

Lubrieants; Composition & Properties

Presented By: Gopakumar, P Materials Engineering Dept

> PhD student- Aug 2012 gopa99@gmail.com

Why lubricants are needed

- Friction / Wear
- Heat Generation
 - **Combustion Products**
- Sealing
 - **Material Protection**

LUBRICATION

LUBRICATION

Lubrication Systems:

ONCE THROUGH OIL SYSTEM

Lubrication Systems:

BATH LUBRICATING SYSTEM

Lubrication Systems:

CIRCULATING LUBE OIL SYSTEM

LUBRICANT IS MADE OF

ADDITIVES

PARRAFFINIC (HVI) NAPHTHENIC (MVI) AROMATIC (LVI) LUBE PROTECTION ADD PERFORMANCE SURFACE PROTECTION

Properties of Lubricants

Base Oil Dependent

Viscosity **Pour Point Specific Gravity** Flash Point Oxdn. Stability **Demulsibility** Foaming Air Release

Additive Dependent

Tribology: ME 253

Neutralization Value Metal Corrosion Oxidation Stability Antiwear

Extreme Pressure

LUBRICANT PROPERTIES

1. KINEMATIC <u>VISCOSITY</u>

- RESISTANCE TO FLOW
- UNIT : cSt (CM²/SEC)
- SAE NOS. FOR AUTOMOTIVE GRADES
- ISO VG NOS. FOR INDUSTRIAL GRADES
- 2. VISCOSITY INDEX
 - INDICATES CHANGE OF VISCOSITY WITH TEMP.
 - EMPIRICAL NO.
 - HVI, MVI AND LVI OILS

LUBRICANT PROPERTIES

3. FLASH POINT

- TEMP. AT WHICH PRODUCT IGNITES IN PRESENCE OF A FLAME
- IMPORTANT FROM SAFETY ANGLE

4. POUR POINT

- LOWEST TEMP. AT WHICH OIL IS OBSERVED TO FLOW
- **5. OXIDATION STABILITY**
 - ABILITY TO RESIST OXIDATION
 - ACCELERATED BY HIGH OPERATING TEMP.
 - PRESENCE OF CERTAIN METALS ACT AS CATALYST
 - DETERMINES LIFE OF THE OIL

LUBRICANT PROPERTIES

6. DETERGENCY - ABILITY TO KEEP THE SYSTEM CLEAN 7. DISPERSANCY - ABILITY TO KEEP HARMFUL PARTICLES IN SUSPENSION 8. DEMULSIBILITY: RESISTANCE TO EMULSION - WATER SEPERATION ABILITY

9. ANTI - WEAR PROPERTY

- REDUCE WEAR BY FORMING A FILM BETWEEN SLIDING SURFACES

LUBRICANT PROPERTIES

11. EXTREME PRESSURE

- ABILITY TO WITHSTAND SHOCK LOADING AND IMPACT LOADS.

12. CORROSION RESISTANCE

- ABILITY TO PROTECT METAL AGAINST CORROSION AND RUST.

13. ANTI - FOAM

- CAPACITY OF BREAKING AIR BUBBLES

REACHING THE OIL SURFACE

LUBRICANT PROPERTIES

14. BASICSITY - TOTAL BASE NUMBER - Neutralization of acid production in Engines

15. AIR RELEASE PROPERTY- ABILITY TO RELEASE ENTRAINED AIR IN OIL

16. ADHESIVENESS

- ABILITY TO WET THE SURFACES

- ADDITION OF FATTY OILs

Lubricant Additives

What is an Additive in the Lubricant ?

- Any material added to the base stock to to change its properties , characteristics and performance .
- Improve existing properties:
 - Viscosity improver
 - Pour Point Depressant
 - Friction Modifiers
- Impart new properties
 - Detergents/dispersants
 - Anti Oxidants
 - Oiliness and Tackiness Agents
- Protect base stock properties
 - Anti Oxidants, Anti Foamants, Acid neutralizers

General Properties Of Additives

- Solubility In Base Petroleum Product
- Color / Odor : Additive blended product color and Odor should not give an impression of inferiority .
- Volatility : The volatility should be low, especially in High Temperature applications .
- Stability : An additive should remain stable in blending, storage and use . It implies chemical, thermal and hydrolytic stability .
- Compatibility :Two or more additive blends should be compatible to each other's properties .

Common Additives In An Engine Oil

- > <u>VI Improvers</u>
- **Detergent & Dispersants**
- > <u>Antiwear</u>
- Oxidation Inhibitors
- Corrosion & Rust Inhibitors
- Metal Deactivators
- Defoamant
- Pour Point Depressant

Detergents

- Provides detergency for engine cleanliness
- Neutralize acids, prevent corrosion from acids.
- Calcium, barium salts of petroleum sulfonic acids, phenates and salicylates, phosphorous containing polymers used.

Dispersants

- Function is to keep the sludge, carbon ,varnish and other deposits in colloidal suspension .
- Reduce the deposit formation and minimizes particulate wear and oil thickening.
- Dispersants have a oxygen, nitrogen based polar group and a large non polar group, usually a polymeric olefin.

Oxidation Inhibitors

- Decrease oil oxidation, reducing oil degradation and corrosive action of the oil.
- Classified as primary and secondary anti oxidants.
- Eg are Hindered Phenols, Aromatic amines, ZnDDP, Metal Deactivators such as Disalicylidene propylene diammine and substituted benzatriazole

Tribology: ME 253 Extreme Pressure Additives

- EP additive also known as Anti Scuffing additive .
- Form protective film on the metal surface by reacting chemically with the metal surface to form a layer at conditions of high temperature (>1000 deg F)
- Zinc Dialkyl di thio phosphate,tricresyl phosphate,organic phosphate,chlorinated and sulpherised hydrocarbons, metal soaps of lead, antimony and molybdenum used.

Anti Wear Additive

- Anti wear reduces the wear at low and medium speeds.
- Works by forming an oxide film on the metal surface thus preventing the metal-metal contact and also inhibiting action from the rust and corrosion initiators .
- Eg are ZNDDP (Zinc Dialkyl Dithio Phosphate)

VI Improvers

- Used in case of varied temperature applications.
- Polymers are used, which expand with increasing temperature to counter act oil thinning .
- Poly iso butylene, Methacrillates, Acrylate polymers, Olefin copolymers are used.

Pour Point Depressants

- Pour Point depressants work at low temperatures by minimizing the formation of wax networks and thereby reducing the amount of oil bound up in the network .
- Examples are Polyalkyl methacrylates, styrene ester polymers, alkylated napthalenes, ethylene vinyl acetate copolymers and ployfurmates.

Rust / Corrosion Inhibitors

- Prevents corrosion and rusting of metal parts in contact with the lubricant .
- Commonly used are Zinc diothiophosphate, metal phenolates, basic metal sulfonates, fatty acids and amines.

LUBRICANT BLENDING

1. SCHEDULING 2. DEHYDRATION OF BASE OILS **3. Q/C CHECKS OF BASE OILS** 4. BLENDING OF BASE OILS & ADDITIVES 5. Q/C CHECKS OF BLENDED PRODUCT 6. FINISHED LUBRICANTS

- Base Oils Receipt
- Additives Receipt
- Blending
- Quality Control
- Filling
- Distribution

THANK YOU