

Edition Five
Please refer to
Chapter Five
Sections: 5.1 to 5.6
Chapter 4
Section 4.7


Edition Four

Please refer to
Chapter Five
Sections: 5.1 to 5.6
Chapter 4
Section 4.7



$\mathbf{V}_{\mathbf{2}}$ and $\mathbf{V}_{\mathbf{1}}$ differ in direction but not in magnitude.

$\mathbf{V}_{\mathbf{2}}$ and $\mathbf{V}_{\mathbf{1}}$ differ in direction but not in magnitude.

What is the difference?


What is the difference?
$\Delta V_{2,1}=V_{2}-V_{1}$


What is the difference?

$$
\Delta V_{2,1}=\mathbf{V}_{2}-\mathbf{V}_{1}
$$



CIRCULAR MOTION
For circular motion with a uniform magnitude of velocity, there is an acceleration ( $\Delta \mathrm{V} / \mathrm{t}$ ), which is always directed towards the centre of curvature.

OR ....


CIRCULAR MOTION
OR ....
When a body moves along a curved path a force acts on the body that is directed towards the centre of curvature. This force is called the

## Centripetal Force



Centripetal Force, Centripetal Acceleration
When a body moves along a curved path a force acts on the body that is directed towards the centre of curvature. This force is called the Centripetal Force, $\mathrm{F}_{\mathrm{c}}$.

$$
F_{c}=m v^{2} / r
$$

## Where


m : body mass
v : magnitude of the velocity
$r$ : radius of curvature

Centripetal Force, Centripetal Acceleration
When a body moves along a curved path a force acts on the body that is directed towards the centre of curvature. This force is called the Centripetal Force, $\mathrm{F}_{\mathrm{c}}$.

$$
F_{c}=m v^{2} / r
$$

## Where


m : body mass
v : magnitude of the velocity
$r$ : radius of curvature

$$
a_{c}=v^{2} / r
$$

$\mathbf{a}_{\mathrm{c}}$ : Centripetal acceleration

Centripetal Force, Centripetal Acceleration
When a body moves along a curved path a force acts on the body that is directed towards the centre of curvature. This force is called the Centripetal Force, $\mathrm{F}_{\mathrm{c}}$.

$$
\mathrm{F}_{\mathrm{c}}=\mathrm{m} \mathrm{v}^{2} / \mathrm{r}
$$

Where
m : body mass
This equation will be in the exam cheat sheet

v : magnitude of the velocity
$r$ : radius of curvature

$$
a_{c}=v^{2} / r
$$


$\mathrm{F}_{\mathrm{RW}}$ : Force by the road on the wheel.
$F_{\mathrm{wR}}$ : Force by the wheel on the road.

The more the $F_{W R}$, the more the $F_{R W}$.

$F_{\text {fr: }}$ Frictional force
$F_{f r}$ does not change with car speed.

$$
F_{f r}=\mu F_{N}
$$




## The case of a skidding car

A centripetal force is needed to act on the car to keep the turning on the curved path.

The firm and rough surface between the road and the wheels provides that centripetal force.


## The case of a skidding car

A centripetal force is needed to act on the car to keep the turning on the curved path.

The firm and rough surface between the road and the wheels provides that centripetal force.
The tighter the turn the more the force required to keep the car on the track.

The more the car speed the more the force required.


## The case of a skidding car

The static friction between the road and the wheels provides the required centripetal force $\mathrm{mv}^{2} / \mathrm{r}$.

The maximum static friction force is $=\mu_{s} F_{N}$

A car will skid if $\mathrm{mv}^{2} / \mathrm{r}>\mu_{\mathrm{s}} \mathrm{F}_{\mathrm{N}}$

The case of a skidding car

## A car will skid if

 $\mathrm{mv}^{2} / \mathrm{r}>\mu_{\mathrm{s}} \mathrm{F}_{\mathrm{N}}$$\mu_{\mathrm{S}-\mathrm{DRY}}>\mu_{\mathrm{s}-\mathrm{WET}}$

## The case of a skidding car

## A car will skid if

 $m v^{2} / r>\mu_{s} F_{N}$$\mu_{\mathrm{s} \text {-DRY }}>\mu_{\mathrm{s} \text {-WET }}$

More cars skid during the wet weather, as people do not reduce speed to adjust for lower static friction coefficient.



## Banking of the tracks



To overcome the skidding at curves, railway tracks and the roads are often made tilted at an angle towards the radius of curvature. This process id called Banking of the Track.



Mathematically,
$\mathbf{F}_{\mathbf{N}} \sin \theta=\mathbf{m v}^{\mathbf{2}} / \mathbf{r}$
$\mathbf{F}_{\mathrm{N}} \cos \theta=\mathbf{m g}$
From (1) / (2)
$\boldsymbol{\operatorname { s i n }} \theta / \cos \theta=\mathbf{v}^{\mathbf{2}} / \mathbf{r g}$

$$
\boldsymbol{\operatorname { t a n }} \theta=\mathbf{v}^{2} / \mathrm{rg}
$$



Mathematically,
$\mathbf{F}_{\mathrm{N}} \sin \theta=\mathbf{m v}^{2} / \mathbf{r}$
$\mathbf{F}_{\mathrm{N}} \cos \theta=\mathbf{m g}$
From (1) / (2)
$\boldsymbol{\operatorname { s i n }} \theta / \cos \theta=\mathbf{v}^{\mathbf{2}} / \mathbf{r g}$

$$
\tan \theta=\mathrm{v}^{2} / \mathrm{rg}
$$

$\theta=\tan ^{-1}\left(v^{2} / r g\right)$ is independent of $m$.
$v=(r g \tan \theta)^{0.5}$ is all weather, all vehicle safe turning speed.


The Gravitational Force

Every object in the universe attracts every other object with a force proportional to the product of their masses and inversely proportional to the square of the distance between their centres.

The Gravitational Force | Every object in the |
| :--- |
| universe attracts |
| every other object |
| with a force |
| proportional to the |
| product of their |
| masses and |
| inversely |
| proportional to the |
| square of the |
| distance between |
| their centres. |

The Gravitational Force


Every object in the universe attracts every other object with a force proportional to the product of their masses and inversely proportional to the square of the distance between their centres.

The Gravitational Force


Every object in the universe attracts every other object with a force proportional to the product of their masses and inversely proportional to the square of the distance between their centres.

This statement is called $\mathfrak{N e}$ wton's Law of Uliviversal Gravitation.

The Gravitational Force


Every object in the universe attracts every other object with a force proportional to the product of their masses and inversely proportional to the square of the distance between their centres.

This statement is called $\mathfrak{N e}$ wton's Law of Universal Gravitation.

The Gravitational Force

$$
F_{1.2}=G\left(m_{1} m_{2} / r^{2}\right)
$$

$$
\mathrm{G}=6.67 \times 10^{-11} \mathrm{Nm}^{2} . \mathrm{kg}^{-2}
$$

$$
m_{e}=5.9810^{24}
$$

$$
r_{e}=6.3810^{6} \mathrm{~m}
$$



Weight $=\left\{G\left(m_{e} / r_{e}{ }^{2}\right)\right\} \mathbf{m}$
Acceleration due to gravity
$g=\left\{G\left(m_{e} / r_{e}{ }^{2}\right)\right\}$
$\mathrm{g}=9.8 \mathrm{~N}^{\mathrm{k}} \mathrm{kg}^{-1}$

## The Gravitational Force

$F_{1.2}=G\left(m_{1} m_{2} / r^{2}\right)$
$\mathrm{G}=6.67 \times 10^{-11} \mathrm{Nm}^{2} . \mathrm{kg}^{-2}$
$m_{e}=5.9810^{24}$
$r_{e}=6.3810^{6} \mathrm{~m}$


Weight $=\left\{G\left(m_{e} / r_{e}{ }^{2}\right)\right\} m$
Acceleration due to gravity
$\mathbf{g}=\left\{\mathbf{G}\left(\mathrm{m}_{\mathrm{e}} / \mathrm{r}_{\mathrm{e}}{ }^{2}\right)\right\}$
$\mathrm{g}=9.8 \mathrm{~N}^{\mathrm{k}} \mathrm{kg}^{-1}$

Acceleration due to gravity will decrease with the height above sea level.

It may be different on different planets, depending upon their masses and radii.

## Satellites around the Eartf



## Satellites around the Eartf

For satellites, the gravitational force of Earth is used as the centripetal force.

## Satelfites around the Eartf

For satellites, the gravitational force of Earth is used as the centripetal force.

It can be shown that velocity of a satellite at at height ' $h$ ' above the Earth's surface, will be given by:

$$
\mathrm{v}_{\mathrm{s}}^{2}=\mathrm{Gm}_{\mathrm{e}} /\left(\mathrm{h}+\mathrm{r}_{\mathrm{e}}\right)
$$



## Satellites around the Eartf

$$
v_{\mathrm{s}}^{2}=\mathrm{Gm}_{\mathrm{e}} /\left(\mathrm{h}+\mathrm{r}_{\mathrm{e}}\right)
$$

The period of a satellite revolution is given by

$$
\mathrm{T}_{\mathrm{s}}=2 \pi\left(\mathrm{~h}+\mathrm{r}_{\mathrm{e}}\right) / \mathrm{v}_{\mathrm{s}}
$$



## Satelfites around the Eartf

$\mathrm{v}_{\mathrm{s}}{ }^{2}=\mathrm{Gm}_{\mathrm{e}} /\left(\mathrm{h}+\mathrm{r}_{\mathrm{e}}\right)$

The period of a satellite revolution is given by

$$
\mathrm{T}_{\mathrm{s}}=2 \pi\left(\mathrm{~h}+\mathrm{r}_{\mathrm{e}}\right) / \mathrm{v}_{\mathrm{s}}
$$

For a (geo) synchronous satellite, the period of revolution is the same as that of the Earth.


Satelfites around the Eartf
$\mathrm{v}_{\mathrm{s}}{ }^{2}=\mathrm{Gm}_{\mathrm{e}} /\left(\mathrm{h}+\mathrm{r}_{\mathrm{e}}\right)$

The period of a satellite revolution is given by

$$
\mathrm{T}_{\mathrm{s}}=2 \pi\left(\mathrm{~h}+\mathrm{r}_{\mathrm{e}}\right) / \mathrm{v}_{\mathrm{s}}
$$

How high will be a synchronous satellite above the Earth surface?


Centrifugal force ?!!!

Problems

## Text Book

Chapter Five: Edition 5
10, 18, 23, 30

