present a theoretical study of spatial symmetries and bifurcations in a laterally bounded two-dimensional flow composed of approxi-
mately square vortices. The numerical setting simulates a laboratory experiment wherein a shallow electrolyte layer is driven by a plane-
parallel force that is nearly sinusoidal in both extended directions. Choosing an integer or half-integer number of forcing wavelengths along
each direction, we generate square vortex flows invariant under different spatial symmetries. We then map out the sequence of symmetry-
breaking bifurcations leading to the formation of fully asymmetric flows. Our analysis reveals a gallery of pitchfork and Hopf bifurcations,
both supercritical and subcritical in nature, resulting in either steady or time-dependent asymmetric flows. Furthermore, we demonstrate
that different types of flows (steady, periodic, pre-periodic, or quasi-periodic), at times with twofold multiplicity, emerge as a result of
symmetry-breaking bifurcations. Our results also provide new theoretical insights into previous experimental observations in quasi-two-
dimensional square vortex flows.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0061658

I. INTRODUCTION

Weakly driven fluid flows are often spatially symmetric due to
equivariance of their governing equations, geometry of physical
boundaries, and/or spatial modulation of body forces. For instance,
laminar flow in a straight pipe with a circular (or square) cross section
is invariant under continuous (discrete fourfold) azimuthal rotations.
When driven strongly, however, real-world flows always become
spatially asymmetric and, eventually, spatiotemporally chaotic.
Interestingly, the onset of spatial asymmetry can be either gradual
(supercritical) or sudden (subcritical), depending on whether and how
a symmetric flow becomes unstable to infinitesimal asymmetric per-
turbations. In this article, we numerically explore symmetry-breaking
bifurcations1–3 in a canonical two-dimensional (2D) flow composed of
approximately (or nearly) square counter-rotating vortices. In recent
years, such flows have emerged as preferred testbeds to explore diverse
phenomena, such as hydrodynamic stability,4–9 transition to
chaos,10,11 energy cascades and large scale flow circulations,11–15 cha-
otic mixing,16 front propagation,17,18 and flow control.19

Theoretically, a 2D square vortex flow is generated by driving an
incompressible fluid with a force f , which is sinusoidal in both spatial
directions (x and y), for example, f ¼ sin ðpxÞ cos ðpyÞx̂ . Since a
strictly 2D flow cannot be realized in practice, laboratory experiments

generate a quasi-two-dimensional (Q2D) flow by passing a direct cur-
rent through a shallow electrolyte layer, as shown in Fig. 1. When a
chessboard-like arrangement of permanent magnets is placed beneath
the fluid layer, interaction between the vertical (6ẑ) magnetic field
and the electric current (J ŷ) generates a horizontal Lorentz force
(along 6x̂) that drives a nearly 2D flow. Weakly driven flows in both
theory and experiment are composed of a chessboard-like lattice of
approximately square counter-rotating vortices. As the driving
strength increases, these flows become spatiotemporally complex in a
sequence of symmetry-breaking bifurcations.8,11–13

Early studies have characterized the spatial features and bifurca-
tions in square (or rectangular) vortex flows primarily using laboratory
experiments.11,12,20,21 For instance, exploring the transition to turbu-
lence in liquid metal layers, Sommeria12 identified that a 2� 2 lattice
of square vortices loses stability via the gradual coalescing of two diag-
onally opposite vortices. Two distinct steady secondary states, each
resulting from the merger of vortices along a different diagonal, were
observed above a critical Reynolds number (Re) in separate experi-
mental runs. Here, Re quantifies the strength of electromagnetic driv-
ing. In the same study, however, it was reported that a 6� 6 lattice of
square vortices undergoes sudden transition to chaos upon increasing
Re only slightly above a critical value. Hence, the primary instability in
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square vortex flows can be either supercritical or subcritical depending
on the lateral extent of flow.

Unlike the square vortex flow, a 2� 2 lattice of rectangular vorti-
ces in a shallow electrolyte layer [driven by f � sin ðpx=2Þ cos ðpyÞx̂]
was found to transition directly to a time-periodic state.20,21 Also, such
a flow was found to be dynamically sensitive to reversing the direction
of forcing. Whether this sensitivity is displayed by other Q2D flows,
including the square vortex flow, is currently not known. One should
note that qualitatively different dynamics of the square and rectangular
vortices in Refs. 12 and 21, respectively, cannot be attributed solely to
their shapes, since frictional dissipation in liquid metals and electro-
lytes has different physical origins and magnitudes. Whether square
vortex flows of comparable spatial extent and similar frictional drag
undergo different types of primary instabilities was not rigorously
tested in these experimental studies.

Several previous theoretical studies4,5,8,9,22–24 have also analyzed
supercritical primary bifurcations of both square and rectangular vor-
tex flows. For analytical and numerical convenience, however, these
studies assumed that the flow satisfies free-slip or periodic velocity
boundary conditions and/or is driven by a strictly sinusoidal forcing.
Quantitative differences between weakly driven Q2D laboratory flows
and their numerical counterparts with such idealized boundary condi-
tions were previously reported in Refs. 4, 10, 21, and 25. In addition,
Danilov et al.21 observed that a lattice of rectangular vortices in experi-
ments undergoes gradual deformation as Reynolds number increases.
The authors found that this behavior could be reproduced in a 2D
direct numerical simulation (DNS) of flow only when a realistic forc-
ing profile f , reconstructed from experimental measurements, was
employed. These numerical studies,4,21 however, did not focus on
bifurcations and secondary solutions in realistic square/rectangular

vortex flows. Also, a subcritical primary instability, similar to one
observed by Sommeria,12 was not numerically identified or explored
to date.

Previous experimental and numerical studies of square vortex
flows also did not extensively probe how fully asymmetric flows
emerge via symmetry-breaking bifurcations. For instance, weakly
driven Q2D flows studied in Refs. 11, 12, and 21 are each invariant
under a pair of twofold symmetries (e.g., reflections in x, y axes). As
we shall see, primary bifurcations in such flows may not break all spa-
tial symmetries simultaneously. Hence, the resulting secondary solu-
tions should be continued in the Reynolds number to identify
secondary, tertiary, or even quaternary bifurcations that ultimately
lead to fully asymmetric flows. Michel et al.11 have identified such a
sequence of bifurcations in a 2� 4 lattice of square vortices. However,
symmetries of various solutions were not explicitly discussed therein.

In this article, we answer some of these questions through a sys-
tematic numerical exploration of a 2D flow composed of a
chessboard-like lattice of approximately square vortices. The flow sat-
isfies no-slip velocity boundary conditions and is driven by a forcing
that closely mimics one in experiments (cf. Fig. 1). By modifying the
forcing profile, we generate square vortex flows with different spatial
symmetries and analyze their behavior with increasing Reynolds num-
ber. We then identify different symmetry-breaking primary bifurca-
tions in the flow, compute the secondary solutions that consequently
emerge, and thoroughly characterize their symmetries. Finally, we
continue these secondary solutions in the Reynolds number and iden-
tify the sequence of (secondary, tertiary, quaternary) bifurcations that
leads to the formation of fully asymmetric flows.

The article is structured as follows. In Sec. II, we discuss DNS of
flow governed by a 2D model for Q2D flows in shallow electrolyte
layers. In Sec. III, we identify symmetries of the governing equation
for different forcing profiles. In Sec. IV, we discuss spatial features of
the square vortex flow and analyze its deformation with increasing
driving. Section V is a detailed exposition of symmetry-breaking pri-
mary bifurcations, with special focus on secondary states that branch
out of the square vortex flow. In Sec. VI, we identify the sequence of
secondary (and subsequent) bifurcations en route to the formation of
fully asymmetric flows. Finally, we summarize the key findings of this
study in Sec. VII and discuss their significance in the boarder numeri-
cal and experimental contexts. The Newton method to compute unsta-
ble solutions, a branch continuation algorithm, and a special class of
time-periodic flows are discussed in the Appendixes.

II. DIRECT NUMERICAL SIMULATION

The evolution of Q2D laboratory flows in shallow electrolyte
layers is theoretically modeled using the following 2D equation:26

@u
@t
þ bu � ru ¼ �rpþ 1

Re
r2u� cu
� �

þ f ; (1)

which is derived by averaging the 3D Navier–Stokes equation in the
vertical (z) direction. In Eq. (1), u ¼ uðx; y; tÞx̂ þ vðx; y; tÞŷ repre-
sents the horizontal velocity field at the electrolyte–air interface in
experiments, p is analogous to 2D kinematic pressure, and fðx; yÞ rep-
resents the normalized, depth-averaged electromagnetic forcing. In
addition, the velocity field u is assumed to be divergence free
(r � u ¼ 0) for weakly driven flows.6,26 As mentioned previously, the
Reynolds number Re is related to the strength of the electromagnetic

FIG. 1. Schematic of a laterally bounded, electromagnetically driven shallow fluid
layer (light blue). A chessboard-like arrangement of square magnets, each of width
w, placed beneath the layer creates a spatially periodic magnetic field perpendicular
(6ẑ) to the fluid layer. A lattice of quasi-two-dimensional vortices is generated
when a direct current Jŷ passes through the electrolyte. The origin of the coordi-
nate system is located at the center of the domain (small square). Crosses and
dots represent magnetic polarization along 6ẑ, respectively.
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forcing. Prefactor b 6¼ 1 to the nonlinear term and the linear friction
term�cu (c 6¼ 0) model finite-thickness affects observed in laboratory
flows. Several previous theoretical studies analyzed square vortex flows
governed by Eq. (1) with b ¼ 1. While the critical Reynolds number
for each bifurcation reported in this study scales with b, the bifurcation
sequence itself remains invariant for all values of b > 0. This can be
easily verified by transforming the variables in Eq. (1) as follows:
u! u=

ffiffiffi
b
p

;
ffiffiffi
b
p

t ! t, and
ffiffiffi
b
p

Re! Re.
DNS of flow governed by Eq. (1) and satisfying no-slip velocity

boundary conditions was performed on four different computational
domains with dimensions Nx � Ny , where 9 � Nx;Ny � 10. Velocity
and pressure fields on each domain were discretized on a staggered
grid with spacing Dx ¼ Dy ¼ 1=40, and spatial derivatives were
approximated using second-order central finite differences.27

Temporal integration of Eq. (1) was performed using the semi-implicit
P2 projection scheme,27 where the linear (r2u� cu) and nonlinear
(u � ru) terms were discretized in time using second-order implicit
Crank–Nicolson and explicit Adams–Bashforth methods, respectively.
The P2 projection scheme ensures that the velocity field after each
time step Dt is divergence free (r � u ¼ 0), where Dt was chosen to
satisfy the criterion maxðuDt=DxÞ � 0:5. For all results reported in
this study, Re was chosen as the control parameter, whereas b ¼ p=4
and c ¼ 63:67 were held constant (see Ref. 28). Estimation of model
parameters, including Re, from experimentally measurable quantities
is detailed in the supplementary material.

A. Forcing profiles

Let us recall that a lattice of nearly square vortices in experiments
is generated using a chessboard-like array of magnets. In principle, the
dimensions of such an array can be larger,6 smaller,25 or equal21 to
those of the flow domain. To ensure that forcing near the boundaries
is nearly zero, we placed a magnet array with dimensions ðNx � 2Þ
�ðNy � 2Þ inside each Nx � Ny domain, as shown in Fig. 1.
Depending on whether Nx, Ny is even or odd, an integer or half-
integer number of forcing wavelengths then fit into the flow domain
along each spatial direction. Consequently, parities with respect to
reflections in the x; y–axes for each forcing profile (listed in Table I)
are distinct. Parity can also be inferred by approximating f near the
center of the flow domain as a product of sine/cosine functions. For
instance, f � cos ðpxÞ cos ðpyÞx̂ in the 9� 9 domain. Hence, the cor-
responding parity is even� even.

While sinusoidal approximations of f are convenient for analyti-
cal calculations,5,8,22 they fail to capture two important features of forc-
ing profiles in experiments: (i) the aperiodic shape of the profile near

the edges of a magnet array, and (ii) deviation from strict monochro-
maticity near the center, due to finite contributions from harmonics of
the fundamental forcing wavelength. Previous studies21,25 have unam-
biguously validated the importance of accurately modeling these fea-
tures to theoretically reproduce experimental flow patterns. Hence, we
numerically computed the Q2D forcing profile by modeling the mag-
net array as a 3D lattice of dipoles. The 2D forcing profile f was then
computed using the depth-averaging procedure detailed in Ref. 25.
For each domain listed in Table I, we normalized f such that its
sinusoidal fit ~f ðx; yÞx̂ near the center has unit amplitude, as shown in
Fig. 2. Notice that the amplitude of the numerically computed profile
is approximately 5% smaller than the leading sinusoidal mode
sin ðpxÞ. This discrepancy can be reconciled by adding a correction
term 0:05 sin ð3pxÞ to the analytical approximation ~f ðx; 0Þ, which
shows that the forcing profile in DNS is not monochromatic.

B. Linear stability analysis

The numerical integrator described above was also adapted to
carry out linear stability analysis (LSA) of steady/equilibrium flows
(ueq), to identify whether arbitrary infinitesimal perturbations du to
ueq would grow or decay with time. Toward this, we redefined
u ¼ ueq þ du and recast Eq. (1) into the form d _u ¼ Fðueq þ duÞ.
Here, F represents all terms in Eq. (1) excluding @tu. We then linear-
ized F about ueq,

d _u � FðueqÞ|fflffl{zfflffl}
¼0

þJðueqÞ du; (2)

where J ¼ ruF is the Jacobian matrix evaluated at ueq. The general
solution duðtÞ to the above equation can be expressed as a linear com-
bination of the eigenvectors êk of J as follows:

duðtÞ ¼
X
k

ekðtÞêk: (3)

Henceforth, we refer to the eigenvectors/eigenvalues of the Jacobian
matrix JðueqÞ simply as the eigenvectors/eigenvalues of ueq.

In Eq. (3), the evolution of each coefficient ekðtÞ � ekð0Þekkt is
governed by the eigenvalue kk associated with êk. Here, Jêk ¼ kkêk
and ekð0Þ defines the initial perturbation along êk. If the largest real
part r1 ¼ maxk<ðkkÞ of the eigenspectrum of ueq is negative, the
magnitude jjdujj of every infinitesimal perturbation decays to zero for
t � 1=jr1j. A steady flow ueq is then linearly stable. In contrast, ueq is
marginally (or neutrally) stable if r1 ¼ 0, whereas it is linearly unsta-
ble if r1 > 0. Small perturbations along unstable eigendirections grow

TABLE I. Forcing profile parities and sinusoidal approximations of f (�~f x̂ ) near the
center of a flow domain. For a given profile, Eq. (1) is equivariant under the symme-
tries listed below. Dimensions of flow domains we analyzed are listed under the col-
umn Nx � Ny . Prefixes/superscripts “6” indicate opposite directions of forcing.

Parity: Rx � Ry
~f ðx; yÞ Symmetries Nx � Ny

Even � even cos ðpxÞ cos ðpyÞ Ry 9� 9
Odd � even 6sin ðpxÞ cos ðpyÞ Rx; Ry; Rp 10� 96

Even � odd cos ðpxÞ sin ðpyÞ Rp 9� 10
Odd � odd sin ðpxÞ sin ðpyÞ Rx 10� 10

FIG. 2. Normalized forcing profile (black curve) along the cross section y¼ 0 in the
10� 9þ domain (cf. Fig. 1). The gray curve is a sinusoidal fit ~f ðx; 0Þ ¼ sin ðpxÞ
estimated for �2 � x � 2.
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exponentially over finite time intervals. For t !1, however, their
growth is bounded due to nonlinearity and dissipation. The saturation
of amplitudes ekðt !1Þ then leads to the formation of new solutions
in a bifurcation, that is, when r1 changes sign. Hence, to analyze the
linear stability of a steady flow ueq and construct secondary solutions
that emerge out of a bifurcation, we computed the leading eigenvalue
and eigenvector of ueq using Arnoldi iteration.

29,30

III. SYMMETRIES OF THE GOVERNING EQUATION

In the limit of vanishing forcing (f ! 0), Eq. (1) on a laterally
bounded square/rectangular domain is equivariant (does not change
in form) under the following coordinate transformations:

• Rxðx; yÞ ! ð�x; yÞ: Reflection in x ¼ 0,
• Ryðx; yÞ ! ðx;�yÞ: Reflection in y ¼ 0,
• Rpðx; yÞ ! ð�x;�yÞ: Rotation by p about the origin.

Note that Rp is equivalent to combined reflections in the x and y
axes, that is, Rp ¼ RxRy ¼ RyRx . The transformations of the velocity
u ¼ ðu; vÞ and vorticity Xðx; yÞ ¼ ðr� uÞ � ẑ fields under Rx; Ry ,
and Rp are listed in Table II.

Parity of a forcing profile with respect to Rx; Ry , or Rp, which are
collectively referred to as R in the following, however, can restrict the
equivariance of Eq. (1). Since the profiles listed in Table I are either
symmetric (R f ¼ f) or antisymmetric (R f ¼ �f) with respect to
these twofold symmetries (R2 ¼ I), the governing equation takes the
form

@u
@t
þ bu � ru ¼ �rpþ 1

Re
r2u� cu
� �

þ ð�1Þr f ; (4)

under a transformation R, where r¼ 0 or 1. For a particular combina-
tion of f and R, Eq. (4) is identical to Eq. (1) if r¼ 0. Equation (1) with
that forcing profile f is then equivariant under R.

Symmetries of Eq. (1) for each forcing profile are listed in Table I,
which shows that the governing equation is equivariant under Rx;Ry ,
and Rp only when the forcing profile parity is odd � even.
Furthermore, Eq. (1) is equivariant under only one or all three symme-
tries simultaneously, because Rx;Ry; and Rp are elements of the dihe-
dral group D2 with only two generators. As a result, each of these
symmetries can be expressed as a product of the other two, for exam-
ple, Ry ¼ RxRp ¼ RpRx .

Equivariance under a symmetry, however, does not imply that
solutions of Eq. (1) are necessarily symmetry-invariant (R u ¼ u); this
has some important consequences. When a flow field u is not
R-invariant, the action of R on u generates a dynamically equivalent
symmetry-related copy Ru. On the other hand, if a steady flow ueq is
invariant under a twofold symmetry R, its eigenvectors êk will be
either R-symmetric or R-antisymmetric; that is, if Rueq ¼ ueq,
then Rêk ¼ 6êk (cf. Sec. III in Gibson et al.31). In addition, if ueq is
invariant under Rx;Ry , as well as Rp, its eigenvectors cannot be

antisymmetric with respect to all three symmetries. Hence, primary
bifurcations in such flows may not break all symmetries simulta-
neously. As we shall see, identifying symmetries of both solutions and
eigenvectors plays a crucial role in classifying bifurcations.

A. Invariance under f ! �f
Danilov et al.21 previously identified that a 2� 2 lattice of rectan-

gular vortices is not invariant under reversing the direction of forcing.
From Eq. (4), we can see that f !�f is equivalent to a coordinate
transformation R that is a broken symmetry of Eq. (1), that is, r¼ 1.
Since a physical transformation cannot alter flow patterns and their
dynamics, domains with a broken symmetry R are invariant under
reversing the forcing direction. The exception is the odd� even forcing
case, where Eq. (1) is equivariant under Rx;Ry; and Rp. In the absence
of a broken symmetry, the resulting flow patterns and dynamics should
change when f !�f . Indeed, the flow studied by Danilov et al.21 was
driven by a forcing profile with an odd � even parity,
f � sin ðpx=2Þ cos ðpyÞx̂ , which explains the observed sensitivity. In
the present study, forcing with such a parity is realized in the 10� 96

domains, where the 6 signs indicate opposite forcing directions.
We would like to highlight that previous experimental25,32,33 and

numerical30,34,35 studies of the Kolmogorov flow, another canonical
2D flow driven by f ¼ sin ðpyÞx̂ or cos ðpyÞx̂ , did not report the
dynamical sensitivity discussed above. Such forcing profiles are gener-
ated in laboratory experiments using a one-dimensional array of rect-
angular magnets. The corresponding forcing profile parity is either
even � odd or even � even, depending on whether an integer or half-
integer number of forcing wavelengths fit in the y direction. The gov-
erning equation in both cases has a broken symmetry, which explains
flow invariance when the direction of Kolmogorov forcing is reversed.

IV. THE SQUARE VORTEX FLOW

DNS of flow at low O(1) Reynolds numbers converges to a
chessboard-like lattice of nearly square vortices, independent of the
forcing profile parity and direction. We refer to such a flow as the pri-
mary solution u0 of the governing equation. In the following, we focus
on primary solutions in the 10� 96 domains as representative exam-
ples, since they are not invariant under reversing the forcing direction.

In Fig. 3, panels (a) and (b) show primary solutions at Re¼ 5 in
the 10� 9þ and 10� 9� domains, respectively. Away from the
boundaries, these flows are composed of a periodic arrangement of
counter-rotating, nearly square vortices. The vortex centers align hori-
zontally with those of the magnets, but are relatively shifted in the ver-
tical direction by half the width of a magnet. Furthermore, these
low-Re flows with opposite forcing directions can be approximately
mapped to each other by merely flipping the sign of vorticity. This
suggests that the transformations f ! �f and u!�u leave the gov-
erning equation (almost) equivariant, which is the case if the flow is a
(near) linear response to the forcing (cf. Ref. 36). Consequently, a
chessboard-like lattice of square vortices near the center of the flow
domain can be approximated as follows:

~u0 ¼ A~f and ~v0 ¼ A @x

ð
~f dy: (5)

In the above equation, ~u0 ¼ ½~u0;~v0� represents a sinusoidal velocity
field driven by a strictly sinusoidal forcing f ¼ ~f x̂ . AðReÞ
� 6Re=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2p2 þ c

p
is the velocity amplitude computed using Eq. (1)

TABLE II. Transformation of velocity and vorticity fields under Rx ; Ry, and Rp.

Rx Ry Rp

uðx; yÞ ! �uð�x; yÞ uðx;�yÞ �uð�x;�yÞ
vðx; yÞ ! vð�x; yÞ �vðx;�yÞ �vð�x;�yÞ
Xðx; yÞ ! �Xð�x; yÞ �Xðx;�yÞ Xð�x;�yÞ
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for opposite forcing directions. The analytical model ~u0, however,
breaks down near the boundaries of the flow domain.

If the flow domain were of infinite lateral extent (without phys-
ical boundaries) and the forcing was strictly monochromatic, that
is, f ¼ ~f x̂; ~u0 would be an exact solution to Eq. (1) for all Re. In the
present case, neither the forcing f nor the square vortex flow it
drives is strictly monochromatic. Due to coupling between different
spatial frequencies, the shape and arrangement of vortices near the
center of the domain undergo perceivable deformation as Re
increases.21 The vortices near the lateral boundaries are also affected
due to recirculating secondary flows. To illustrate these features, we
plotted primary solutions at Re¼ 179 from the 10� 96 domains in
Figs. 3(c) and 3(d). Clearly, these two flows cannot be approximated
using a simple linear model, unlike their low-Re counterparts. In
addition, they are visually dissimilar, which confirms that flows in
the 10� 96 domains are not invariant under reversing the forcing
direction.

To analyze the deformation of the square vortex flow, we com-
puted the normalized difference Dl between u0 in DNS and its sinusoi-
dal approximation ~u0 with increasing Re. Here

Dl ¼
jju0 � ~u0jj
jju0jj

: (6)

In the above equation, jj � � � jj represents L2�norm evaluated inside a
4� 4 square region near the center of the flow domain, as indicated in
Fig. 3. The plot of Dl vs Re in Fig. 4(a) (Multimedia view) reveals two
different regions. For Re� 120, the difference between u0 and ~u0 is
small and nearly constant at approximately 10%. Flow near the center
indeed resembles a chessboard-like lattice of square vortices for these
Re. When the Reynolds number increases above Re � 120, however,
Dl increases steeply indicating rapid deformation of the square vortex
flow. To illustrate the same, multimedia view associated with Fig. 4(a)
shows side-by-side co-evolving plots of u0 and Dl at several Re� 180
in the 10� 9þ domain. Finally, even though we presented results only
for the 10� 96 domains here, square vortex flows in other domains
we analyzed also begin to deform at Re � 120.

Sharp increase in Dl raises the question whether primary solu-
tions in the 10� 96 domains turn unstable at Re � 120. To test this,
we computed their leading eigenvalues and found that these primary
solutions remain stable up to Re � 180, much beyond the onset of
deformation [cf. Fig. 4(b)]. These findings highlight that lateral con-
finement and the forcing profile affect flow patterns even at moder-
ately high Re. We would like to note that Danilov et al.21 previously
studied the deformation of a rectangular vortex flow. However, branch
continuation (cf. see Appendix B) and linear stability analysis were not
employed to validate that the observed deformation was not due to an
instability. Finally, Fig. 4 reveals that deformation and stability of
square vortex flows in the 10� 96 domains are quantitatively differ-
ent, which demonstrates these flows are also dynamically dissimilar.

The primary solution u0 in each Nx � Ny domain listed in Table I
is invariant under all symmetries of the corresponding governing
equation, regardless of Re. For instance, u0 in the 10� 96 domains is
invariant under Rx; Ry , and Rp (cf. Fig. 3). In contrast, u0 in the
9� 10 domain is invariant only under Rp [cf. Fig. 7(a)]. Similarly, pri-
mary solutions in the 9� 9 and 10� 10 domains shown in Fig. 9 are
Ry-invariant and Rx-invariant, respectively. Secondary solutions that
branch out of u0 in each of these domains, however, need not be sym-
metry invariant. We explore this aspect in Sec. V.

V. SYMMETRY-BREAKING PRIMARY BIFURCATIONS

Using linear stability analysis, we can detect whether the square
vortex flow turns unstable to infinitesimal perturbations. However, we

FIG. 3. Primary solutions u0 in the 10� 9þ (left column) and 10� 9� (right col-
umn) domains at [(a) and (b)] Re¼ 5 and [(c) and (d)] Re¼ 179. Black curves indi-
cate streamlines. Dashed white grid in panel (a) represents the magnet array. A
sinusoidal flow model was tested inside the 4� 4 square window marked in panels
(b)–(d). All flow fields shown are symmetric with respect to Rx ; Ry , and Rp. Color
indicates vorticity X ¼ ðr � uÞ � ẑ.

FIG. 4. Spatial deformation and linear stability of primary solutions u0 in the 10� 96

domains. (a) Normalized difference Dl between u0 in DNS and its sinusoidal
approximation ~u0. (b) Real part r1 of the leading eigenvalue of u0. Multimedia
view: https://doi.org/10.1063/5.0061658.1
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cannot definitively predict whether secondary solutions that emerge
due to an instability are steady or time-dependent, for example, cha-
otic.12,21 Also, LSA cannot reveal whether the transition to a secondary
solution will be supercritical or subcritical. Given the multitude of pos-
sibilities, we structure the following discussion based on various types
of symmetry-breaking bifurcations we identified in the DNS. In addi-
tion, we group different Nx � Ny domains that undergo a specific
bifurcation and analyze a representative example in detail.

A. Supercritical pitchfork bifurcations

We start our analysis with the 10� 9þ domain, where the pri-
mary solution u0 undergoes an instability at Rep1 ¼ 179:81, when its
leading real eigenvalue changes sign (cf. Figs. 3 and 4). The corre-
sponding eigenvector,37 shown in Fig. 5(a), is Ry-symmetric and
Rx;Rp-antisymmetric. We found that DNS of flow slightly above Rep1
converges to either of the steady solutions u6

1 , which are invariant
only under Ry . As an example, Fig. 5(b) shows uþ1 at Re¼ 188.4, well
above the bifurcation point. Also, uþ1 and u�1 are related to each other
via the symmetries R 2 fRx;Rpg broken in the bifurcation, that is,
Ru6

1 ¼ u7
1 . Hereafter, we distinguish such symmetry-related solutions

using superscripts “6.” The formation of two secondary solution
branches with a broken symmetry confirms that u0 in the 10� 9þ

domain undergoes a pitchfork bifurcation at Rep1.
To quantitatively analyze this bifurcation, we computed the nor-

malized separation D6
1 between u0 and u6

1 at several Reynolds num-
bers above the bifurcation point, where

D6
1 ¼ 6

jju6
1 � u0jj
jju0cjj

: (7)

In the above equation, jj � � � jj represents L2�norm evaluated over the
entire flow domain and u0c is the neutrally stable primary solution at
Rep1. For completeness, we also defined D0 ¼ 0 as the order parameter
representing u0. In Fig. 6, we plotted D0 and D6

1 vs Re to visualize the
primary bifurcation in the 10� 9þ domain. Clearly, D6

1 is zero at
Rep1 and increases continuously with Re 	 Rep1, which confirms a
supercritical transition from u0 to u6

1 .

Infinitesimally close to the critical Re, the pitchfork solutions are
formed due to nonlinear saturation of the primary instability. Hence,
u6
1 can be approximated1,2 as

u6
1 ¼ u0 6 ejju0cjjê1: (8)

Since Rê1 ¼ �ê1 for R 2 fRx;Rpg, it is straightforward to show using
the above equation that Ru6

1 ¼ u7
1 , that is, symmetries broken via the

pitchfork bifurcation map the resulting secondary solutions to each
other and render them dynamically equivalent at all Re.

It is not known a priori, however, whether Eq. (8) is quantita-
tively accurate at a finite distance above the bifurcation point. To test
this, we computed the amplitude e using the relation

e ¼ jjðu
6
1 � u0Þ � ê1jj
jju0cjj

: (9)

We then compared 6e and D6
1 at several Re 	 Rep1. We recall that

D6
1 is the normalized magnitude of the vector u6

1 � u0, whereas e is
the magnitude of its projection along ê1. As a result, e � jD6

1 j and the
equality is satisfied only if u6

1 � u0 is parallel to ê1. Figure 6 shows
that 6e (up/down triangles) and D6

1 are practically indistinguishable
inside a narrow interval of Re (of width DRe � 2) near the bifurcation
point. Inside this window, the Reynolds number dependence of e satis-
fies the square root scaling1,2 remarkably accurately (dotted black
curve), that is, e /

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Re� Rep1

p
. These findings confirm that Eq. (8) is

indeed quantitatively accurate close to the bifurcation.
Figure 6 also shows that D6

1 and e are comparable in magnitude
even farther away from the bifurcation point, where they cease to vary
monotonically with Re. This implies u6

1 � u0 and ê1 are almost paral-
lel at these Re, and Eq. (8) should still reliably approximate the pitch-
fork branches. This observation enabled us to rationalize differences
between solutions u6

1 and u0 in physical space. These solutions differ
appreciably only near the center of the flow domain due to the corre-
sponding localization of ê1 (cf. Fig. 3 vs Fig. 5). We would like to note
that a similar “visual” approach was previously employed by Thess5 to
theoretically analyze experimentally observed12 pitchfork bifurcation

FIG. 5. Primary instability and secondary solution uþ1 in the 10� 9þ domain.
(a) Leading eigenvector ê1 of the primary solution u0 that turns unstable
at Rep1 ¼ 179:81. ê1 is Ry -symmetric and Rx ;Rp-antisymmetric. (b) Ry -invariant
secondary solution uþ1 at Re¼ 188.4. Symmetries of uþ1 can be inferred from the
vortex pattern near the center. u�1 is the reflection of uþ1 in the y-axis.

FIG. 6. Supercritical pitchfork bifurcations of the primary solution u0 in the 10� 9þ

domain. Secondary solutions u6
1 (red curves) emerge out of a forward pitchfork

bifurcation at Rep1 ¼ 179:81 and disappear through a backward pitchfork bifurca-
tion at Rep2 ¼ 198:56. Solid and dashed curves represent linearly stable and
unstable solutions, respectively. Up/down triangles indicate saturated amplitudes
6e along the unstable eigenvector of u0. Dotted black curves indicate square root
scaling of e near Rep1 and Rep2.

Physics of Fluids ARTICLE scitation.org/journal/phf

Phys. Fluids 33, 094112 (2021); doi: 10.1063/5.0061658 33, 094112-6

Published under an exclusive license by AIP Publishing

https://scitation.org/journal/phf


in a 2� 2 lattice of square vortices. Secondary solutions, which emerge
due to the merger of diagonally opposite vortices, were constructed
using an equation analogous to Eq. (8), however, by choosing an arbi-
trary amplitude e along 6ê1 [cf. Eq. (21) in Thess5]. Recently, Chen8

also showed that supercritical pitchfork states reported in Sommeria12

can be analytically approximated using a truncated model with only
four sinusoidal modes. These studies, however, employed free-slip
boundary conditions and a monochromatic sinusoidal forcing.

The pitchfork bifurcation at Rep1 is a symmetry-breaking one,
since the secondary solutions u6

1 are not Rx;Rp-invariant. Typically,
these solutions should become unstable at higher Re, resulting in ter-
tiary solutions with greater spatial asymmetry and/or temporal com-
plexity. In the present case, however, we found that both u6

1 coalesce
with the unstable primary solution u0 at Rep2 ¼ 198:56 in a backward
supercritical pitchfork bifurcation,38 as shown in Fig. 6. At this
Reynolds number, u0 regains stability with respect to perturbations
along the leading eigenvector ê1, which is Ry-symmetric and Rx;Rp-
antisymmetric. Consequently, the flow in DNS regains all its symme-
tries for Re > Rep2.

When continued to higher Re, u0 in the 10� 9þ domain
becomes unstable again at Re ¼ 208:79 > Rep2. Before we discuss this
instability, we compare primary bifurcations in the 10� 96 domains
when the forcing direction is reversed. u0 in the 10� 9� domain turns
unstable when a complex–conjugate pair of eigenvalues crosses the
imaginary axis, which presents a different scenario than a pitchfork
bifurcation. However, it is not surprising that the nature of primary
bifurcations in 10� 96 domains is different, since the corresponding
primary solutions are dynamically dissimilar (cf. Figs. 3 and 4). We
shall revisit bifurcations in the 10� 96 domains again in Secs. VC
and VI.

B. Subcritical pitchfork and saddle-node bifurcations

In a supercritical bifurcation, the transition from primary to sec-
ondary solutions near the bifurcation point is continuous, as shown in
Fig. 6. However, for a given bifurcation type (e.g., the pitchfork), the
square vortex flow can also undergo a discontinuous/sudden transition
upon increasing the Reynolds number only infinitesimally above a
critical value. In this section, we explore one such example from the
9� 10 domain. This domain is identical to the 10� 9þ one shown in
Fig. 1, except that J ŷ ! J x̂ .

The primary solution u0 in the 9� 10 domain is Rp-invariant, as
shown in Fig. 7(a). At Rep1 ¼ 189:99; u0 turns unstable to perturba-
tions along a real Rp-antisymmetric eigenvector ê1. DNS of flow
slightly above the bifurcation converges to either of the stable Rp-
asymmetric solutions u6

4 that map to each other via the broken sym-
metry, that is, u7

4 ¼ Rpu6
4 . Unlike in the supercritical case, however,

these solutions lie “far” away from u0. For instance, Fig. 7(b) shows
uþ4 , that is visibly distinct from u0 computed at the same Re. The loss
of Rp-invariance and a sudden transition from u0 to either of the
symmetry-related solutions u6

4 suggests that the stable primary solu-
tion in the 9� 10 domain undergoes a subcritical pitchfork bifurcation
at Rep1.

To analyze the sudden transition, we defined the following order
parameter to quantify the separation between u0 and a solution pair
u6
k (labeled using subscript k) at each Re:

D6
k ¼ 6

jju6
k � u0jj
jju0cjj

: (10)

In the above equation, u0c is the neutrally stable primary solution at
Rep1. Figure 8 quantifies the variation of Dþk corresponding to uþ4 , as
well as other branches, as a function of Re. Curves representing u�k are
not shown in this figure, since they can be reconstructed using the

FIG. 7. Steady flows in the 9� 10 domain at Re¼ 189.99. (a) Rp-invariant
primary solution u0. (b) Asymmetric flow uþ4 resulting from a subcritical pitchfork
bifurcation. These flows differ noticeably near the bottom left corner of the square
marked using dashed white lines.

FIG. 8. Subcritical pitchfork and saddle-node bifurcations in the 9� 10 domain.
Stable solutions (u0 for Re < Rep1; uþ2 , and uþ4 ) are represented using solid
curves (see inset). Unstable solutions (u0 for Re > Rep1; uþ1 , and uþ3 ) are repre-
sented using dashed curves. Regions between vertical dashed lines mark intervals
of multi-stability, labeled A through E. Number of stable solutions in each interval is
shown in parenthesis. The solution branches u�k are not plotted, but can be recon-
structed using the relation D�k ¼ �Dþk . Vertical arrows indicate basins of attrac-
tions for various branches.
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relation D�k ¼ �Dþk . Clearly, u
þ
4 is always disconnected from u0 (rep-

resented by D0 ¼ 0) by a finite amplitude. However, since u0 is unsta-
ble for Re > Rep1, DNS of flow starting from initial conditions u � u0
eventually converges to u6

4 , as indicated by the arrow. This explains
the sudden transition from u0 to u6

4 upon infinitesimally increasing
the Reynolds number above Rep1.

In a subcritical pitchfork bifurcation, two unstable symmetry-
related solutions u6

1 exist for Re < Rep1, which then coalesce with u0
at the critical Reynolds number Rep1 (red dashed curve in Fig. 8).
Despite similarity in shape with a backward supercritical pitchfork
bifurcation (Sec. VA), u6

1 in the subcritical case are unstable and can-
not be computed using mere numerical integration. Nevertheless, u6

1
can be approximated using Eq. (8) by redefining u0 as the stable pri-
mary solution for Re < Rep1; ê1 as the leading stable eigenvector of
u0, and e as the a priori unknown amplitude of the pitchfork branches.
To compute u6

1 accurately, we generated initial conditions u6
ic ð~eÞ

¼ u0 6~ejju0cjjê1 parameterized by ~e and employed the Newton
solver discussed in Appendix A. The solver successfully converged to
u6
1 when ~e � e, the saturated amplitude along ê1.

One may now ask, what is the relation between the stable finite-
amplitude solution uþ4 observed for Re > Rep1 and the unstable pitch-
fork branch uþ1 computed for Re < Rep1 in Fig. 8? In the simplest
possible scenario, uþ1 and uþ4 are born out of a saddle-node bifurcation
at a subcritical Reynolds number Resn < Rep1. In such a bifurcation,
two solutions that differ in the number of unstable directions by unity
collide and annihilate each other.3,39 To test this, we continued both
uþ1 and uþ4 to lower Re using the parabolic extrapolation technique
detailed in Appendix B, until a change in stability of each solution was
detected. We found that uþ1 and uþ4 “snake” around and annihilate
intermediate solution branches uþ2 (stable) and uþ3 (unstable), respec-
tively. These solutions emerge in a sequence of three saddle-node40

bifurcations S1, S2, and S3, as shown in Fig. 8.
The subcritical transition in Fig. 8 is significantly more compli-

cated than its supercritical counterpart shown in Fig. 6. Particularly,
the stability scenarios in Fig. 8 are intricate, which we discuss in the
following. To distinguish various intervals of multi-stability, we
marked all bifurcation points in Fig. 8 using vertical dashed lines and
labeled the intervals between them (A through E). The number of sta-
ble solutions within each interval, including the u�k branches not
shown, is also indicated in parenthesis. Figure 8 shows that two stable
branches are always separated by an unstable branch. For instance, the
unstable section of the u0 branch serves as a separatrix between uþ4
and u�4 inside the interval A, which explains why DNS of flow starting
from u � u0 converges to u6

4 for Re > Rep1. Inside the interval B, the
stable branches uþ4 (u�4 ) and u0 are separated by the unstable branch
uþ1 (u�1 ). In this interval, DNS of flow starting from arbitrary initial
conditions converges to u0 or u6

4 . Interval C is a striking example of
multi-stability, with five stable solutions (to which the DNS converges)
and four unstable ones that serve as separatrices between the former.
Finally, the stability scenario inside the narrow interval D, with stable
solutions u6

4 ; u0 and the unstable pair u6
3 , is qualitatively similar to

that in interval B. This can also be visualized from the inset in Fig. 8.
Subcritical transition in a 6� 6 lattice of nearly square Q2D vor-

tices was previously observed in experiments due to Sommeria (cf. Fig.
2 in Ref. 12). Beyond a critical Reynolds number, the author found
that the steady square vortex flow suddenly transitions to a finite-
amplitude chaotic solution. Upon decreasing the Reynolds number, an

intermediate stable equilibrium state was identified within a narrow
interval of Re. With further decrease in Re, the stable square vortex
flow was found to reappear in a sudden transition. Even though unsta-
ble branches cannot be realized in experiments, we conjecture that the
above described bifurcation is similar to that shown in Fig. 8. In fact,
we can qualitatively compare both transition scenarios by invoking the
following mapping: u0 in Fig. 8 maps to the 6� 6 lattice of square vor-
tices, and uþ4 represents the disconnected chaotic solution, whereas uþ2
is the intermediate state. Even though direct transition to chaos is not
observed in our study, such a transition can occur if u6

4 turn unstable
soon after they are born.41 Nevertheless, since the experimental setup
employed by Sommeria is markedly different from that modeled in
the present study (the forcing profile, domain size, and frictional
drag), quantitative differences between the two are expected.

We conclude our analysis of the subcritical pitchfork bifurcation
with a short discussion on the symmetries of various solution branches
in Fig. 8. To begin, the solutions u6

1 are not invariant under Rp, the
symmetry broken in the bifurcation. In addition, we found that the
asymmetry of u6

1 , quantified as jju6
1 � Rpu6

1 jj=jju6
1 jj, increases with

the distance jjRe� Rep1jj from the bifurcation point. This implies that
both u6

1 and u6
2 are born with a finite Rp asymmetry at the saddle-

node bifurcation S1. We also found that u6
2 ; u

6
3 , and u6

4 are finitely
Rp-asymmetric at all Reynolds numbers these solutions exist. In addi-
tion, u0 undergoes further bifurcations at higher Re and does not
regain its stability, at least in the range of Re values we explored.
Hence, the subcritical pitchfork bifurcation leads to the breaking of the
only flow symmetry Rp in the 9� 10 domain.

C. Supercritical Hopf bifurcation

Pitchfork bifurcations discussed in Secs. VA and VB have led to
the formation of steady secondary solutions. However, bifurcations in
a square vortex flow can also lead to the direct onset of time-periodic
dynamics.20 We found such flow transitions in the 9� 9, 10� 10, and
10� 9� domains (cf. Figs. 3 and 9). Flow in the 10� 9þ domain,
where the primary solution u0 regains stability via the backward pitch-
fork bifurcation, also becomes time-periodic at Reh1 > Rep2. Using lin-
ear stability analysis and numerical integration, we identified that u0

FIG. 9. Primary solutions in the (a) 9� 9 domain at Re¼ 190.97 (b) 10� 10
domain at Re¼ 177.98. Dashed white lines indicate invariance under symmetries
(a) Ry and (b) Rx .
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in each of these domains undergoes a supercritical Hopf bifurcation
(cf. Table III). At the critical Reynolds number Reh1, real part of the
leading complex–conjugate eigenvalue pair of u0 changes sign. Since
the dynamics above onset of oscillations are qualitatively similar across
various flow domains, we focus on the 9� 9 domain as a representa-
tive example due to symmetry considerations.

The primary solution u0 in the 9� 9 domain is Ry-invariant, as
shown in Fig. 9(a). Slightly above Reh1 ¼ 190:97, DNS of flow con-
verges to a stable time-periodic solution upo1ðtÞ. The period of oscilla-
tions T � 2p=x1c was estimated using the Newton solver,42 such that
jjupo1ðtÞ � upo1ðt þ TÞjj � 10�8 for t 2 ð0;T�. Here, x1c is the imag-
inary part of the leading eigenvalue of u0 at the critical Reynolds num-
ber Reh1. To test whether the bifurcation is supercritical or subcritical,
we computed the normalized maximum separation

Dpo1 ¼ max
t

jjupo1ðtÞ � u0jj
jju0cjj

(11)

between the solution branches u0 and upo1 for Re > Reh1. We found
that Dpo1 vanishes near the bifurcation point, confirming a supercriti-
cal transition.

Infinitesimally close to the onset of oscillations, the secondary
solution upo1 formed via the supercritical Hopf bifurcation can be
approximated as

upo1ðtÞ ¼ u0 þ jju0cjj p1ðxtÞŵ1 þ p2ðxtÞŵ2½ �: (12)

Here, x ¼ 2p=T is the angular frequency of oscillations and ŵ1; ŵ2

are mutually orthonormal vectors in a plane spanned by the real and
imaginary parts of ê6

1 ¼ er 6 iec, the unstable eigenvectors of u0.
Coefficients p1 and p2 are projections of upo1ðtÞ � u0 along ŵ1 and
ŵ2, respectively. Furthermore, p1 and p2 satisfy the relation
p1;2ðt þ TÞ ¼ p1;2ðtÞ 8t, since upo1 is time-periodic. Using Eq. (12),
we defined the amplitude of oscillations as

A ¼ maxt
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p21 þ p22

q
: (13)

Infinitesimally close to the bifurcation point, A should scale1–3 with
Reynolds number as A /

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Re� Reh1
p

. In contrast, the angular fre-
quency x is supposed to scale linearly with Re, that is,
x� x1c / Re� Reh1. Below, we test the accuracy of Eq. (12) and
these scaling laws, following an approach similar to that employed in
Sec. VA.

Equation (12) implies that the evolution of upo1 around u0 is con-
fined to the ŵ1 � ŵ2 plane. To visualize the dynamics in this plane,

we plotted p1ðtÞ vs p2ðtÞ in Fig. 10(a). Here, each elliptical orbit repre-
sents upo1 at a particular Reynolds number Re > Reh1, whereas center
(0, 0) represents the unstable primary solution u0 (for all Re). For con-
venience, we also defined ŵ1 such that the intersection of each orbit
with the p1-axis is equal to the amplitude A of oscillations. Now, if
the evolution of a time-periodic orbit upo1 is indeed confined to the
ŵ1 � ŵ2 plane, the corresponding amplitude in Fig. 10(a) should
be equal to Dpo1 (þ symbols), the maximum separation between upo1
and u0.

Figure 10(a) shows that A and Dpo1 are indistinguishable for the
three innermost orbits, which lie inside a narrow interval of Reynolds
numbers 0 < Re� Reh1 < 1 near the bifurcation point. Inside this
interval, the amplitude A and angular frequency x of oscillations obey
the square root and linear scaling laws, respectively, as shown in Figs.
10(b) and 10(c). The corresponding fits (dashed curves) are computed
only for 0 < Re� Reh1 < 1, to demonstrate that A(Re) and xðReÞ
deviate appreciably from theoretical predictions farther away from the
bifurcation point. Nevertheless, our results show that time-periodic
flows that emerge due to a supercritical Hopf bifurcation in the square
vortex flow are accurately modeled by Eq. (12), however, only very
close to the bifurcation point.

TABLE III. Hopf bifurcations of square vortex flows in different Nx � Ny domains.
Reh1 is the critical Reynolds number for the onset of oscillations with period
T ¼ 2p=x1c . The union of symmetries broken via the Hopf bifurcation and symme-
tries of the resulting upo1 is the full set of symmetries for each flow domain. Each
time-periodic solution is stable inside the interval Reh1 < Re < Re2.

Nx � Ny Reh1 T Symmetry broken Invariance Re2

9� 9 190.97 16.57 Ry None 194.6
10� 9þ 208.79 15.75 Ry; Rp Rx 210.1
10� 9� 186.76 16.39 Rx; Ry Rp 194.9
10� 10 177.98 50.11 None Rx 178.8

FIG. 10. Supercritical Hopf bifurcation in the 9� 9 domain resulting in a time-
periodic solution upo1. (a) Phase portraits of upo1 at eight different Reynolds num-
bers inside the interval Reh1 < Re < Re2. The semi-major axis A of each elliptical
orbit and Dpo1 (þ symbols) increase with Re� Reh1. Open circles on the outer-
most orbit represent flow snapshots in Fig. 11. (b) Square root scaling of the ampli-
tude A and (c) linear scaling of the frequency of oscillations Dx ¼ x� x1c above
the critical Reynolds number Reh1.
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Unlike the pitchfork bifurcation, a supercritical Hopf is not con-
sistently a symmetry-breaking bifurcation.25,43,44 In the present case, if
the primary solution turns unstable to perturbations in the plane
spanned by an R-symmetric complex–conjugate eigenvector pair ê6

1 ,
the resulting time-periodic flow upo1 will be R-invariant. This can be
deduced from Eq. (12), since Rê6

1 ¼ ê6
1 implies Rŵ1;2 ¼ ŵ1;2. In con-

trast, if ê6
1 is R-antisymmetric, then upo1 will not be R-invariant.

Across the various flow domains we explored, a fully asymmetric
time-periodic secondary solution is observed only in the 9� 9 domain,
where the Ry symmetry is broken. On the other hand, no symmetry is
broken via the Hopf bifurcation in the 10� 10 domain. We recall that
ê6
1 cannot be simultaneously antisymmetric with respect to Rx;Ry , as
well as Rp in the 10� 96 domains. Consequently, symmetry-breaking
supercritical Hopf bifurcations in these domains lead to the formation
of time-periodic flows that are invariant under exactly one symmetry
of the governing equation, as listed in Table III.

When a twofold symmetry R is broken via a supercritical Hopf
bifurcation, the resulting time-periodic flow upo1 satisfies the
relation33,43

Rupo1ðtÞ ¼ upo1ðt þ T=2Þ; (14)

which also leads to upo1ðtÞ ¼ upo1ðt þ TÞ, since R2 ¼ I. A solution to
the governing equation, which satisfies the above relation, is termed a
“pre-periodic” orbit45 (PPO). Equation (14) implies that, two flow
fields on upo1, which are separated in time by T=2, are related to each
other via the twofold symmetry broken in the Hopf bifurcation. To
visualize this, Fig. 11 (Multimedia view) shows flow snapshots on upo1
from the 9� 9 domain at instants marked using the open circles in
Fig. 10(a). These Ry-asymmetric flows can be mapped to each other
via Ry , the symmetry broken in the Hopf bifurcation. We note that
PPOs are also formed in the 10� 96 domains. However, they are
invariant under one of the symmetries of Eq. (1). One important con-
sequence of Eq. (14) is that spatially averaged instantaneous kinetic
energy for PPOs oscillates at twice the frequency compared to kinetic
energy measured at an arbitrary location in the flow. This feature dis-
tinguishes PPOs from merely time-periodic solutions (see the supple-
mentary material video 1).

Pre-periodic flows have been observed in previous experimental
studies20,21 of Q2D flows. However, their symmetry properties have
received little attention. For instance, visual inspection of Fig. 1 in
Danilov et al.21 reveals that the oscillatory flow that branches out of a
2� 2 lattice of rectangular vortices is Rp-invariant. The Rx and Ry

symmetries in the flow are broken via a Hopf bifurcation. Snapshots
shown in Danilov et al., which are separated in time by half an oscilla-
tion period, can be nearly mapped to each other via these broken sym-
metries despite experimental imperfections. In the present study, a
similar symmetry-breaking scenario is observed in the 10� 9�

domain.

VI. SYMMETRY-BREAKING SECONDARY
BIFURCATIONS

Table III shows that stable time-periodic solutions in the 10� 96

and 10� 10 domains are invariant under one of the symmetries of
Eq. (1). To test whether fully asymmetric flows emerge via bifurca-
tions of these solutions, we computed their linear stability. A
detailed account of computing the Floquet (eigen) vectors of time-
periodic solutions can be found in Refs. 30, 42, 43, and 46. Here, we
summarize the key steps involved. To begin, we test whether an
infinitesimal perturbation du to upo1 would grow or decay after one
period T. In addition, we constrain du to be orthogonal to _upo1 at
t¼ 0, since a perturbation along _upo1 is equivalent to merely shifting
the arbitrary origin of time on upo1ðtÞ. The growth/decay of such
perturbations (on a Poincar�e section) transverse to _upo1 is then
quantified using Floquet exponents39,46 k0k and vectors ê0k. The
primes here distinguish these quantities from their steady flow
counterparts [cf. Eq. (3)].

Let k01 ¼ r01 þ ix01 and ê01 ¼ e0r þ ie0c be the leading Floquet
exponent and vector, respectively, of a time-periodic solution upo1. If
we add an infinitesimal perturbation ee0r to upo1ð0Þ, the resulting flow
after one period T is

uðTÞ ¼ upo1ð0Þ þ eer
0
1T e0r cos ðx01TÞ � e0c sin ðx01TÞ
� �

: (15)

When k01 and ê
0
1 are real, we set x

0
1 ¼ 0 and e0r ¼ ê01 in the above

equation. Equation (15) shows that upo1 is linearly unstable (stable) if
r01 > 0 (r01 < 0), since the magnitude of an infinitesimal perturbation
increases (decays) by a factor eNr01T after N periods. ForN !1, how-
ever, the growth of any perturbation is bounded due to nonlinearity
and dissipation, leading to the formation of new solutions.

Floquet vectors of a time-periodic flow invariant under a twofold
symmetry R are either symmetric or antisymmetric with respect to R,
as in the case of steady flows. Similarly, symmetries of the Floquet vec-
tors that turn unstable in a bifurcation govern the symmetries of solu-
tions that consequently emerge. Hence, using Eq. (15) and numerical
integration, we identified that time-periodic flows in the 10� 96 and
10� 10 domains undergo symmetry-breaking bifurcations at Re2 (cf.
Table III). Since tracing the resulting stable/unstable branches (e.g.,
two-tori) is computational challenging, we classify these bifurcations
by drawing analogies with the pitchfork and Hopf bifurcations of
steady flows discussed in Sec. V.

A. Subcritical pitchfork bifurcation

The Rx-invariant pre-periodic orbit upo1 in the 10� 9þ domain
undergoes a subcritical pitchfork bifurcation at Re2 � 210:1. Above

FIG. 11. Pre-periodic flows at Re¼ 194.51 that emerge out of a symmetry-
breaking Hopf bifurcation in the 9� 9 domain. (a) upo1ðtÞ and (b) upo1ðt þ T=2Þ.
Circles highlight discernible vortex patterns that map to each other via Ry .
Multimedia view: https://doi.org/10.1063/5.0061658.2
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linear stability with increasing Re. We then identified symmetry-
breaking primary bifurcations and thoroughly analyzed the resulting
secondary solutions. Finally, we traced the secondary (as well as ter-
tiary, quaternary) bifurcations that lead to the formation of flows
devoid of any spatial symmetry.

The key findings of this study are summarized below:

1. When a square (or rectangular) vortex flow on a laterally
bounded domain is invariant under all symmetries of the gov-
erning equation (cf. Table II), it ceases to be invariant under
reversing the direction of forcing. Even though previous experi-
mental studies21 identified this sensitivity, we theoretically ratio-
nalized it using symmetry arguments and confirmed the
sensitivity using DNS.

2. A chessboard-like lattice of square vortices driven by a nearly
sinusoidal forcing undergoes gradual spatial deformation as Re
increases.4,21 Specifically, we identified that a strictly sinusoidal
approximation of the flow is accurate only up to Re � 120,
which is well below the point of primary instability in the flow
domains we studied.

3. The nature of primary bifurcation in a square vortex flow is sen-
sitive to the symmetries of the governing equation and the direc-
tion of forcing. Striking examples of this were flows in the
10� 96 and 9 � 10 domains, which have identical lateral extent
and are governed by Eq. (1) with the same parameters (c;b). Yet,
three different types of primary bifurcations were identified:
super/sub-critical pitchfork and supercritical Hopf. Previously,
these three bifurcations were observed12,21 only across square/
rectangular vortex flows with dissimilar lateral extent and fric-
tional drag.

4. Even though the primary instability in a square vortex flow was
studied5,8 earlier, secondary solutions that emerge via a bifurca-
tion were not characterized using DNS. We computed both sta-
ble and unstable secondary solutions that branch out of the
square vortex flow, analyzed their symmetries, and continued
them in Re until they undergo a secondary instability. We also
showed that “amplitudes” of secondary solutions, which are
formed due to the nonlinear saturation of an instability, scale
with Re as per theoretical predictions1–3 inside a narrow interval
of Reynolds number near the bifurcation point.

5. Subcritical primary bifurcation in a square vortex flow was not
explored previously in numerics, to the best of our knowledge.
Combining the numerical integrator with a Newton solver and a
branch continuation code, we mapped out a subcritical transition
scenario that involves “snaking” of a solution branch (cf. Fig. 8).
Even though this bifurcation is qualitatively similar to that
reported in Sommeria,12 the flow we studied did not transition
to chaos directly. Such a transition, however, may occur for a dif-
ferent set of model parameters and domain size.

6. The breaking of spatial symmetries in a square vortex flow
received limited attention in previous studies.11 The present
study is the first to explore this aspect comprehensively. We
identified a gallery of symmetry-breaking pitchfork and Hopf
bifurcations, both supercritical and subcritical in nature, of
steady as well as time-periodic solutions (Table IV). We demon-
strated that these bifurcations, in sequence, lead to a rich variety
of fully asymmetric flows: symmetry-related pairs of steady or

time-periodic solutions, pre-periodic solutions, and quasi-
periodic solutions.

Our results also highlight the need for further numerical and
experimental exploration of transition to chaos/turbulence in the
square vortex flow. Previously, Braun et al.10 have numerically identi-
fied a period-doubling route to chaos in a linear array of square vorti-
ces. The authors reported that the exact bifurcation sequence was,
however, sensitive to the choice of no/free-slip boundary conditions.
In experiments, Michel et al.11 observed an intermittency route to
chaos in a 2� 4 lattice of vortices. Variability in the multiplicity of
fully asymmetric solutions in Table IV suggests that different routes to
chaos may be observed in the square vortex flows analyzed in this
study. We intend to explore this question and report the findings in a
subsequent publication.

Recent theoretical13,49 and experimental11 studies of steadily
forced 2D flows have also identified the coexistence of distinct
“asymmetric” turbulent states and flow transitions between them.
Whether symmetries of the forcing profile influence the formation
and dynamics of such states is currently open for exploration. Finally,
whether a laboratory realization (described in the supplementary
material) of the 2D flow we analyzed here will undergo the same
sequence of bifurcations (as its 2D DNS) needs to be explored.25,50 If it
indeed does, the square vortex flow should serve as an ideal platform
to demonstrate hydrodynamic stability in a pedagogical setting,51

given the ease of its experimental and numerical realizations.

SUPPLEMENTARY MATERIAL

See the supplementary material for Text: (1) Description of
experimental setup theoretically modeled in this study and (2) analyti-
cal estimates for 2D model parameters, including Reynolds number,
from experimental parameters. Videos: (1) Rx-invariant time-periodic
flow in the 10 �10 domain and (2) asymmetric quasi-periodic flow in
the 10� 9� domain.

APPENDIX A: THE NEWTON METHOD

Unlike a linearly stable solution to Eq. (1), unstable steady
flows cannot be computed using mere numerical integration. To
compute such solutions, we employed the Newton method, which
iteratively solves the nonlinear equation FðueqÞ ¼ 0 starting from
an initial guess uic that satisfies the criterion FðuicÞ � 0. A detailed
discussion of the solver is beyond the scope of this study.
Nevertheless, we provide a brief overview of the Newton method in
the following. Given the initial guess uic, the goal is to identify du
such that Fðuic þ duÞ ¼ 0. Since a direct solution to this nonlinear
equation is not computationally feasible, we seek an approximate
solution, as a first step, using the linear equation

FðuicÞ þ JðuicÞdu ¼ 0; (A1)

where J is the Jacobian matrix (cf. Sec. II B). Since the dimensions
of J are very large (�105 � 105), the above equation is solved for du
using the generalized minimal residual method (GMRES), which is
a Krylov subspace method.52 Note that du so obtained does not sat-
isfy Fðuic þ duÞ ¼ 0; hence, we update uic ! uic þ du after each
Newton iteration. For a sufficiently “good” initial guess uic, the
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solver converges to an unstable solution ueq ¼ uic þ du in only a
few iterations. More details regarding Newton–Krylov solvers can
be found in Refs. 30, 42, and 53–55.

APPENDIX B: PARABOLIC BRANCH CONTINUATION
TECHNIQUE

Equation (1) can possess multiple stable/unstable equilibrium
solutions ueq at the same Re, as illustrated in Fig. 8. Hence, both
DNS and the Newton solver can converge to a solution that is far
away from the desired one, if initialized with a poorly constructed
initial guess uic. Convergence to the desired ueq can be tested by
computing56

Dic ¼ jjuic � ueqjj=jjueqjj: (B1)

Ideally, we should construct uic such that Dic � 0. Near a bifurca-
tion, separation between distinct solutions is often very small and
this poses a challenge, since Dic � 0 for convergence to any solu-
tion. To overcome this problem, we employed the following three-
point parabolic branch continuation technique to extrapolate solu-
tions in Re.

Let uk for k 2 f0; 1; 2g represent steady solutions on a branch
at three closely spaced Reynolds numbers Rek, that is,
jRekþ1=Rek � 1j 
 1. When initializing branch continuation, it is
preferable to choose Rek slightly away from a bifurcation point. We
then define a parabola

pðReÞ ¼ c0 þ c1Reþ c2Re
2; (B2)

where the relations pðRekÞ ¼ uk determine the coefficients
ðc0; c1; c2Þ. To construct the initial guess for a solution on this
branch, for instance at Re ¼ Re2 þ dRe, we simply evaluate
pðRe2 þ dReÞ. The solution ueq at this Reynolds number is then
computed using DNS and the Newton solver. The step size dRe is
iteratively chosen such that Dic is less than a set upper limit.

APPENDIX C: PRE-PERIODIC ORBITS

In Sec. VC, we visualized the oscillations of upo1 using orthog-
onal coordinates p1 and p2. Instead, one can also project upo1
directly onto the real and imaginary parts of ê6

1 ¼ er 6 iec, the
unstable eigenvector pair of the primary solution u0

upo1ðtÞ ¼ u0 þ C er cos ðxtÞ � ec sin ðxtÞ½ �: (C1)

If ê6
1 is R-antisymmetric, that is, Rer ¼ �er and Rec ¼ �ec, it is

straightforward to show using the above equation that

Rupo1ðtÞ ¼ u0 � C er cos ðxtÞ � ec sin ðxtÞ½ �: (C2)

By substituting cosðxtÞ¼�cosðxtþpÞ; sinðxtÞ ¼�sinðxtþpÞ,
and xT=2¼p, we arrive at the relation Rupo1ðtÞ¼upo1ðtþT=2Þ that
defines a pre-periodic orbit.

Equation (C1) describes oscillations of upo1ðtÞ in a skew coor-
dinate system, when er and ec are not mutually orthonormal vec-
tors. In this coordinate system, the phase portraits of upo1 are circles
of radius C, which are traversed at uniform angular speed x
close to the bifurcation point. The elliptical shape of the orbits in

Fig. 10(a) and variations in the instantaneous speed
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_p21 þ _p22

q
are

consequences of non-normality of er and ec. Nevertheless, Eq. (12)
can be derived from Eq. (C1) by performing Gram–Schmidt ortho-
normalization of er and ec.

DATA AVAILABILITY

The data that support the findings of this study are available
from the author upon reasonable request. MATLAB code to perform
DNS of the 2D model is available here (https://github.com/balachan-
drasuri/2DModelDNS.git).
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