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Abstract

Parallel manipulators are widely used for a variety of tasks where increased accuracy and large

load carrying capacities are required. In this work, we propose a Monte Carlo based method to

represent and quantify the workspace of the manipulator and demonstrate the use of gradient

based optimization techniques to synthesize the manipulator for a required workspace.

First, we define the “well-conditioned workspace” of the manipulator and show how the

Monte Carlo method in conjunction with techniques from computational geometry can be used

to represent and quantify the workspace of the manipulator. We also discuss the advantages

and limitations of this method over the current state-of-the-art. Next, we demonstrate the

technique through two examples of obtaining the workspaces of multi-fingered hands. In the

first example, we propose a six degrees of freedom approximation of the human three fingered

grasp and obtain the workspace of the same. We conduct experiments with human subjects

and show that our formulation can obtain envelopes of the actual human hand workspaces with

a maximum error of 2 cm. Additionally, we show that the human hand workspace is the largest

when the cross section area of the grasped object is roughly equal to the palm area and the

hand workspace is always larger when rolling is allowed at the object-finger contact point. In

the second example, we obtain the workspace of the well known Stanford-JPL hand.

In the second part of the work, we show that the Monte Carlo method in conjunction with

gradient based optimization techniques can be effectively used for optimal design of parallel ma-

nipulators for a required well conditioned workspace. We demonstrate this by two examples—in

the first example, we consider a planar 2 degrees of freedom 5 bar manipulator and discuss 4

different shapes of the manipulator workspace due to different constraints on the link dimen-

sions and how the choice of constraints affect the problem of optimal design for a prescribed

workspace. In the second problem, we discuss the optimal synthesis of a Stewart platform in a

special configuration defined by 6 geometric parameters. We consider two assembly modes of

the manipulator and compare the workspaces obtained in each case. For both of the examples,

we obtain the optimal manipulator dimensions for a given workspace and discuss the sensitivity

of the manipulator workspace to perturbations in the design constraints.
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Chapter 1

Introduction

1.1 Motivation

Parallel manipulators are widely used for a variety of tasks where increased accuracy and large

load carrying capacities are required. The most well-known spatial in-parallel manipulator, the

Stewart-Gough platform has been used extensively for tire testing, aircraft simulators, machine

tools and many other applications. Other platform type in-parallel manipulators, with three

degrees-of-freedom such as the 3-UPU and 3-RPS manipulators have been proposed as a paral-

lel wrist [1] for orienting an object and for tracking the sun for concentrated solar plants [2]–[4].

Hybrid parallel manipulators have been proposed as a model of multi-fingered hands (see, for

example, the Stanford-JPL hand by Salisbury and Craig [5] and the Utah-MIT hand by Jacob-

sen et al. [6] and the 3 fingered hand by Borras and Dollar [7]). Planar multi-degree-of-freedom,

closed-loop mechanisms such as the 3-RRR or a 5-bar mechanism have been used for precision

manipulation in a plane, haptic devices (see Phantom range of haptic devices by Sensable [8]

etc.). In most of these instances, the stress has been to obtain the solutions to the direct and

inverse kinematics problems (see, for example, the pioneering works by Wen and Liang [9] and

Raghavan and Roth [10] and the references contained therein), perform singularity analysis (see,

for example, Bandyopadhyay and Ghosal[11], [12], [13] and the references contained therein),

derive and numerically solve the dynamic equations of motion (see, for example, the compre-

hensive review by Dasgupta and Mruthyunjaya [14] and the references contained therein) and

for control (see, for example, the works by Hatip and Ozgoren [15], Narasimhan [16], Wang et

al. [17], Wen et al. [9] etc. and the references contained therein). Unlike the extensively stud-

ied planar four-bar and other one-degree-of-freedom planar mechanisms, there is relatively less

literature on the design of parallel manipulators and multi-degree-of-freedom planar or spatial

closed-loop mechanisms for a given set of objectives. In this thesis, we focus on the problem

1



CHAPTER 1. INTRODUCTION

of representing and quantifying the well-conditioned workspace of a closed-loop mechanism or

parallel manipulator and attempt the optimal dimensional synthesis of the manipulator, for a

specified workspace, subject to specified joint limits.

Optimization of parallel manipulators and closed-loop mechanisms in terms of dimensional syn-

thesis for the largest specified workspace and (or) highest end-effector accuracy is a continuing

area of research. To address the problem to our capacity, we first disscuss the current state-of-

the-art in obtaining and representing the workspace of a manipulator in section 1.2 and then

the current state-of-the-art in optimal synthesis of parallel manipulators in section 1.3.

1.2 Workspace of a manipulator

The workspace of a manipulator, WT , in the most general sense, is the set of the positions and

orientations that the end effector of the manipulator can reach ([18])1. Obtaining the workspace

of any manipulator, is one of the most fundamental steps in the design of a manipulator. The

workspace of the end-effector of a serial or a parallel 6 degree-of-freedom manipulator involves

three quantities representing position and three quantities representing orientation of the end-

effector. The total workspace of the manipulator is represented by taking the position and

orientation workspace together. It is difficult, and often not very useful to visualize or define

a volume of the total workspace and it is common in literature to seek quantities like constant

orientation workspace, WP , or constant position workspace, WO, by independently seeking either

of WP or WO ([20], [21]). Apart from these, for some manipulators, like the planar 3R robot,

the planar 3-RRR or the planar 3-RPR robot, it is common to seek the dexterous workspace,

which is the set of all locations of the end effector where all orientations of the end effector

are possible. In the following sections, we describe techniques of obtaining the workspace of a

manipulator.

1.2.1 Analytical methods

Analytical methods are arguably the best possible way for obtaining the workspace of a ma-

nipulator. Since these methods do not involve iteration, the analytical expressions can be used

to get insight into the effects of the dimensions of the manipulators. For simple manipulators

like the 4 R or 5 R planar parallel manipulators, many serial manipulators like the 2R, 3R, the

SCARA, etc. the maximal workspace can be easily obtained in it’s exact form. Simple formu-

lations exist for dexterous manipulation workspace of the 3R serial chain [18], planar 3-RRR

or the planar 3-RPR robot (see [19] and [22]). For more complex spatial manipulators, the

concept of maximal workspace is not very useful due to the possible inclusion of different types

1This has been termed as the maximal workspace by Merlet [19]

2



CHAPTER 1. INTRODUCTION

of singularities in the workspace. Therefore analytical formulations of “safe working zones”

excluding the singularities, put forth by Bandyopadhyay and co-workers (see [23] and [24]) for

spatial manipulators are useful tools for design.

1.2.2 Interval analysis based methods

Another popular method of workspace evaluation involves discretization of the workspace of

the manipulator by nodes, grids or boxes. After discretization, certain parameters are tested at

the discrete node to classify them as nodes within or outside the workspace (see [19] for more

details). A subsequent improvement on this technique is the use of interval analysis techniques

for evaluate the workspace. Significant works have been done on this theme by Merlet and

co-workers such as Chablat et al.[25], Hao and Merlet [26], Merlet [27], and most recently by

Caro et al. [28] and Bohigas et al. [29]. Workspace evaluation using interval analysis based

methods have some disadvantages regarding computational performance and are not always

suitably applied to manipulators with higher degrees of freedom. These aspects are discussed

in detail in chapter 3.

1.2.3 Monte Carlo method

Monte Carlo method involves statistical trials which can be efficiently used to evaluate inte-

gration problems in n-D. Rastegar and co-workers (see [30], [31]) were the first to formulate

and solve the problem of obtaining the workspace of n-link serial manipulators. Similar works

for obtaining the workspace boundaries using Monte Carlo method exist (see e.g. the works

by Alciatore et al. [32]). Most of the aforementioned works involve simple formulations for

serial manipulators which is inapplicable to the problem of evaluating the workspace of parallel

manipulators due to the possibility of inclusions of singularities in the workspace. Tsai and

co-workers (see Stamper and Tsai [33], Tsai et al. [34], using the definition of global condition

index (see Gosselin [35]) were the first to define and evaluate the well conditioned workspace

of a parallel manipulator using the Monte Carlo method. However, the definition of the well

conditioned workspace that Tsai and co workers put forth was inadequate in a sense that it did

not ensure “well conditioned-ness” for the angular and linear motion of the manipulator. In the

current work, we have addressed the issue by defining Jacobians for both the linear and angular

motion of the end effector and ensured that the manipulator Jacbians are sufficiently well con-

ditioned through out the workspace obtained by our formulation. The Monte carlo technique

has been discussed in detail in chapter 2 and its application in obtaining the workspace of a

manipulator has been discussed in detail in chapter 3.
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1.3 Optimal design of parallel manipulators

Optimal synthesis of parallel manipulators is a continuing theme of research and several re-

searchers have proposed several avenues to address the problem. In a body of literature (see,

for example, the work by Boudreau and Gosselin [36] and the book by Davidor [37] and the

references contained therein), the authors have recognized the non-convex nature and difficul-

ties in optimizing a parallel manipulator for desired characteristics and have thus not suggested

the use of gradient based optimization, involving closed form kinematic equations of parallel

manipulators. Genetic algorithm or other evolutionary algorithms have been chosen frequently

by researchers (see, for example, the work by Grefenstette [38] and the references contained

therein) for optimization problems including but not limited to dimensional synthesis. A differ-

ent approach to the optimization problem (see, for example, Masory and Wang [39] and Tsai

and Soni [40]) is by evaluating and maximizing the boundary curves of the feasible workspace

of the manipulator at a particular plane with one of the Cartesian variables as fixed. Pittens

and Podhorodeski [41] and Han et al. [42] have used gradient based optimization to obtain the

dimensions of a manipulator for highest accuracy by reducing the condition number over the

feasible workspace so that the accuracy of the manipulator is good everywhere in the workspace

of the manipulator. Gosselin and Guillot [43] have worked on the optimization problem of pla-

nar parallel manipulators in Cartesian space. The method used by them obtains the geometric

description of the intersection of the available workspace and obtained the workspace of the ma-

nipulator and subsequently minimizes the exclusion zone of the intersected workspace, thereby

reaching at the optimum configuration. An avenue of research started with the pioneering

works of Merlet (see e.g. [19], [27], [44] and the references contained therein) describe the use of

interval analysis as a technique to determine the upper and lower bounds of a function and has

proposed its use it for the optimal design of parallel mechanisms by maximizing a particular

cost function. Methods based on numerical constraint programming exist, which represent and

quantify non-singular workspaces of parallel manipulators. A recent work by Caro et al. [28]

uses this technique in conjunction with branch and prune algorithms to compute general aspects

of parallel manipulators like non-singular self-collision free workspaces. Borras and Dollar [7]

have considered two versions of the same parallel manipulator – one as an under-actuated (or

hybrid parallel) manipulator and another as a fully actuated version and have generated op-

timum dimensions of both for the maximal precision workspaces. In the work they have also

computed the actual number of configurations (reported to be of the order of 107 for the worst

case) to be searched through and have suggested random search technique to quickly go through

the search space. Among the plethora of techniques discussed above, in the following sections,

4
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we point out the most prominent of those and discuss the current state of the art in optimal

synthesis of parallel manipulators.

1.3.1 Analytical methods

As it is evident, optimal design of parallel manipulators for the largest workspace, given certain

upper bounds on link lengths is not useful for design. Instead, it is common to pose and solve

the optimization problem to maximize certain aspects of the motion of the manipulator like

dexterous workspace, constant orientation workspace, accuracy etc. (see e.g. Kurtz and Hay-

ward [45]). One prominent theme in optimal design of manipulators was proposed by Gosselin

[35] by providing analytical formulations for optimal design of manipulators which maximizes

the global condition index (GCI) over the entire workspace (W). The “global condition index”

is defined as follows:

GCI =

∫
W

1

κ
dW

∫
W
dW

(1.1)

Where, in equation (1.1), κ is the condition number of the manipulator Jacobian at a given

position of the manipulator workspace. This particular formulation has been used extensively

in literature, (see e.g. [44], [46] and [47]). In his work, Gosselin [35] presents some interesting

results, albeit for simple serial manipulators,– for a 2-R planar robot, the GCI is maximized

across the entire workspace if the link lengths are in the ratio 2/
√

2 and for a three link open

chain spherical manipulator, the GCI is maximized across the entire workspace if the revolute

joints connecting the second link to the first link and the third link to the second one are are

placed at right angles to each other. However, the same formulation loses it’s analytical nature

for parallel manipulators mainly because the integral in equation (1.1) cannot be evaluated

symbolically.

1.3.2 Search based optimization methods

As discussed in section 1.2.2, there are a number of works where the workspace has been

evaluated by using interval analysis based methods. Some of these works have been extended to

obtain optimal manipulator dimensions for the parallel manipulators. The most notable of them

is the work by Hao and Merlet [26], where the authors have used interval analysis to quantify the

manipulator workspace and have subsequently formulated and solved an optimization problem

to satisfy the objective of given workspace requirement and accuracy requirements. Lara-Molina

et al. [46] have used Gosselin’s definition of the global condition index and have subsequently

used multi objective genetic algorithms to arrive at an optimal solution. In another avenue of
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work, Lou and co-workers (see e.g. [48]–[50]) have defined the effective regular workspace of a

parallel manipulator as a regular object (e.g. a cube or a parallelopiped) in a transformed space

and have used Controlled Random Search (CRS) technique (see Törn and Žilinskas [51]) to

obtain the globally optimum manipulator. The main limitation of the work is that the globally

optimum design parameters are not always practical as the authors have encountered certain

optimal manipulators where some of the dimensions are an order of magnitude different than

the others– thus significantly reducing load carrying capacity.

1.3.3 Gradient based methods

Since the Monte Carlo method can be used to obtain the workspace, one can use an objective

function and a gradient based approach for optimization together with the Monte Carlo method.

Stamper et al. [33], Tsai and Joshi [52] use Monte Carlo search based methods to optimize

manipulators for the largest well-conditioned workspace. Our work closely follows the work

by Stamper et al. and Tsai and Joshi with significant improvements on the definition of well

conditioned workspace, implementation of the Monte Carlo method and provides many insights

on the optimization problem. We also show demonstrate the sensitivity of the manipulator

workspace to perturbations in design constraints.

1.4 Contributions of this thesis

The main contributions of the thesis are:

• We show that the Monte Carlo method can be effectively used to represent and quantify

the well conditioned workspace of a parallel manipulator. Advantages and limitations of

the Monte Carlo method as compared to other well known methods for representing the

workspace have been discussed.

• Using the Monte Carlo method as the primary tool we design a 6 degrees of freedom par-

allel manipulator to emulate the kinematic structure of the human three-fingered grasp.

We pose and analytically solve the inverse kinematics problem of the manipulator and

define and obtain the well-conditioned workspace of the manipulator. In addition to that,

we model the human finger-tips by super-ellipsoids, model the collision of the human

fingertips during three fingered manipulation and model the rolling of objects on finger-

tips during manipulation and provide envelopes of the human hand workspace. Further,

we qualify the envelopes to be reasonably conservative by performing experiments with

human subjects.

6
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• We also show two generic results – a) the human hand workspace, modeled as a 6 degrees

of freedom parallel manipulator is the largest when the object the hand is manipulating

has the same cross section area as the palm, and b) the hand workspace is larger (about

1.2 to 1.5 times) when rolling of the fingertips is allowed versus when the fingertips are

modeled as spherical joints. We also obtain the workspace of the well known Stanford-JPL

hand.

• We demonstrate that Monte Carlo method can be used in conjunction with gradient based

optimization methods for optimal synthesis of parallel manipulators by two examples.

First we undertake the optimal synthesis of a planar 5R parallel manipulator for a given

workspace and then we discuss the optimal synthesis of a Stewart platform manipulator.

Finally, we discuss the sensitivity of the manipulator workspace on design constraints for

the multi-fingered hands, the 5R planar parallel manipulator and the Stewart platform

manipulator.

1.5 Preview

The rest of the thesis is organized as follows: In chapter 2 we review the key mathematical

concepts used in the work, following which in chapter 3 we demonstrate how the Monte Carlo

method, with techniques from computational geometry can be used to quantify and represent

the workspace of a manipulator. In chapter 4 we discuss the problem of optimal synthesis of

parallel manipulators for a required workspace. Finally, in chapter 5 we conclude the thesis by

summarizing the current work and proposing a few possible directions for future research.
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Chapter 2

A review of mathematical concepts

2.1 Introduction

In this chapter we discuss the key mathematical concepts used in the thesis. We start with a

brief outline of the Monte Carlo method in section 2.2, following which, we discuss in brief about

α shapes and Delaunay triangulation, the key techniques used for representing the workspace of

a manipulator in section 2.3. In this section we also discuss formulations for classifying points

with respect to a triangulated domain in 3D and calculating the shortest distance of a point

from a triangulated domain. In section 2.4 we describe a methodology to approximate human

finger tips a super ellipsoids taking data from 3D scans of the human hand. Finally we conclude

the chapter by discussing collision detection of two super ellipsoids in space without calculating

their distance of nearest approach in section 2.5.

2.2 The Monte Carlo method

The Monte Carlo method can be used to evaluate integrals of arbitrary functions (vector or

scalar function of smooth or non-smooth type) over an arbitrary domain [53]. The integral

I =

∫

[0,1]d
f (x) dx

where f(·) is a bounded real valued function, can be obtained as E(f(U)) where E(· ) is the

expectation of a variable taking a particular probabilistic value, and U = [u1, u2, ..., ud]
T a

1 × d vector taking random values of ui ∈ [0, 1] ∀i = 1, 2, ..., d. From the strong law of large

8
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numbers,1 the average,

SN =
1

n

n∑

i=1

f (ui) (2.1)

almost surely 2 converges to E(f(U)) as n −→ ∞. The volume (area) of a manipulator

workspace is an integration problem in <3 (<2) and we use the Monte Carlo method to evaluate

the volume (or area) of the workspace of a closed-loop mechanism or a parallel manipulator. It

maybe mentioned that there are existing deterministic approaches to determine the volume of

the workspace of a closed-loop mechanism or a parallel manipulator (see, for example, Masory

et al. [39] and Merlet [19]).

In the following section we show that in the probabilistic approach of using the Monte

Carlo method, the error bound can be made smaller than in the deterministic approach with

less computational effort and less complexity. This is discussed in brief next - for more details,

the reader is referred to Chapter 2 of the book by Fishman [54] and relevant sections of the

book by Hammersley et al. [55].

2.2.1 Obtaining volume of a hyper-solid in n-D space by using Monte

Carlo method

Let R denote the region of unknown volume λ(R) in the m-D hypercube denoted by I =

[0, 1]m. Assume that the region R is arbitrary and given by a known series of inequalities and

implicit functions of several variables in a way that the computation of the exact volume of R,

i.e., λ(R) is not possible or computationally prohibitive. We further assume that a systematic

procedure exists3 for generating a sequence Hm,N of N points in m-D hypercube

Hm,N = {Xj = (x
(j)
1 , x

(j)
2 , x

(j)
3 , ...x(j)

m )}. (2.2)

The numerical accuracy of obtaining λ̂(R), an estimate of the volume, depends on how Hm,N is

populated4 . The Algorithm 1 given below can be used to obtain λ̂(R) by populating the vector

X in equation (2.2) by generating m random numbers for xsi between [0, 1]. From Algorithm 1,

1For a sequence of independent,uniformly distributed real random variables X = {x1, x2, x3, ..., xn} such
that E(f(Xi)) < +∞ then lim

n→∞
1
n

∑n
i=1 xi = E(X) with probability 1.

2It can be proved that the probability of this convergence is 1.
3Chebyshev intervals xk = cos

(
2k−1
2n

)
π, k = 1, 2, ..., n ∀xε[0, 1] or any other non-repeating, monotonic

sequence, see [54], may be used.
4Chebyshev intervals, quadrature or an ad-hoc interval generator or probabilistic methods like drawing

random numbers can be used.
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a point estimate of the quantity λ̂(R) is obtained as
S

N
. Where S is the accumulated value

of φ(X(j)) in each case a randomly generated point is accepted because of its inclusion in the

domain of R. The variance V (λ̂(R)) can be obtained as

σ2(Ŵ) =
S N − S2

N2(N − 1)
(2.3)

Purpose : To obtain an estimate of λ(R)
Input: R and sample size ‘N’

Output: λ̂(R)
1: Initialize j=0, S=0;
2: Allocate memory for Hm,N

3: while j 6 N do
4: Initialize i=1;
5: while i 6 m do
6: Populate Xj using H such that xsi between [0, 1];
7: end while
8: Initialize a counter φ(X(j)) = 0;
9: if Xj ε R then

10: Assign φ(X(j)) = 1;
11: S = S + φ(X(j));
12: j = j + 1;
13: end if
14: end while

15: Compute λ̂(R) =
S

N
Algorithm 1: Algorithm for evaluating volume of a hyper-solid using Monte Carlo Method

In may be mentioned that in line ]6 of Algorithm 1, if we use an unbiased random number

generator for H then it is a Monte Carlo method. In the Monte Carlo method, the bounds

on the error is probabilistically determined and can be reduced by proper choice of number of

samples and other parameters.

The worst-case error in estimating the volume, by using deterministic samples, is given

by [54] as:

‖ λ̂(R)− λ(R) ‖6 s(R)

n1/m
(2.4)

where s(R) is the surface area of the hyper-surface bounding the region R1. Therefore to have

1The expressions in equation (2.4) are unit less because they have been derived from a counting argument.
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an absolute error no larger than ε, the number of evaluation points required is,

n(ε) = d[s(R)

ε
]me (2.5)

where, dxe is the nearest integer greater or equal to (x). From equation (2.5) it is clear that

the required sample size n(ε) is exponentially related to the dimensionality of the problem.

Therefore, for deterministic methods, for a change in the order of the allowable absolute error

or an increase in dimension of R, there is an exponential and unbounded1 increase in the

number of points at which the step #9 in Algorithm 1 has to be evaluated. In the subsequent

section, we show that for lesser computation effort, we can achieve more accuracy by using the

Monte Carlo method. It may also be noted that the evaluation of the while loop in line # 3

through line # 14 and the inner if loop (line # 9 through line # 13) can be executed in parallel

while the program is being used to evaluate φ(X(j)). This possibility of parallelization is one

of the biggest advantages of the Monte Carlo method. Figure 2.1b shows a basic example of

obtaining the area of a circle using the method. We notice from figure 2.1b that at about 105

samples, the error is close to 0.5%.

d = 2r

a X

Y

(a) Obtaining the area of a circle using Monte
Carlo method
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(b) Computational performance of Monte Carlo
method

Figure 2.1: Monte Carlo method- A basic example

1 With finer error tolerances it can be shown that n tends to ∞.
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2.2.2 Errors and sample size considerations

From equation (2.3) it can be seen that with increasing number of evaluation points n, the

variance of the estimate λ̂(R) decreases. It can be proved that

Pr( lim
n→∞

λ̂(R) = λ(R)) = 1(a.s.). (2.6)

which implies that we can get an error free estimate as the number of evaluation points tend

to infinity. Furthermore by using the Chebyshev inequality1, we can prove (for more details see

chapter 2 of the book by Fishman [54]),

lim
n→∞

Pr(| λ̂(R)− λ(R)) |> ε) = 0, (2.7)

which also provides us with a basis to obtain the sample size requirements. However, unlike the

deterministic methods we cannot obtain the required sample size from the information about

error tolerance alone – a confidence level (1 − δ) is required to account for the randomness of

the samples. Using Chebyshev’s inequality, we can write,

η(ε, δ, λ) = dλ× (1− λ)

δε2
e, λ = λ(R) (2.8)

From Algorithm 1, we know that λ(1 − λ) 6 1
4
. Since S given by

∑n
i=1 φ

(
X(j)

)
follows a

binomial distribution, V (λ̂(R)) = V (S)
n2 = λ(1− λ)/n, and hence the worst case sample size is

ηc(ε, δ) = d 1

4δε2
e (2.9)

By comparing equations equation (2.9) and equation (2.5) and from Algorithm 1 we can state

the following:

• The worst case sample size in case of the Monte Carlo method given by equation (2.9)

is independent of the dimension m of the hyperspace I m and this is one of the most

desirable features of the Monte Carlo method.

• In step ]6 of Algorithm 1 the time required for calculation of Xj is O(m) for random

sampling, whereas, for the deterministic method, the same step requires O(mβ), where,

β > 1 and is dependent on the method used for generating sample points. For quadrature

1Chebyshev’s inequality: For a random variable Z with a probability density function (PDF) f defined on
(−∞,∞), with E(Z) = 0 and σ2 = V (Z) = E(Z2), and β > 0, then Pr(Z

σ ≥ β) ≤ 1
β2 .
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methods or Chebyshev intervals due to the presence of non-linear terms like radical signs

or trigonometric functions, β > 1.

• The complexity of Algorithm 1 (while using the Monte Carlo method) is O(m) for a

given (ε, δ) error tolerance as obtained from equation (2.9). However, for deterministic

sampling, it can be proved (see [54]) that the complexity is exponential O

(
mβ

4δε

)
for the

same preset tolerance.

From the above three observations, we can conclude that obtaining the workspace volume

of a closed-loop mechanism or a parallel manipulator can be obtained more efficiently by using

a probabilistic method than with a deterministic method. For more details on sample size and

error estimates one can refer to Kleijen et al. [56] and references [54], [55]. In this work, we

have use the Monte Carlo method to obtain the volume of the workspace of the closed-loop

mechanism and the parallel manipulator. For most of the algorithms discussed later we have

used:

• Sample size of 150, 000 or more which gives an error tolerance of less than 1 percent and

a confidence bound of approximately δ = 0.05. This is similar to the work by Stamper et

al. [33] where 200,000 samples have been used.

• Uniformly distributed random numbers (between [0, 1]) were generated by using the

pseudo-random number generator rand function of Matlab [57].

2.2.3 Importance sampling: A variation reduction technique in Monte

Carlo simulation

The Monte Carlo method is quite efficient for obtaining the well conditioned workspace of

parallel manipulators. However, in the previous case, the obtained workspace spanned through

a large part {∼ 10 − 15%} of the search-space of the Monte Carlo simulation therefore, a

large portion of the simulated histories {≥ 10%} were successful. With a relatively large

number of samples considered {≥ 100, 000 in almost all the cases}, the variation in the estimate

obtained for the workspace was within acceptable limits {≤ 0.5%}. However, in case we want

to segregate a larger enveloping workspace (obtained by considering certain parameters) and

a smaller enveloped workspace, the naive Monte Carlo method1 will generally fail because

the volume of the required workspace is much smaller (less than 1%) than the search space

volume. In theory, we can use the naive Monte Carlo method and simulate a large number

1The Monte Carlo method drawing uniformly distributed random samples throughout the search space
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of samples for obtaining a very fine resolution of both of the workspaces while adding a lot

of unwanted computational load. Alternatively, we can try a variation reduction technique for

Monte Carlo simulation known as Importance Sampling method to tackle the same problem.

In what follows, we describe the technique in short. The naive Monte Carlo method draws

uniform samples (having a PDF f(X)) across the entire volume of search space to evaluate

F(X) and according to the definition of the Monte Carlo method, the expected value of F(X)

across the searchspace is given as,

〈F〉 =

∫

Vs

F(X)f(X)dX ' F̄ =
1

N

N∑

i=1

F(Xi) (2.10)

However, most of the search space volume (Vs) does not contribute to the value of 〈F〉 as the

PDF f(X) samples the space infrequently. So the estimate obtained from equation (2.10), by

going through a reasonable number of samples, is not a good one because the larger variance

of the expected value and poor resolution of the workspace. Therefore, it seems reasonable

to sample preferentially from a region where the integrand |F(X)f(X)| has a relatively large

magnitude. To effect such a biased sampling, the integral in equation (2.10) can be transformed

by introducing another arbitrary (but known/chosen) PDF f ∗(x) as,

〈F〉 =

∫

Vs

F(X)f(X)

f ∗(X)
f ∗(X)dX ≡

∫

Vs

F∗(X)f(X)dX = 〈F∗〉 (2.11)

where, in equation (2.11), F∗(X) = F(X)W (X), and the weight or importance function1 is

W (X) ≡ f(X)

f ∗(X)
. Therefore, from equations (2.10) and (2.11) we can say,

〈F〉 = 〈F∗〉 ' F̄∗ =
1

N

N∑

i=1

F(Xi)W (Xi) (2.12)

It is clear from equation (2.12) that both F(X) and F∗(X) have the same expectations when

Xi are sampled from f ∗(X). However, the variance of the two expected values 〈F〉 and 〈F∗〉
are,

σ2(F) = 〈F2〉 − 〈F〉2 (2.13)

σ2(F∗) = 〈F∗2〉 − 〈F∗〉2 = 〈F∗2〉 − 〈F〉2 (2.14)

1This is also called likelihood ratio or Radon-Nikodym derivative in literature see e.g. [58]
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Comparing the variances of the two expected values of 〈F〉 and 〈F∗〉 from equations (2.13)

and (2.14), we have, σ2(F∗) − σ2(F) = 〈F∗2〉 − 〈F2〉. Using the definition of W , and equa-

tions (2.10) and (2.11), we can write

〈F∗2〉 =

∫

Vs

F∗2(X)f ∗(X)dX =

∫

Vs

F2(X)W 2(X)f ∗(X)dX (2.15)

=

∫

Vs

F2(X)W (X)f(x)dX ≤
∫

Vs

F2(X)f(X)dX = 〈F2〉

It is clear from equation (2.15) that an improvement in the measure of the variance of 〈F∗〉 over

〈F〉 can be made if we can ensure that the value of W (X) < 1 in the regions of the search space

which contributes most to the value of 〈F〉 as shown in equation (2.10). Therefore, by choosing

a proper distribution f ∗(X), preferably from some information about the underlying process

contributing to the success of a simulated sample, a significant improvement can be made in

calculation of the estimate of the function over a naive Monte Carlo simulation.

We demonstrate the efficiency of importance sampling compared to naive Monte Carlo

method through the following example.

Task: To obtain the volume and representation of a spherical zone of radius 0.1 units in a

search space of 10 unit3 with its center located approximately at 1
3

rd
of X direction, 1

4

th
of Y

direction and 1
5

th
of Z direction.

Solution: Since the approximate position of the spherical zone is known, we choose a multi-

variate normal distribution

f ∗(X) =
1

(2π)1.5
√
|Σ|

exp(−0.5[(X− µ)TΣ−1(X− µ)]) (2.16)

where in equation (2.16) we choose, µ = [3.33 2.50 2.0] and Σ = bI3, where I3 is a 3 × 3

identity matrix and b is a positive real number. For this case b = 1 is a good choice because

99.7% of the simulated points will be inside µ ± 3σ and are expected to cover the zone of

interest. The choice of the mean vector µ is clearly influenced by the information about the

approximate location and size of the spherical zone. The results of a numerical experiment

to reflect the same are given in figure 2.2. The normally distributed random numbers for the

experiment were drawn using the Box Muller method [59]. It is seen that importance sampling

Monte Carlo method is better both in terms of computational performance and accuracy1.

1CPU times are for Matlab [57] run in a 64bit Windows 7 PC with a Intel XEON processor (4 cores @ 3.10
GHz) and 16GB RAM
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Figure 2.2: Computational performances of two Monte Carlo methods (Symbols in figure:
nMC → Naive Monte Carlo and vrMC → Variation reduction Monte Carlo )

We will use the variation reduction technique later (see section 2.5) to efficiently detect the

collision of super-ellipsoids while obtaining the workspace of the human hand .

2.3 Visualizing the workspace

For manipulators with uninterrupted travel between joint limits for all active and passive joints,

the workspace is bounded by continuous surfaces or by continuous level set curves (see, Mer-

let [19], Masory et al. [39] and Tsai et al. [40]) and therefore, the analytical evaluation of the

workspace qualifies to be a problem of integration in 3D and hence can be solved by using the

Monte Carlo method. In chapter 3 we discuss the definition we have used to obtain the well

conditioned workspace and as a precursor to that, in the following parts, we discuss a deter-

ministic method of obtaining the volume (area) of a triangulated domain, post processing steps

for the obtained cloud of points representing the workspace and techniques and measures we

have used to compare the theoretically obtained workspace with it’s experimentally obtained

equivalent.
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2.3.1 α shapes and Delaunay Triangulation

From the cloud of points obtained from the Monte Carlo simulation, we can also obtain almost

exactly the volume of the workspace expressed as a polyhedron. This involves obtaining the

alpha shape of the cloud of points and triangulating them by well known Delaunay triangulation

algorithms([60]). Figure 2.3a shows the workspace of a Stewart platform manipulator. The

(a) Relative representation of workspace and search
space

i

b

c

d
e

O X

Y

Z

TεR3

(xct, yct, zct)

t

t− 1

t+ 1

(b) Volume enclosed by a triangulated domain by
measuring the volume of discrete trapezoids

Figure 2.3: Workspace and analytical method for obtaining the volume of the workspace

gray triangulated domain in the middle is the α shape representation of the workspace of

the manipulator, rendered as a 3D object and the yellow box around it is the search space.

Following Edelsbrunner [61] we can informally define the α shape of a set of points S,S ∈ <3

as a polytope1 which is not necessarily connected or convex. The α shape of S depends on the

value of α, 0 ≤ α ≤ ∞. For α =∞ the α shape of S, given by the script letter (S), is identical

to the convex hull of S, but as the value of α decreases, S may develop holes or cavities. The

concept of α shapes, again due to Edelsbrunner [61], may be visualized as follows. We assume

that the points of S are hard particles embedded in a block of Styrofoam representing <3. We

use a ball-shaped tool of radius α to carve the Styrofoam, leaving behind the particles which

constitute S. So it is intuitive that if α = ∞ the points in S is encountered with an open half

space and the resulting α shape S is the convex hull of S as α, decreases, the boundaries of S,

denoted by ∂S shrinks around the points in S. In the event of α = 0, the cloud of points S is

the α shape of itself. Throughout the rest of the thesis, the obtaining of the α shape of S has

been done while ensuring that no major feature of the workspace (like a hole/void etc.) has

been ignored.

1A geometric shape with flat sides. In <3 polytopes are polyhedra.
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The step of triangulating the resultant α shape of the cloud of points obtained from the

Monte Carlo simulation is required to visualize the workspace in <3. For this, we use standard

Delaunay triangulation algorithms (see e.g. Lee and Schachter [60]). The Delaunay triangu-

lation algorithm, gives a data structure which lists the vertices and faces of the triangles that

constitute the boundary of S, ∂S. Throughout the thesis, the workspaces have been visualized

by rendering ∂S as a triangulated domain.

2.3.2 Deterministic methods for obtaining the area/volume

After the 3D polyhedron has been obtained (as shown in figure 2.3a) we obtain the volume using

a generalization of the trapezoidal rule in 3D (see Allgower et al. [62], [63]). The algorithm

considers the domain D ∈ <3 as a set of discrete trapezoids p(σ) with one of the non-parallel

faces as the facet (σi), and another as the projection of the facet on a chosen plane (the X −Y
plane in figure 2.3b) and the other faces parallel to an axis perpendicular to the plane (the Z

axis in case of figure 2.3b). According to [63], the volume V of the trapezoid is,

V = (−1)2
∑

σ∈T



(

1

2

2∑

i=1

zct
2
i

)
· 1

2!
det




1 1 1

xt−1
i xti xt+1

i

yt−1
i yti yt+1

i





 (2.17)

where the outermost summation
∑

σ∈T indicates that the summation is carried over the total

triangulated domain T . According to Allgower et al. [63], this method is more efficient with

complexity O(n2) as compared to other methods such as finding the sum of the volumes of

discrete tetrahedra in which case the complexity is O(n3). It may be noted that equation (2.17),

works only for evaluating the volume of a simply connected domain, as opposed to Monte Carlo

method which applies for continuous as well as discontinuous domains.

2.3.3 Classifying points with respect to a meshed domain

The workspace of a manipulator, is obtained as a cloud of points S in <3 and visualized as S

enclosed by a triangulated surface ∂S. However, the experimentally determined workspace of a

manipulator (see section 3.3.7.1 for details on the experimental technique) is also obtained as

a cloud of points in and around the region bounded by ∂S. To quantify the effectiveness of our

formulation, we need to measure two quantities– a) total number of points of the experimentally

obtained workspace which are outside S and b) the distance of a point outside S from it’s nearest

facet in ∂S. In the following parts we address these two problems.
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(a) Schematic of algorithm 2
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(b) Classifying points with respect to a meshed do-
main and calculating the distances

Figure 2.4: Comparing theoretically and experimentally obtained workspace. In figure 2.4b,
the points inside and outside the workspace are shown in yellow and black respectively. The
red lines indicate the distance of the farthest points from their nearest facets.

2.3.3.1 Classifying a point with respect to a triangulated domain

Classification a point with respect to a triangulated domain is a very well known problem and

many methods exist, which offer various advantages in terms of computational complexities.

However, most of these algorithms work only in the triangulated domain in question is a convex

one. To the best of our knowledge, we are not aware of a complete method which classifies a

point with respect to a domain of a general shape. Therefore, in this section we will discuss a

method of classifying a point with respect to a convex domain obtained as the alpha shape of

the points representing the workspace. In case the alpha shape is not convex, we will consider

the convex hull of the object. Since the method will be used to test our algorithm with a large

number experimentally obtained points, the approximation will wrongly classify the points

which are quite near to the surface, thus will not change the general conclusion which we will

derive from the experiment. In the algorithm 2, we propose a method, to classify a given

set of points O with respect to S as inside (Oin) and outside (Oout). Our algorithm and it’s

Matlab implementation1 is not the most efficient at higher dimensions but seems to perform

reasonably well for 3D, by taking less than 8 seconds to classify about 10,000 points with

respect to a meshed domain. Looking closely at figure 2.4a, we notice that due to our convex

hull approximation of the green non-convex domain (not plotted in the figure) the points which

are very near to the surface have been wrongly classified.

1We have used a Matlab function inhull.m, a fully vectorized implementation of the algorithm, made available
by John D’Errico for free usage.

19



CHAPTER 2. A REVIEW OF MATHEMATICAL CONCEPTS

Purpose : To classify a set of points O with respect to ∂S
Input: The set O, O ∈ <3 and O ≡ Oin ∪Oout

Output: Oin, Oout

1: Obtain a convex shape S from the set of points S
2: Obtain C, the center of S by taking the mean of the vertices of the N facets constituting
∂S

3: for i = 1, 2, ..., N do
4: Calculate the normal to the ith facet, Ain = (f 1

i − f 2
i )× (f 2

i − f 3
i )

5: Choose a point Ai on the ith facet and move Ain to Ai

6: Ensure that Ain is directed inside, towards C

7: H(i) = 〈 ~Oi − Ai, Ain〉
8: end for
9: if H(i) ≥ 0 then

10: Classify O1 ∈ Oin as inside, otherwise classify O1 ∈ Oout

11: end if
Algorithm 2: Algorithm for classifying points as inside (Oin) or outside (Oout) of a trian-
gulated domain

2.3.3.2 Minimum distance of a point from a triangulated domain

The problem of finding the minimum distance of a point from a triangulated domain is well

studied problem. The most notable work being the famous Gilbert-Johnson-Keerthi (GJK)

distance algorithm [65] and subsequent improvements on it by Ong et al. [66]. For another

approach to the same problem, one may refer to the recursive algorithm proposed by Golubitsky

et al. [64], which can tackle the problem in k-dimensions involving n simplexes with at most

O(n4) complexity. In our work, since we are interested in calculating the distance of a small

number of points form the triangulated domain, following Ju et al. [67] we will express and

solve the problem as a quadratic program as shown in equation (2.18) with constraints as given

in equation (2.19).

min
x

1

2
xHxT (2.18)

Subject to Ax ≤ b (2.19)

Where in equation (2.18), H =

[
I3 φ3

φT3 0

]
, A =




x1 y1 z1 1
...

...
...

...

xn yn zn 1

−xr −yr −zr -1




,
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b = [1, 1, ..., 1]T{n+1×1}, I3 is the 3 × 3 identity matrix, φ3 is a 3 × 1 null vector, {xi, yi, zi} are

the coordinates of the ith vertex of ∂S and we want calculate the nearest distance of the point

{xr, yr, zr} known to be outside of S. The distance of the point from ∂S is given by
2

||x||2
.

2.4 Fitting super-ellipsoids to cloud of points in <3

Super ellipsoids are an extension of ellipsoids and have been used for solid modeling in diverse

fields such as for modeling and representation of medical data ([68]), high fidelity representa-

tion of scanned objects ([69]) and as objects for developing obstacle avoidance algorithms ([70]).

The main reason behind it’s widespread use is the availability of precise closed form expressions

for almost all geometrical properties like moments of inertia about arbitrary axes, mass and

surface properties like tangents and normals (see [71] for a more complete description). In this

work, we use an efficient method based on the works by [69] and further improvements on it

by [68] to fit super-ellipsoids to a cloud of points in <3. The goal is to obtain a more accurate

approximation of the geometry of human fingertips over normal ellipsoids used by previous

researchers (see e.g. [72] and similar works for more details).

Equations (2.20) to (2.22) are the parametric expressions that map an arbitrary surface with

parameters A, B and C having dimensions of length and dimensionless exponents e and n from

{u, v} ∈ <2 → {x, y, z} ∈ <3. The sign function is abbreviated as “sgn’’ in equations (2.20)

to (2.22).

x(u, v) = A sgn (cos (v)) (|cos (v)|)n sgn (cos (u)) (|cos (u)|)e (2.20)

y(u, v) = B sgn (cos (v)) (|cos (v)|)n sgn (sin (u)) (|sin (u)|)e (2.21)

z(u, v) = C sgn (cos (v)) (|cos (v)|)n (2.22)

The expression in equation (2.23) classifies whether a point is in, on or outside the surface

expressed by equations (2.20) to (2.22) by assuming negative, zero and a positive values respec-

tively.

F(x, y, z) =



(( x

A

)2 e−1

+
( y
B

)2 e−1
) e
n +

( z
C

)2n−1




n

2

(2.23)

For fitting a superquadric to a cloud of n points contained in the matrix P, P ∈ <n×3 we
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formulate the following optimization problem given in equation (4.1). In equation (4.1), the

elements of x̄ are the coordinates for the center of the super ellipsoid, the elements ~Θ are the

Euler angles specifying the orientation of the fitted ellipsoid, a = {A,B,C} and p = {e, n}.

Min
x̄,~Θ,a,p

N∑

i=1

√
ABC(F(Xr, ~Θ, a,p)− 1)2 (2.24)

In equation (4.1), the in-out function F from equation (2.23) is used with the cloud of points P

transformed to the original coordinate about which equations (2.20) to (2.22) are defined. An

initial guess about the position and orientation of the cloud of points may be given as follows.

The value of x̄ in equation (2.25) may be given as the average of the respective coordinates of

the points in P, i.e., x̄ =

{
1

n

n∑
i=1

xi,
1

n

n∑
i=1

yi,
1

n

n∑
i=1

zi

}
.

{
Xr

1

}
=P
O [T ]





xi

yi

zi

1





=

[
[R]∗ x̄

0 1

]




xi

yi

zi

1





(2.25)

In equation (2.25), [R]∗ may be represented as the matrix which diagonalizes the total mo-

ment matrix M of the cloud of points P (see equation (2.26)) to M0 in the operation M0 =

R∗−1MR∗ = R∗TMR∗. In equation (2.26) x̃i = (xi − x̄), ỹi = (yi − ȳ) and z̃i = (zi − z̄).

M =
1

n

n∑

i=1



ỹ2
i + z̃2

i −x̃iỹi −z̃ix̃i
−x̃iỹi x̃2

i + z̃2
i −ỹiz̃i

−z̃ix̃i −ỹiz̃i x̃2
i + ỹ2

i


 (2.26)

The goodness of the fit, according to [73], may be measured by total value of the first or-

der approximation of the distances of the points in P from the fitted surface S as given in

equation (2.27).

dS =
n∑

i=1

( |F(xi, yi, zi, a,p)− 1|
||∇F||{xi,yi,zi}

)2

(2.27)

For the hand model shown in figure 3.4a, from 296,358 vertexes and 98,786 triangular facets

available in the raw data (see figure 3.4a) we pick 40 points from each of the middle finger, index

finger and the thumb tips. The unconstrained optimization problem given in equation (2.24) is

quadratic in nature and can be solved using the Levenberg-Marquardt method (see [74] for more

details). The numerical results for the fit are given in tables 2.1 and 2.2. The plotted results
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(a) Superellipsoid approximation of a male
subject’s hand

(b) Superellipsoid approximation of a female
subject’s hand

Figure 2.5: Superellipsoid approximations of human finger-tips. The approximations for the
female subject are better due to the higher resolution of the available 3D scan.

of the same are shown in figure 2.5. It may be mentioned that the underlying computations

would be considerably simplified if we choose ellipsoids to approximate the fingertips, but we

have avoided that for the following reasons:

• Normal ellipsoids taper off more rapidly and therefore a fitted ellipsoid cannot properly

emulate the curvature of the human finger at the tip. The ellipsoid approximation for the

fingertips is too pointed at the tips.

• For the thumb, which has a more flatter shape, the ellipsoid approximation correctly

capturing this feature is too big and does not taper off evenly at the thumb tip.

• Also, the goodness metric values (see equation (2.27)) are worse in case of fitted ellipsoids.

Table 2.1: Parameters of the super-ellipsoids fitted to the finger-tips in figure 2.5a.

Finger S = {A,B,C, e, n} dS
Index {14.98, 9.83, 8.33, 1.14, 0.67} 36.23

Middle {14.99, 7.94, 9.80, 0.72, 0.5} 52.65
Thumb {11.78, 9.12, 15.0, 0.58, 0.62} 42.8

2.5 Collision detection of two super-ellipsoids in <3

Collision detection and interaction between moving rigid bodies is a generic problem frequently

encountered in various fields like robotics (see e.g. [75]), computer aided design(CAD), com-
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Table 2.2: Parameters of the super-ellipsoids fitted to the finger-tips in figure 2.5b.

Finger S = {A,B,C, e, n} dS
Index {6.03, 14.8, 7.87, 0.97, 0.80} 24.23

Middle {6.15, 13.10, 7.97, 0.88, 0.57} 25.65
Thumb {9.28, 8.10, 15.2, 0.78, 0.93} 16.8

puter vision (see e.g. [76]) and discrete element method (DEM) simulations (see e.g. [77]).

In this work, we use a Monte Carlo based probabilistic algorithm to obtain the intersection

volume of two arbitrarily oriented super-ellipsoids in the 3D space. In the previous section we

have discussed modeling human fingers by using super ellipsoids, which we have used later in

(section 3.3) to obtain the workspace of the actual human hand. In the human hand, the fingers

have finite size and to obtain realistic workspace of the multi-fingered hand, it is essential to

model the collision and intersection between the human fingers modeled as super-ellipsoids,

as this reduces the total workspace. In the following algorithm 3, we describe a Monte Carlo

based algorithm to obtain an estimate of the intersection volume between two arbitrarily places

ellipsoids in space. The intersection volume I(S1, S2) of the two closed solids S1 and S2 can be

obtained using the algorithm 3 given below.

In algorithm 3, B(i, :) and B(:, i) mean the ith row and column of the matrix B respectively,

S3 is the 3× 3 diagonal matrix with the diagonal elements from the vector ~s in order, and Bx

is the range of the box B in X Cartesian direction. The above algorithm was used on super-

ellipsoid models of index finger and the thumb as given in table 2.1. To obtain the intersection

volume numerically using the algorithm given above, we need to set a cut-off volume above

which the thumb and index finger is considered to be collision. This is assumed to correspond

to a penetration depth of 0.9 mm – references [78] and [79] report that for human finger, a

normal force of 0.5N is obtained at the finger tips for a penetration depth of approximately

0.9mm. It is assumed that this force does not hinder the assembly of the manipulator at the

certain given configuration and therefore the solution of the inverse kinematics problem exists

at the said configuration. Considering this, the approximate cutoff volume is set as 15 mm3.

Figures 2.6a and 2.6c shows the intersection of two super-ellipsoids in space. The blue box

in figures 2.6b and 2.6d contains the intersection volume and is aligned along the principal

components of the cloud of points Mn as obtained in algorithm 3. The intersection volume

is detected as 1041.5 mm3 for the first case (in figure 2.6a), thus the chosen orientation of

the super-ellipsoids is impossible. However, for the second case (figure 2.6c) the intersection

volume is obtained as 12.4 mm3, thus indicating the chosen orientation of the super-ellipsoids

is possible.
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Purpose : To obtain an estimate of I(S1, S2)
Input: S1, S2, [T ]1O and [T ]2O
Output: ̂I(S1, S2)

1: Using inputs, obtain a box B1 (B1 ∈ <3) enveloping S1 ∪ S2 in <3;
2: Populate H1, (H1 ∈ B1), an array of Nn uniformly distributed random triplets in <3

(given by fU(xi), i = 1, 2, 3);

3: Use naive MC search to check if H1(j, :) ∈ S1 ∩ S2 by using equation (2.23);
4: Save successful trials, Mn(i, :)←− H1(j, :) ;

5: Obtain box B2 from the ranges of columns of Mn ;
6: µ←− center of B2

7: Xb ←− B2
x, Yb ←− B2

y, Zb ←− B2
z ;

8: ~s = 0.25[Xb, Yb, Zb];
9: Σ←− S3

10: Populate H2, an array of Nv normally distributed random triplets in <3 using µ and Σ
from a multi-variate normal PDF (given by fN(xi), i = 1, 2, 3);

11: Use importance sampling MC to check H2(j, :) ∈ S1 ∩ S2 also, F(H2(j, :))→ 1;
12: Save successful trials, Mvr(i, :)←− H2(j, :) for representation;

13: Obtain an estimate ̂I(S1, S2) of the intersection volume as

〈I〉 =
1

Nv

Nv∑
i=1

F(H2(i, :))
fU(H2(i, :))

fN(H2(i, :))
using equation (2.11) ;

Algorithm 3: Pseudo-code for evaluating intersection volume of two arbitrarily oriented
super-ellipsoids in <3
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Figure 2.6: Representation of 2 cases of interaction between super ellipsoids and their intersec-
tion volumes

2.6 Conclusion

In this chapter we have described the key mathematical techniques used in the current work. We

started by discussing the Monte Carlo method– a technique central to the research documented

in this thesis. Following which, we discussed about the tools and techniques we have used to

represent the workspace of a manipulator. Following which in the final two sections, we have

described methods to use superquadrics to model human fingertips and a method to detect

collision of superquadrics in space without calculating their distance of closest approach.
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Chapter 3

Manipulator workspace using Monte

Carlo method

3.1 Introduction

In this chapter we discuss the application of the Monte Carlo method to obtain the well condi-

tioned workspace of a manipulator. We start by discussing the definition of the well conditioned

workspace of a manipulator, and how we have used the Monte Carlo method to evaluate it and

the advantages and limitations of the method in section 3.2. Following which we have provided

two demonstrative examples. In the first example in section 3.3 we discuss the use of Monte

Carlo method to obtain the well-conditioned workspace of the human hand by approximating

the human 3 fingered grasp by a 6 degrees of freedom parallel manipulator. Apart from pro-

viding two important results on the human hand workspace, we also demonstrate the accuracy

of the formulation by performing experiments with human subjects manipulating rigid objects.

In second example in section 3.4 we obtain the workspace of the Stanford-JPL hand (Salisbury

hand) using the Monte Carlo method. We end the chapter by summarizing the main results in

section 3.5.

3.2 Well conditioned workspace of a manipulator using

Monte Carlo method

The workspace of the end-effector of a serial or a parallel 6 degree-of-freedom manipulator

involves three quantities representing translation and three quantities representing orientation
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of the end-effector. It is symbolically expressed (after Selig [80]) as

WT = Wp nWo, Wp ∈ <3, Wo ∈ SO(3) & WT ∈ SE(3) (3.1)

It is difficult to visualize or define a volume of the total workspace and it is common in literature

to seek quantities like constant orientation workspace, Wp, or constant position workspace, Wo,

by independently seeking either of Wo or Wp ([20], [21]). Here, we will loosely follow the work

by Stamper et al. [33] and define well condition workspace as the closed volume in <3 which is a

subset of Wp in equation (3.1) where each point inside Wp can be reached by at least one known

(but randomly generated) orientation of the end-effector, satisfying all joint limit constraints

and sufficiently well-conditioned.

The well-conditioning of the workspace is related to the condition number of the manipulator

Jacobian matrix. For a serial manipulator, the notion of a manipulator Jacobian is very well

known and it relates the linear and angular velocity of the end-effector with the joint rates. For

a parallel manipulator, with actuated and passive joints, an equivalent manipulator Jacobian

can be defined in terms of the actuated joints by incorporating certain terms which ensure that

the kinematic constraints associated with the geometry of the manipulator are not violated

during the motion of the manipulator. Simply put, the equivalent Jacobian of the manipulator

will have the form:

Vplatform = JVeqv
~̇θ (3.2)

ωplatform = Jωeqv
~̇θ (3.3)

Where Vplatform and ωplatform are the linear and angular velocities of the end effector, ~̇θ are

the actuated joint rates and the equivalent Jacobians are denoted by JVeqvand Jωeqv. Following

Ghosal [81] and Ghosal and Ravani [82], the loop-closure or constraint equations can be used

to relate the passive and the actuated joint angles. When the closed-loop mechanisms or the

parallel manipulator is not at a gain singularity, the passive joint rates can be solved in terms of

the actuated joint rates and relations between the linear and angular velocity of a chosen end-

effector and the actuated joint rates can be obtained (see also section 4.4.3 and section 4.4.4).

The condition number of a matrix A is defined as

κ =‖ A ‖‖ A−1 ‖ (3.4)

where ‖ · ‖ is the L2 norm of a matrix.
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We use the definition in equation (3.4) in equations (3.2) and (3.3) to define a condition

number for the equivalent Jacobians and denote them by κV and κω. To ensure well-conditioned-

ness of the manipulator throughout it’s entire range of motions, we arbitrarily assign an upper

bound on the two condition numbers relating to the translational and rotational motions of the

end-effector. Denoting the chosen upper bound by κ∗, we can write

max{κV , κω} ≤ κ∗ (3.5)

In the numerical examples, we have used specified values of κ∗ which give a conservative estimate

of the well-conditioned workspace. A larger κ∗ will give a larger well-conditioned workspace

(see also figure 4.9 for the increase in workspace with increasing κ∗). For using the Monte

Carlo method to evaluate the workspace volume/area of a manipulator, we observe that the

Monte Carlo based method proposed in algorithm 4 classifies a given set of n-tuples (line #

5-7) into two sets depending on whether or not they satisfy a given function. In line with

this observation, we assume that the well-conditioned workspace W, (W ∈ SE(3)), of a parallel

manipulator is a collection of a finite number (say n) of closed sets in SE(3) bounded by surfaces

Siw, ∀i = 1, 2..., n. We formulate an in-out function F for Siws which takes input of the position

and orientation of the end-effector of the manipulator. This function can be represented as

Out : F(X) = 0

In : F(X) = 1

X ∈ SE(3)

W

Sw

(a) Diagramatic representation of the well conditioned
workspace

5
15

Y
2530

40
50

X

60
70

30

35

40

45

Z

(b) Actual well conditioned workspace in <3

Figure 3.1: Schematic and actual representation of the workspace of a manipulator

F(X) =

{
1 if X ∈W

0 if X /∈W

}
(3.6)
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The inclusion (or exclusion) of a given position and orientation of the manipulator, X ∈ SE(3),

is determined by the fact that for a given X the inverse kinematics problem has real solutions,

the active and passive joint values in the parallel manipulator are within prescribed limits and

the manipulator Jacobian is well conditioned. Using algorithm 4 described below, we can obtain

Ŵ, an estimate of the well conditioned workspace W of the chosen parallel manipulator. In

algorithm 4 below, Vs is the selected search space in the Cartesian space (<3) and Va is the

search space is the space of orientation (SO(3)). The total workspace of the manipulator is a

subset of Vs n Va (see [80]).

Purpose : To obtain an estimate of the well conditioned workspace
Input: F, Vs ∈ <3 and Va ∈ SO(3)

Output: Ŵ

1: S = 0, Φk = 0 ∀k, k = 0
2: Choose sample size Ntotal

3: for k ∈ {1, 2, ...Ntotal} do
4: Obtain a Xk ∈ SE(3) form a uniformly distributed random PDF in Vs and Va.
5: Evaluate Φk = F(Xk);
6: if Φk = 1 then
7: S = S + Φk

8: end if
9: k = k + 1

10: end for

11: Compute Ŵ =
S

Ntotal

Vs

Algorithm 4: Algorithm for evaluating the well conditioned workspace of a manipulator.

We present some of the salient features of algorithm 4 which leads to efficient and realistic

evaluation of the workspace of a parallel manipulator.

• The for loop in lines #3−#10 of algorithm 4 can be executed in parallel. This possibility

of parallelization is in fact one of the biggest advantages of the Monte Carlo method and

contributes to the exceptional computational performance of the algorithm.

• By using information about the underlying process and choosing a proper distribution

F∗(X), a significant improvement can be made in calculating the estimate of the function

over a naive Monte Carlo simulation [53].

• It is well known that typically the inverse kinematics problem of a parallel manipulator

is much simpler to solve as compared to the forward kinematics, and we use the inverse

kinematics in the formulation. Once the inverse kinematics is solved, we check that the

active and passive joint values are within the prescribed limits.
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• The well-conditioning at a given X is based on the condition number of the Jacobian

matrices associated with linear and angular velocity of the end-effector. We have used

a conservative 1000 as the upper limit of the condition numbers in all our simulations.

However, any other upper limit can also be used.

The Monte Carlo simulation as discussed in this section classifies a set of position and orien-

tation of the end-effector of a manipulator according to their occurrence in the well conditioned

workspace, satisfaction of the inverse kinematics and the prescribed joint limits. The output

is a set of points in <3 and SO(3). For better visualization of the workspace, we use standard

Delaunay triangulation algorithms [60] and coloring the triangulated domain of the boundary

points.

3.2.1 Comparison between Monte Carlo, Chebyshev sampling and

analytical methods to find the workspace area/volume

In this section, we use the example of a planar 5R closed-loop mechanism and obtain the

workspace of this mechanism by three approaches and compare the results obtained. A schematic

description of the 5R mechanism is given in figure 3.2.

l0

l1

l2
l3

l4

Available workspaceExcluded workspace

R = l1 + l2

r = l3 + l4

ds = l3 − l4

db = l2 − l3

Non-singular configuration

O1 O2

θ2θ1

P

P’

Figure 3.2: General schematic diagram of a 5R manipulator

The 5R manipulator was chosen for the example because it is fairly well documented in

literature and the choice of the output point P in figure 3.2 is natural. In figure 3.2, the plain
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bounded area represents the reachable workspace of P with two hatched exclusion zones. The

joints O1 and O2 are actuated. The boundary curves of the well-conditioned workspace for the

mechanism can be analytically obtained and has been described in detail in literature (see, for

example, [83],[84]). In figure 3.2 the larger radius arc bounding the workspace is given by R, the

radius of the smaller bounding arc is given by r and the radii of the smaller and larger exclusion

zones are given by ds and db. The analytical expressions for R, r, ds and db in figure 3.2 after

[84] are

R = l1 + l2, r = l3 + l4

ds = l3 − l4, db = l2 − l1

We denote the area enclosed by the arcs by A(L), where {L} = [d, l1, l2, l3, l4] is the vector

of design parameters – link lengths in our case. The area A marked as a plain bounded area is

given by A = A1 − AO2 − A2 where the subtracted quantities are the exclusion zones marked

as hatched bounded zones. The closed-form expressions of A(L) is given as

W(L) = r2 cos−1

(
1

2

−R2 + d2 + r2

dr

)
+R2 cos−1

(
1

2

R2 + d2 − r2

dR

)
− (3.7)

1
2

√
(−d+R + r) (d+ r −R) (d− r +R) (d+R + r)− π ds2 − db2 cos−1

(
1
2
−R2+d2+db

2

ddb

)
−

R2 cos−1
(

1
2
R2+d2−db2

dR

)
+ 1

2

√
(−d+R + db) (d+ db −R) (d− db +R) (d+R + db)

In the above general expression of the area, the reachable workspace can be partitioned into

a few topologically different cases by considering the circular arcs that bound the reachable

workspace. In this example, we confine the workspace to a zone between O1 and O2 in figure 3.2

which is bounded by 2 continuous circular curves. This significantly simplifies the expression

of the area A(L) as the first three terms can be removed. For l1 = 1, l2 = 1, l3 = 1, l4 = 3 and

d = 4, by using equation (3.7), the area is obtained as 5.6123 unit2. We compare this computed

area by the probabilistic Monte Carlo method and deterministic Chebyshev sampling method.

In the next section, we also present a discussion on the use of interval analysis (see e.g. works

by Chablat et al. [25] and Caro et al. [28]) to obtain the area.

To compare this computed value with the area obtained using the other methods, we first

populate points in <2 with bounds on X, Y as X ∈ [−6, 6] , Y ∈ [−6, 6]. The points in <2

are populated by a deterministic sampling and a random number generator. The formula for
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generating N Chebyshev’s intervals is given by

x =
1

2
(b+ a) +

1

2
(b− a) cos(

π(2j − 1)

2k
), x ∈ [a, b], j = 1, 2, ..., N (3.8)

The computation time1 and the differences in the obtained areas (in unit2) from the different

approaches are shown in tables 3.1 and 3.2. In the tables, BCE is the best case error in obtain-

# Samples Area using Alg. 4 CPU Time I BCE %
5000 5.58 0.12 0.575
10000 5.64 0.15 0.494
100500 5.608 0.36 0.059

Table 3.1: Computational performance of a fully parallel MC method

ing the area of the workspace (across 10 trials), CPU Time I is the time required to obtain the

right hand side of line # 11 algorithm 4, and CPU Time II is the time required to obtain the

LHS of equation (2.17). From tables 3.1 and 3.2, we can conclude that Monte Carlo method is

Intervals Value of K in eq. 3.8 Area using eq. 2.17 CPU Time II Error %
317 1 5.438 0.504 3.104
400 1 5.451 0.623 2.87
500 1 5.452 1.55 2.84

Table 3.2: Computational performance of Chebyshev interval samples

faster and more accurate than deterministic sampling for obtaining the workspace area.

The efficiency of the Monte Carlo method is more evident if we consider a 3D spatial example

such as a SCARA robot shown in figure 3.3a. We consider a constraint on the joint θ2 of the

form [10◦ ≤ θ2 ≤ 2π − 10◦] to prevent interference of the last link and the base. The reachable

workspace of this manipulator is a hollow cylinder with dmax = 7 units and dmin = 4−3 cos(θlim)

units and the workspace volume is given by

W = π(d2
max − d2

min)d = π(49− (4− 3 cos(10◦))2)4 = 602.01 unit3 (3.9)

1The programs were run in Matlab R2015a [57] on a Windows 7 PC with an quad core (3.10GHz) Intel
XEON & 16 GB of RAM.
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θ1
θ2

l1 = 4units l2 = 3units

d = 4units
{Base}

dmax = 7units

dmin = 4− 3cos(θlim)

(a) Schematic diagram of a SCARA manipulator (b) Workspace of the SCARA robot shown in fig-
ure 3.3a

Figure 3.3: Schematic representation and workspace of a SCARA manipulator

The inverse kinematics equations of the SCARA manipulator is given as

d = −Z
θ2 = cos−1((X2 + Y 2 − l21 − l22)/(2l1l2)) (3.10)

θ1 = atan2(Y,X)− atan2(l2 sin(θ2), (l2 + l2 cos(θ2)))

Next, we populate points in <3 with bounds on X, Y and Z as X ∈ [−7.5, 7.5] , Y ∈ [−7.5, 7.5]

and, Z ∈ [−0.5, 5.5] Similar to the 5R closed-loop mechanism, the points in <3 are populated

by a deterministic sampling and a random number generator. The computation time and

the differences in the obtained volumes (in unit3) from the different approaches are shown

in tables 3.3 and 3.4. In table 3.3 CPU Time I is the time required to obtain the volume

# Samples Vol. using Alg. 4 CPU Time I Vol. using eq. 2.17 CPU Time II BCE %
10E5 597.08 0.84 576.88 2.92 0.8165
10E6 598.3 3.25 586.753 28.51 0.6146

3.375× 10E6 599.3 10.42 589.92 118.75 0.4615

Table 3.3: Computational performance of a fully parallel MC method

using algorithm 4, and CPU Time II is the time required to obtain the right-hand side of

equation (2.17).

It can be seen that Chebyshev sampling method searches through 1503 = 3375000 points

for all the cases and the best case error is 1.76 %, where as the best case Monte Carlo (MC)
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Intervals Value of k in eq. 3.8 Volume using eq. 2.17 CPU Time II Error %
150 45 585.8236 unit3 62.73 2.68
150 50 591.3996 unit3 75.37 1.76
150 55 586.5533 unit3 92.68 2.56

Table 3.4: Computational performance of Chebyshev interval samples

searching through 3375000 points saves 86.17 % computation time and is 99.54 % accurate. For

equal number of samples, the MC sampling is better than the Chebyshev samples in finding

the workspace volume and is more than 7 times faster. If we settle for a less stringent error

bound, say ∼ 0.8%, then the Monte Carlo simulation is even more accurate than the best

case Chebyshev samples and is almost 90 times faster. This huge computational advantage is

largely attributed to the possibility of very high parallelization of the Monte Carlo method as

compared to difficulty in parallelization of deterministic search methods.

3.2.2 Comparison between Monte Carlo and interval analysis based

methods

Caro et al.[28] have proposed a numerical constraint programming based method to generate an

approximation of the singularity free workspace of a parallel manipulator. The interval analysis

(IA) technique together with branch and prune (BPA) algorithm is used to efficiently search

through the intervals (and sub-intervals) populated during the solution of the problem. The

work uses extensive symbolic computation and the Intlab library (see Rump [85]) to pose and

solve the problem, respectively. The main differences and advantages of our approach is that

our approach only requires the explicit solution of the inverse kinematics problem for the manip-

ulator. The approach by Caro et al. requires obtaining explicit analytical forms of the various

constraints for the manipulator and due to the resulting computational complexity, only planar

manipulators with 2 or 3 DoFs and simple geometry could be studied. We believe attempting

the same for a 6 DoF manipulator will involve a prohibitive amount of algebraic manipulations.

Additionally the approach by Caro et al. takes significant amount of computation time as

shown in a numerical experiment for obtaining the singularity free workspace of a 5R planar

parallel manipulator. They report that the computation time1 for obtaining the workspace by

searching through 69, 612 boxes with precision of 0.1 is 38 seconds. In section 3.2.1 we obtain

a computation time of 0.36 seconds for searching through 100,500 points in a search space and

1The authors report using a PC with a 3.4 GHz Intel XEON processor and 16GB RAM, which is comparable
to the hardware we have used.
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the best case error was 0.059%.

Merlet and co-workers [25], [44], [26] and [19] have proposed the interval analysis approach

to pose and solve multi-objective optimization problems related to the workspace of parallel

manipulators. In a work by Hao and Merlet [26], the solution of the inverse kinematics problem

for the manipulator is used and the well-conditioning (or singularities) is checked (obtained)

from the inverse of the manipulator Jacobian (J−T ). The main differences and advantages of

our work as compared with Hao and Merlet[26] are:

• The use of inverse of JT only avoids gain type singularities in the task space. For a fully

in-parallel Stewart platform with six actuated prismatic joints, this is enough. However a

hybrid parallel manipulator can also loose one or more degrees-of-freedom and to overcome

this problem, in our formulation, we have used upper bounds on the condition numbers

of the manipulator Jacobians (see equation (3.5)).

• A related work (see Chablat et al. [25]) suggests box validation, which involves the cal-

culation of the eigenvalues of J−T for subdividing boxes (analogous to intervals in 3D).

For a general 6 DoF parallel manipulator, the eigenvalue problem for J−T is almost im-

possible to solve symbolically and for some parallel manipulator, with non-square J, the

eigenvalue problem may not exist in exact form. In contrast, we have explicit symbolic

expressions for all the equations and quantities used (including equation (3.5)), and hence

the computational load is much less.

From sections 3.2.1 and 3.2.2 we can conclude that the Monte Carlo method performs more

efficiently than existing methods for obtaining the workspace volume of a manipulator where

only the solution of the inverse kinematics problem is exactly known.

In summary, we note that the well-conditioned and reachable workspace of a parallel manip-

ulator is an integration problem in task space of the parallel manipulator. However, formulating

the function F as shown in equation (3.6) directly in the task space is a very difficult notion

for parallel manipulators with redundant joints and higher degrees of freedom because it in-

volves exactly solving the direct kinematics problem. Therefore, to overcome this problem, we

formulate the in-out classifier F in the joint space. We do this, by first solving the inverse

kinematics problem of the parallel manipulator IK(X) = {θ, φ}T , where θi, ∀i = 1, 2, ..., n are

the ′n′ actuated joint variables and φj, ∀j = 1, 2, ...,m are the ′m′ passive joint variables. Next,

we check the active and passive joint limits to ensure that they are within the prescribed limits,

following which we ensure that, for the given position and orientation of the manipulator, the

Jacobians are sufficiently well-conditioned. The Monte Carlo simulation as discussed in this

section classifies a set of given position and orientation of the end-effector of a manipulator
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according to their occurrence in the well-conditioned workspace and thus we get a set of points

in <3 and a set of possible orientations of the end effector of the manipulator in SO(3).

We demonstrate the method discussed above by two examples– in the first example we obtain

the workspace of the human hand and validate it by performing actual experiments and in

the second example, we obtain the workspace of the well known Stanford-JPL hand (Salisbury

hand) [5].

3.2.3 Limitations of using Monte Carlo method

In spite of having several advantages over other numerical methods in computing the workspace

of a manipulator, the method suffers from two major disadvantages regarding the completeness

and exactness of the representation of the workspace.

The representation of the workspace as given by the Monte Carlo method is not complete.

The algorithm being probabilistic, can only give the value of the volume/area workspace with

a certain accuracy. So, the quantity well conditioned workspace is better represented by Monte

Carlo method than quantified by it.

The representation of the workspace as given by the Monte Carlo method is not exact. This

means that a point ‘P’ obtained on the boundary of the workspace (∂S) for a particular set of

joint limits constraints and upper bound on the condition numbers of the manipulator Jaco-

bians, the method cannot give the radius rB of the ball B centered at P, when all the points

inside the ball lie on the well-conditioned workspace. For example if we obtain the workspace

of the SCARA robot as given in figure 3.3b, using Monte Carlo methods, we cannot give the

guarantee that a point P ∗, situated at a distance rB or less from a point P chosen on the

workspace boundary represented by ∂S, is also inside the workspace, neither can we obtain a

value of rB from the Monte Carlo method. This is not a problem for either of analytical or

interval analysis based methods for obtaining and representing the workspace.

3.3 Example 1: Workspace of multi-fingered hands

The ability of dexterous manipulation has been practiced to perfection by us throughout several

thousands of years of evolution ([86]) and therefore it is not surprising that the human hand is

the gold standard for design of mechanisms for dexterous manipulation ([87]). With this moti-

vation, the robotics community has been involved in developing multi-fingered hands that can

achieve the dexterity, accuracy and load carrying capacity of human hands. Investigation into

the topic started in late 1960s with the development of myo-electric devices and subsequently

significant advancements have made in the area till date (for a comprehensive review of the
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state-of-the-art in this topic till early 2000s, see review paper [88] and the references contained

therein). Some of the early major advances were a robotic hand with elastic fingers ([89]), the

Salisbury hand ([5]), the Utah-MIT hand ([6]) and the Styx hand ([90]). Post 2000s, due to

availability of better manufacturing techniques, more complex hands like the DLR hand ([91])

and the Shadow hand ([92]) were designed and developed. Several of these hands have large

degrees of freedom (≥ 20), such as the Utah-MIT hand, Shadow hand, DLR hand, and the

RBO hand ([93]) have focused on simulating human like grasping and manipulation of objects

with complex shapes. While the anatomically correct testbed (ACT) hand ([94]),focuses on

accurately mimicking human hand joint kinematics. It maybe noted that none of these hands

have capabilities close to that of a human hand and one of the reason could be that the human

hand, in addition to sophisticated sensing capabilities, has many more links and controlled

joints – it is estimated that there are 27 bones controlled by 38 muscles and almost 40 tendons

(see [87] and [95]) and the human hand has 27 degrees of freedom.

From modeling and theoretical development viewpoint, the works on obtaining conditions

for form closure ([96], conditions for stable grasps in <3 ([97]), contact equations between

arbitrary smooth bodies ([98] and [99]), grasp criteria and grasp Jacobians ([100]) are some

of significant milestones. In another line of research (see, for example, Salisbury [5] and most

recently Boras [7]), researchers have explored dexterous manipulation from the context of a

parallel manipulator focusing on dexterity, precision of manipulation of a given object in a

given workspace by considering a lower degree of freedom (∼ 6) approximation of the human

hand. In this work we start with the anatomical model of the palm and 3 fingers (index, middle

fingers and thumb) of the human hand ([101]) and approximate it as a 6 degree of freedom

hybrid parallel manipulator by ruling out certain impossible and unnecessary motions (see [95]).

Next, we describe models of contact between the finger tips and an object during manipulation

and we consider two models – a point contact with friction modeled as a three-degree-of-

freedom spherical joint and a rolling without slipping contact which is also ‘instantaneously’

modeled as a three-degree-of-freedom joint. From the kinematic models, we solve the inverse

kinematics problem for the proposed manipulator and obtain the well conditioned workspace

of the parallel hybrid manipulator using a Monte Carlo method. The main contributions of

this example are: a) an approach to find the well-conditioned workspace of a human hand

inspired 6 degree-of-freedom hybrid parallel manipulator under two possible models of contact

between the fingers and the grasped object, b) we show that the optimum workspace is obtained

when the size of the palm is approximately equal to the size of the grasped object, and the

workspace when rolling without slipping is allowed is ∼ 1.2 − 1.5 times more than when it is
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not allowed, and c) we perform experiments on dexterous manipulation with a human hand

and show that the experimental results are in reasonable agreement with those obtained from

numerical simulations and thus validate the algorithm proposed and the methods used in the

example.

In section 3.3.1 we propose a human hand inspired parallel manipulator model and describe

the two models of contact between fingers and objects during manipulation. In section 3.3.7

we describe numerical simulation results and experiments and discuss them.

3.3.1 Model of a human hand and dexterous manipulation of objects

(a) A 3D scanned model of the human hand
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(b) Anatomy of human hand {https://en.
wikipedia.org/wiki/Hand}

Figure 3.4: Anatomical and schematic representation of the human hand

Figure 3.4a shows a 3D scanned model of a human right hand1 of a 39 year old Caucasian

male. The model of the hand is rendered as an .stl file (see figure 3.4a). The anatomical

details of a typical human hand are shown in figure 3.4b. For the index and middle fingers,

the labels with a suffix 0, i.e., B0
1 & B0

2 represent the metacarpo-phalangeal joints, B0
3 is the

trapezium joint between the carpals and metacarpal bone of the thumb. For the index and

middle fingers, the joints with suffix one, i.e., B1
1 & B1

2 are the joints between the proximal and

intermediate phalanges, for the thumb, the joint B1
3 indicates the joint between the metacarpal

and the proximal phalanx bone. Finally, B2
1 & B2

2 indicate the joints between the intermediate

1The model was obtained by Mr. Georg Weber-Unger Jr. using an EvaTM scanner ([102]). The data for
figures 2.5b and 3.4a are available in public domain and are being used with permission from their respective
owners.
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Table 3.5: Sample finger and hand segment lengths (refer figure 3.6 for symbols)

Hand part Symbols Values (mm.)
Index finger {l11, l12, l13} {35, 23, 28}

Middle finger {l21, l22, l23} {41, 22, 28}
Thumb {l31, l32, l33} {45, 36, 34}
Palm {d, h} {13, 82}

and distal phalanges, for the thumb, the joint B2
3 indicates the joint between proximal and distal

phalanx of the thumb. Kinesiological studies (see the work [103] and the references contained

therein) have shown that all the joints in the human finger do not equally participate in the

prehensile movements of the human hand. For a given grasping task, the motion is generally

started from the proximal joints B0
1 , B

0
2 & B0

3 and end in the distal joints B2
1 , B

2
2 & B2

3 , with

the proximal joints being active for most of the time [103], the proximal metacarpo-phalangeal

joint was active for more than 59% of the motion, the proximal interphalangeal joint was active

for 32% of the time and the distal inter-phalangeal joint was active for only 9% of the total

time during the execution of a palmer pinching grasping task of a disc from a fully extended

position. Based on this reasoning we assume that the proximal joints are actuated and we fix

the distal joints of the index and middle fingers B2
1 , B

2
2 and make B2

3 passive. This also makes

the model amenable to kinematic analysis since we have 9 joints in the three fingers with six

actuated joints which can provide six degrees of freedom to the grasped object. The joints

in the fingers have limits and we conservatively choose the joint limit ranges to be at most

ranging from 0◦ to 90◦. This is somewhat less to the angles specified by [95], [104], and [105].

Table 3.5 gives the value of the finger segments of the hand shown in figure 3.4a measured by

using [106]. Table 3.6 discusses about the joint types and the joint ranges and values of the

proposed manipulator.

The possible contacts between the finger tips and the grasped object has been extensively

studied in literature (see, for example, [72] , [98], [99], and [100]). In this work we study the

workspace of the grasped object for two kinds of contact, namely, point contact with friction

and point contact with rolling without slipping.

3.3.2 Point contact with friction

Following [107] we can express the wrench basis for point contacts with friction as in equa-

tion (3.11) and assuming a Coulomb friction model, the forces transmitted by the contact on

the body is given by equation (3.12). In equation (3.11), I3 is the identity matrix of the order 3

and Φ3 is the 3×3 null matrix and in equation (3.12), µ is the coefficient of friction and fX , fY
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Table 3.6: Joint notations in figure 3.6 and maximal permissible motions. The joints with least
motion have been selected to remain passive.

Joint center Joint variable Type Value/range
B0

1 and B0
2 θ1 and θ2 Active 0◦ to 90◦

B0
3 θ3 Active −45◦ to 45◦

B1
1 and B1

2 φ1 and φ2 Active 0◦ to 90◦

B1
3 φ3 Active 0◦ to 90◦

B0
1 and B0

2 ψ1 and ψ2 Passive −15◦ to 15◦

B2
3 ψ3 Passive 0◦ to 60◦

B2
1 and B2

2 γi and γm Fixed [0◦ - 30◦]
B0

3 γt Fixed γt = 45◦

S1, S2 and S3 {ξiX , ξiY } Passive ±45◦

and fZ are the forces transmitted by the point of contact along the X, Y and Z directions.

W =

[
I3

Φ3

]
(3.11)

Fo = W



fX

fY

fZ


 ,

√
f 2
X + f 2

Y ≤ µfZ (3.12)

Since the ideal S joint has the same wrench basis as points of contact with friction and it can

transmit forces only in the directions given by equation (3.12), we can replace the contact point

by a spherical joint, given that there is negligible motion of the point of contact with respect

to the body (see [100] for a similar argument). Figure 3.5 shows the point of contact modeled

as spherical joints with the point S in the figures indicating the center of the joint.

Figure 3.5b shows the interaction of the finger and the object, when the finger tip is ap-

proximated as a rigid object with lateral dimensions. The point of contact “S” is assumed to

be the center of the S-joint. The green cone in figures 3.5a and 3.5b denotes the solid angle

subtended by the finger about the axis ZS. A method to obtain the spherical joint motion has

been outlined in appendix A, using which, we can obtain the values ξX and ξY as rotations

about XS and YS, respectively. With the approximation of the fingertip as a point, the range

of the values of ξX and ξY can be as high as ±90◦, however, for fingertips with physical dimen-

sions, such a high value is not possible since, the finger-tip will have a tendency to roll over

the object and the point of contact will change. This is shown in figure 3.5b, where, a smaller

permissible range of ξX and ξY has to be taken. For our simulation, we will consider a range

of ±45◦, shown as the green cone in figure 3.5b. A schematic of the three-fingered hand with S
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(b) Interaction of the finger with the object

Figure 3.5: Spherical joint approximation of the finger-tips with object

joint modeling the contact is shown in figure 3.6.
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Figure 3.6: Schematic of the parallel manipulator
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3.3.3 Inverse kinematics

The hand is approximately modeled as a 6 DoF hybrid parallel manipulator where the palm and

the object being manipulated are denoted by platforms and each of the fingers are denoted by a

serial 3R chain with two actuated and one passive joint per chain. Using the Grübler-Kutzbach

criterion, it can be observed the degree of freedom of the hybrid parallel manipulator shown in

Figure 3.6 is six. For a given position vector of the point S1 (see figure 3.6), the expressions of

the X, Y and Z coordinates are given by

X = l11 cosψ1 cos θ1 + l12 cos(φ1 + θ1) cosψ1

+ l12 cos(γi + φ1 + θ1) cosψ1 (3.13)

Y = l11 sin(ψ1 cos θ1 + l12 cos(θ1 + φ1) sinψ1

+ l13 cos(γi + φ1 + ψ1 + θ1) sinψ1 − d (3.14)

Z = − sin(φ1 + γi + θ1)l13 − sin(θ1 + φ1)l12

− l11 sin θ1 + h (3.15)

and we can obtain an expression for E1 denoting the quantity X2 + (Y + d)2 + (Z − h)2 as

E1 = (2 cos (γi) l11l13 + 2 l12l11) cos (φ1)− 2 l13 sin (γi) sin (φ1) l11

+ 2 l13 cos (γi) l12 + l11
2 + l12

2 + l13
2 (3.16)

From the expressions for E1 and Z, noting that γi is constant, using the Sylvester’s dialytic

method, we can obtain the eliminant for θ1, using standard tangent half angle substitution, as

a quartic function of the angular variable. We note that a significant simplification may be

obtained by noting that (2 cos(γi)l12l13 + l212 + l213) is a common factor to either sides of the

while obtaining the eliminant from equations 3.15 and 3.16, using Sylvester’s dialytic method.

The value of φ1 can be obtained symbolically from the dialytic method (see Ghosal [81]) and

the value of ψ1 is obtained symbolically by using terms from the expressions of X and Y as

ψ1 = cos−1[sin(π/4)(X − Y − d)/(cos(θ1 + φ1)(l12 + l13 cos γi)

− sin(θ1 + φ1) sin γil13 + cos θ1l11)]− π/4 (3.17)

The inverse kinematics problem for the middle finger can be solved in a way similar to index

finger shown above and the inverse kinematic problem for the thumb is simpler as it can be

reduced to a quadratic polynomial. It maybe noted that we have 4 solutions for θ1 and the
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choice of the solutions should take into account the joint limits in table 3.6. Of the four solutions

of θ1 obtained from the eliminant, we admit only those which correspond to permissible joint

motions (as shown in table 3.6). Each of the permissible values of θ1 are then used to obtain

φ1 and only a pair of {θ1, φ1} are admitted, if both correspond to permissible joint motions and

finally, the admitted values of θ1 and φ1 are used to find ψ1. If and only if θi, φi, ψi, ∀ i = 1, 2, 3

correspond to permissible joint motions, the solution set is accepted and any violations at any

step leads to the rejection of the entire set and also randomly chosen position and orientation

of the object. It may also be noted that this check also prevents change in working modes of

the manipulator– i.e. flipping of the end effector (S1S2S3) with respect to the palm (B0
1B

0
2B

0
3)

as shown in figure 3.6.

3.3.4 Jacobian matrices and well-conditioning

The position vector of the center of the object in figure 3.6 is given by,

OPObj =
1

3

3∑

i=1

OSi (3.18)

and the orientation of the top platform with respect to the base is given by

O
Obj[R] =

[
OS1 −O S2

|OS1 −O S2|
Ŷ

(OS1 −O S1)× (OS1 −O S3)

|(OS1 −O S1)× (OS1 −O S3)|

]
(3.19)

where Ŷ is obtained by the cross product of the third and first column of the matrix in equa-

tion (4.22). Differentiating equations (4.21) and (4.22) with respect to time we obtain the

expressions for the linear and angular velocities of the manipulator.

The 3 constraint equations ensuring that the distance ||Si − Sj||, {i, j} ∈ [1, 2, 3], i 6= j, are

always constant, may be differentiated to obtain

[K]{θ̇, φ̇}+ [K∗]ψ̇ = 0 (3.20)

where {θi, φi, i = 1, 2, 3} are assumed to be actuated and ψ, i = 1, 2, 3 are assumed to be

passive. It is easily seen that [K∗] is a square matrix of dimension 3 × 3 and equation (3.20)
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can be solved for ψ̇, given det(K∗) 6= 01, and we can obtain

ψ̇ = −[K∗]−1[K]{θ̇, φ̇} (3.21)

By differentiating the expressions for the linear and angular velocities of the end-effector and

partitioning the expression for {θ̇, φ̇} and ψ̇, we have,

0VObj = [JV ]{θ̇, φ̇}+ [J∗V ]ψ̇ (3.22)

0ωObj = [Jω]{θ̇, φ̇}+ [J∗ω]ψ̇ (3.23)

Following [82] and using equations (3.20), (4.23) and (4.24) we define the equivalent Jacobian

matrices for both linear and angular velocity parts as

JVeqv = (JV − J∗V [K∗]−1[K]) (3.24)

Jωeqv = (Jω − J∗ω[K∗]−1[K]) (3.25)

The equivalent, dimensionless condition number of Jacobian for the manipulator, undergoing

both linear and angular motions are given as κV and κω for JVeqv and Jωeqv, respectively where

we find the 2-Norm condition number of a matrix A as κA =‖ A ‖2‖ A−1 ‖2. To ensure that

a given configuration of the end effector is well conditioned we ensure that both the condition

numbers are limited to an upper limit of κ∗ as shown in equation (3.5). In our simulations, we

ensure that κ∗ ≤ 1000. This gives a conservative workspace and a higher value of κ∗ can be

shown to give a larger well conditioned workspace.

3.3.5 Point contact with rolling without slipping

Majority of dexterous manipulation tasks undertaken by our hands involve rolling and sliding

type of contact between the hand and object (see [98] for more details). The rolling type of

contacts between the fingertips and the object during dexterous manipulation has been widely

studied (see for example the pioneering works by [98], [99] and [100] and the references contained

therein) and most of these approaches are based around the definition of a quantity called the

grasp Jacobian or the grasp map. In this work, we assume that the grasped object can roll

without slipping and we use the contact equations developed by [98]. In this case too, it can

be shown that the contact instantaneously allows three relative degrees of freedom. The main

1In the simulation, it was ensured that det(K∗) 6= 0 and the condition number of K∗ was ≤ 104 at all points
inside the obtained workspace.
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(a) Human hand manipulating a ball

0

X
50

10040
20

Y

0

0

20

40

80

100

60

Z

B0
3B1

3

B2
3

B0
1

B0
2

B1
1

B1
2

B2
2 B2

1

(b) Snapshot of the computer simulation of the sce-
nario shown in figure 3.7a

Figure 3.7: Dexterous manipulation in practice and simulation snapshot

difference with the spherical joint model is that the constraints are non-holonomic, i.e., they

restricts the space of velocities and not the translation and orientation of the grasped object.

In order to model the rolling without slip contact, we need a surface model of the finger and the

grasped object. The grasped object is assumed to be a sphere and the well-known parametric

equations of a sphere is used. As discussed in section 2.4, we will approximate the finger-tips as

ellipsoids and will use the parametic description of the fingertips form equations (2.20) to (2.22)

along-with the values from tables 2.1 and 2.2 in the formulating and solving the equations of

rolling as discussed in section 3.3.5.2.

3.3.5.1 Dexterous manipulation of objects using rolling contacts

To obtain the workspace when rolling without slipping is permitted at the contact between the

fingers and the grasped object, we propose an approach based on the existence of the solution

of the inverse kinematics problem of the human hand posed as a hybrid parallel manipulator,

condition number of the equivalent Jacobian, experimental information about common three

fingered dexterous manipulation tasks (see section 3.3.7.1) and equations of rolling (see sec-

tion 3.3.5.2). Figure 3.8a describes the finger and the object both modeled as super-ellipsoids

in contact at the point C. Axes with suffixes f and o are contiguous to the finger and the object,

respectively, OG is the origin of global coordinate frame in <3 and GPC is the vector joining the

point of contact C with OG. Sf and So are the functions that map the 2 dimensional parameter-

space {ui, vi} to smooth and closed super-ellipsoids in <3 using equations (2.20) to (2.22). We

define quantity ψ, as the heading angle, which gives the angle by which the finger frame has
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to be rotated about the common normal (
−−−→
ZfZ0 in figure 3.8a) to align Xo and Xf . Due to the

contact at C, no motion is possible along the common normal
−−−→
ZfZ0, therefore, the five other

possible motions are solved with respect to the 4 parameters describing the contact point on Sf

and So and the heading angle. A brief formulation of the problem of obtaining the evolution of

the contact points and heading angle i.e., {uf , vf , uo, vo, ψ}T as the object rolls on the fingertips

is given in section 3.3.5.2.

To obtain the evolution of {uf , vf , uo, vo, ψ}T , using equations (3.34) to (3.36) given in sec-

tion 3.3.5.2, we need the initial conditions for {uf , vf , uo, vo, ψ}T and the velocities of the fin-

gertip with respect to the object in contact, i.e., {ωx, ωy, ωz} and {vx, vy}. Using terms for

Jacobian from equations (4.27) and (4.28) we can solve for all the joint rates (both actuated

and passive) for a finger from the equation





Vobj

−−−−
Ωobj





=




Jv

−−−−
Jω



{
~̇θ

~̇φ

}
(3.26)

where {~̇θ, ~̇φ} denote the active and passive joints, respectively. It maybe noted that the system

in equation (3.26) is not square, therefore, we opt for least squares solution [108].

Using the values of {Vobj Ωobj}T from section 3.3.7.1 in equation (3.26), we can obtain the

angular and linear velocities of each fingertip, and therefore the expressions for {ωx, ωy, ωz} and

{vx, vy} for each of the three fingers with respect to the object. The initial value for ψ may be

obtained as the angle ξZ measured about ZS in figure 3.5a. The initial values for {uf , vf , uo, vo}
are chosen so that the motion starts when the contact is at the center of the finger which is

shown as a red disk in figure 3.8b. The green zone indicates the zone in which the contact is

allowed between the object and the finger.

3.3.5.2 Equations of rolling after Montana[98]

The common normal n, to the surfaces Sf and So (in figure 3.8a) is given in equation (3.27)

according to [71].





nx

ny

nz





=





sgn (cos (v)) (|cos (v)|)2−n sgn (cos (u)) (|cos (u)|)2−e

A
sgn (cos (v)) (|cos (v)|)2−n sgn (sin (u)) (|sin (u)|)2−e

B
sgn (sin (v)) (|sin (v)|)2−n

C





(3.27)
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(a) Contact between the finger and the object (b) Allowable contact zone on the index finger

Figure 3.8: Description of two bodies in contact and permissible contact zone on fingertip

Using equations (2.20) to (2.22) we can obtain a parametric expression for the surface as

f(u, v) =





x(u, v)

y(u, v)

z(u, v)





. At a point P0 on the surface we define a orthogonal frame H as

H = {fu/|fu|, fv/|fv|, n̂}T (3.28)

In equation (3.28), fv∗ =
n

|n| ×
fu
|fu|

1 and k(·) =
∂k

∂(·) and the value of the contact normal

n is obtained from equation (3.27). Based on H in equation (3.28) we can define the following

metric [M], curvature form [K] and torsion form [T] for each of the surfaces Sf and So as:

[M] =

[
|fu| 0

0 |fv∗|

]
(3.29)

[K] =




fu.nu
|fu|2

fu.nv∗

|fu||fv∗|

fv∗ .nu
|fu||fv∗|

fv∗ .nv∗

|fv∗|2




(3.30)

[T] =

[
fv∗ .fuu
|fu|2|fv∗|

fv∗ .fuv∗

|fv∗|2|fu|

]
(3.31)

1This re-parametrization is required for the general super ellipse as the vectors {fu/|fu|, fv/|fv|, n̂}T do not
constitute an orthogonal frame
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In equation (3.31), fuv∗ = fv∗u =
∂

∂u
(

n

|n| ×
fu
|fu|

).

Also in equation (3.30), nv∗ = nuuv∗ + nvvv∗ , where, a least squares estimate values of uv∗ and

vv∗

can be obtained by comparing the components of both left and right sides of equation (3.32).

fv∗ =
n

|n| ×
fu
|fu|

= fu
∂u

∂v∗
+ fv

∂v

∂v∗
(3.32)

Again,

[Rψ] =

(
cosψ − sinψ

− sinψ − cosψ

)
, [K∗f ] = [Rψ][Kf ][Rψ]T (3.33)

Using equations (3.29) to (3.31) and (3.33) we can write the equations of motion of two bodies

in contact undergoing rolling after [98] as,

(u̇o, v̇o) = [Mo]
−1([Ko] + [K∗f ])

−1[{−ωy, ωx}T − [K∗f ]{vx, vy}T ] (3.34)

(u̇f , v̇f ) = [Mf ]
−1[Rψ]([Ko] + [K∗f ])

−1[{−ωy, ωx}T + [Ko]{vx, vy}T ] (3.35)

ψ̇ = ωz + [To][Mo](u̇o, v̇o)
T + [Tf ][Mf ](u̇f , v̇f )

T (3.36)

Equations (3.34) to (3.36) along with vz = 0 can be solved simultaneously to obtain the

evolution of the contact points on the object and the finger.

3.3.6 Algorithm to obtain the well-conditioned workspace for the

human hand

Figure 4.1 shows the algorithm we have used to obtain the volume and representation of the

workspace of the under two types of contacts. For a given object size, and grip positions (see

figure 3.7b) and given hand dimensions (see, for example, table 3.5) and finger tip models (see

table 2.1), we define a search space Vs in <3. Then we generate Nn random configurations

X ∈ SE(3) where, the Cartesian variables are uniformly distributed in Vs and the Euler angles

are uniformly distributed in [−π/2, π/2]. At each of these configurations, the algorithm in

figure 4.1 is executed. Each of the blocks of the algorithm have either true or false as output,

depending on the success and failure of the check undertaken by the block. Success in the check

prompts a movement to the next block, in case of a failure, the configuration is rejected and a

new configuration is generated and the check starts afresh. If a configuration passes through

all the checks a counter value (Ns or Nr depending upon the type of workspace required) is
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Given object size

Given grip positions

Given hand dimensions

Given finger models

{lij, d, h}∀i, j ∈ {1, 2, 3}

Generate Nn random configurations

XNn×6 ∈ SE(3) and

Solve IK problem

IK(X) = {~θ, ~φ}T

Check if {~θ, ~φ}T
satisfy joint limits

Check eqv. condition no.
κV ≤ κ∗

Check if rolling is possible

True

False

Ns = Ns + 1

Nr = Nr + 1

WS = Ns×Vs
Nn

Wr = Nr×Vs
Nn

Vs ∈ <3

during assembly

Detect if fingers are colliding

Obtain S joint values

{ξX , ξY }

Is {ξX , ξY } ∈ [θl, θh] ?

κω ≤ κ∗

XNn×6 ∈ SE(3)
Save

Represent α hull
of Vs ∈ X as workspace

Figure 3.9: Block diagram of the proposed algorithm to obtain workspace. [θl, θh] is the per-
missible range for the spherical joints.

increased and the configuration is saved for representation. However the arrangement of the

different checks suggested in figure 4.1 is not unique and the particular arrangement has been

chosen for better computational performance1.

The blocks, as shown in figure 4.1, are coded to perform different checks independent of

each other, with the inputs being hand dimensions and joint angles obtained from supplied

data and solution of the IK problem. Therefore, the IK problem has to be solved for all Nn

points for the three fingers and each evaluation of the IK problem for the fingers takes a time of

the order of 3× 10−4 seconds which is quite fast because of the symbolic implementation used.

Next, we check if the chosen configuration is well conditioned or not by evaluating the condition

number of the equivalent Jacobians (see equation (3.5)) and ensuring that they are less than

1000 at all times. This takes about 28.63× 10−3 seconds due to the symbolic implementation

of the total process. Simultaneously, we also obtain the S joint values, which takes 1.58× 10−4

1Computational performances are measured as CPU times are for Matlab R2015a[57] run in a 64bit Windows
7 PC with a Intel XEON processor (4 cores @ 3.10 GHz) and 16GB RAM
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seconds. Next we check for fingertip collisions, which takes about 0.73 secs. Finally, we check

for the possibility of rolling the given object on the fingertips, which takes about 1.95 secs

per iteration. A fully parallel implementation of the algorithm to obtain the workspaces of

a parallel manipulator by checking through 150,000 random configurations of the end effector

takes about 624 seconds.

3.3.7 Numerical experiments and results

In this section we will discuss a few numerical experiments using the methodology developed so

far, to get some insight into the design of the human hand and kinematics of dexterous manip-

ulation using a parallel manipulator framework as described in section 3.3.2. We will start by

discussing some physical insights obtained through experiments on dexterous manipulation and

use those to design our numerical experiments. Following which we will discuss the numerical

experiments and results obtained from the same.

3.3.7.1 Experimental insights into dexterous manipulation

In this section we discuss some experiments on human dexterous manipulation, to gain some

insights on the range of motion and the speeds attainable during an in-hand manipulation

task attainable by an individual. For recording the motion of the object we have used a [109]

electromagnetic position tracker, which can log the position and orientation of an object in real

time. The configuration of the object are obtained by rigidly fixing a sensor to it and logging

the values of the 6 channels per sensor, 3 for absolute position and 3 for absolute orientation of

the sensor with respect to the source of the magnetic field. We briefly describe our experimental

procedure below.

Experiment: At first the wrist of a healthy adult subject is immobilized by splints and

bandages to restrict all the 4 motions of the wrist viz. radial and ulnar deviations, palmar ex-

tension and flexion. Next, a tracking sensor is fixed approximately at the base of the trapezium

bone (point B3
0 in figures 3.4b and 3.6) on the dorsal side of the hand, and another tracking

sensor is fixed approximately at the center of a spherical object to be used for the manipulation

task. Figure 3.10a shows the location of the tracking sensors on the hand and the object during

a manipulation task. We have used a standard ping-pong ball (∼ 40mm dia.) and a standard

tennis ball (∼ 65mm dia.) for our manipulation tasks. The subject is asked to manipulate

the object at normal speed while taking notice all three fingers are contacting the object at all

times and the point of contacts are within the permissible zone as indicated in figure 3.8b. The

manipulation task is usually about 60 to 100 seconds long and configuration data is logged for
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(a) Location of sensors in the experiment (b) Frequently encountered ill conditioned pose

Figure 3.10: Location of sensors on the hand and a known ill conditioned pose

both the sensors at 120 Hz throughout the duration of the experiment.

Data collection and post-processing: The data collected from the sensors are quite

noisy with typical values of signal-to-noise ratios of 1.5 to 2 dB. The poor quality of the signals

is chiefly attributed to interfering magnetic fields from various sources nearby to the channel.

The channel noises for a sensor are found to be normally distributed with zero mean and stan-

dard deviations ranging between 0.003 to 0.03. To de-noise the channel signals we have used

the method of non-local means (see e.g. [110] and the Matlab implementation of the same by

[111]). The de-noised signal is then used to obtain configuration of the manipulated object

with respect to the frame attached to the hand. Subsequently the gradients of the relative

position and orientation of the object are represented as the linear and angular velocities of the

manipulated object.

Results: From the analysis of the data from experiments with 5 male subjects we have

obtained the following results:

• The manipulation area was bounded by the positive Cartesian octant, with slight devia-

tions of the order of 2-3 mm along the Y direction.

• The orientations possible for the object was at most ±90◦ about an axis, with actual

in-task motions ranging between ±10◦ (see figure 3.12b).

• Figure 3.11 shows the velocities attained by the ball in 3 separate experiments. The black

lines show the velocities obtained by a subject (M30) manipulating a table tennis ball,
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Figure 3.11: Typical velocities encountered during 3 different dexterous manipulation tasks
shown in 3 colors

the orange line shows the velocities obtained by a different subject (M24) manipulating

the same ball and the green line shown the second subject manipulating a tennis ball.

From the experiment we can conclude that there is not much variation in the velocities

achieved by different subjects across two different manipulation tasks.

• Therefore, from figure 3.11 we obtain Vx = Vy = Vz = 0.1m/s and ωx = ωy = ωz =

0.1rad/s, which are used in equation (3.26) to obtain the joint rates of the manipulator

for achieving the target velocities at the end effector.

Figure 3.12 shows the position and orientation data obtained from experiments. The position

workspace (figure 3.12a) obtained from the experiments, when compensated for the sensor

dimensions and wrist thickness entirely fits into the theoretically obtained workspace,

3.3.7.2 Obtaining envelopes for the human hand workspace

To further verify the efficacy of our algorithm, we demonstrate the performance of the algorithm

for obtaining the workspace envelopes for actual human dexterous manipulation tasks using

simple objects– a ping-pong ball (radius =20mm), a tennis ball (radius =34.5mm) and a cylinder

(radius=20mm, height=20mm.). Table 3.7 shows the performance of the algorithm in obtaining

an envelope of the actual workspace and figures 3.12a and 3.13a to 3.13d demonstrate the

actual outputs of the algorithm and experiment plotted together. The cloud of points denote
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Figure 3.12: Experimental results on human hand workspaces

the experimental data and the portion of the experimental data, inside the envelope obtained

by using our algorithm is colored sap green, the theoretically obtained envelope is shown as

a transparent light green triangulated domain and the points outside the theoretical envelope

are colored red. The black lines denote the distance of some of the farthest experimentally

obtained points from the theoretically obtained envelope.

Table 3.7: Comparison of theory and experiment. All dimensions in mm. The normalized
errors of the sensors along X,Y and Z direction was of the order of 4± 1mm (µ± σ)

Subject Object Center(theory) Center(expt.) % points out dmax
M24 Ping-pong [64.06, 20.06, 93.34] [64.19,18.5, 90.36] 0% of 10235 –
M24 Tennis [55.12, 17.75, 87.68] [56.3, 18.47, 79.32] 23.5% of 5356 15.5
M24 Cylinder [64.93, 17.24, 93.73] [63.92, 19.26, 91.72] 12.6% of 9647 17.24
M32 Ping-pong [70.96, 18.73, 97.38] [70.7, 16.72, 90.4] 0% of 10134 –
M32 Tennis [63.41, 20.05, 94.53] [60.63, 18.84, 94.56] 18.6% of 7184 12.5

We see that barring a few points obtained due to un-modeled motion of the fingers like like

possible motion of the joint B1
3 beyond 90◦, possible slipping and temporary detachment of the

index finger during the motion and some ill conditioned poses attained frequently during the

manipulation task (see e.g. figure 3.10b where κV →∞). The inclusion of the experimentally

obtained workspace in the theoretically obtained workspace, and the fact that the theoretically

obtained workspace puts a reasonably conservative bound on the experimentally workspace (see

figure 3.12a) may demonstrate the correctness of our modeling approach. However, it may also

be noted that the experimentally obtained may never supersede the theoretically obtained one
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Figure 3.13: Comparison between experimental workspaces and theoretical estimates of the
same for different human subjects manipulating different objects

by large amounts because though we are using practically possible joint limits (see table 3.6),

actual motions possible during a dexterous manipulation task are somewhat less than obtained

maximal joint limits of each individual finger. We also do not consider the motion of the wrist

and the orientations obtained by moving the wrist in the simulations, but the experiment could

not completely suppress the motions of the wrist– which may have introduced some error.

3.3.8 Human hand kinematics and workspaces

In this section we discuss the results we have obtained with our modeling. Through our algo-

rithm as described in figure 4.1 we seek WR, the available well conditioned workspace consid-

ering rolling type of contact at the fingertips and WS, the available well conditioned workspace
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Figure 3.14: Comparison of workspaces of hand considering two different models of contact
across different hands

considering S joint type of contact between the object and the fingertips. In each case, we

start by defining the initial contact points as the vertexes of an equilateral triangle inscribed

by the object modeled as a sphere. The search space V ∈ <3 is a box bounded by the planes

X = (0, 100), Y = (0, 100) and Z = (50, 150) (in mm), and the orientation search space in

SO(3) is bounded by {θ, φ, ψ} ∈ [−90◦, 90◦]. Figure 3.7b shows the snapshot of the simulation

for obtaining WR for a particular configuration of the object.
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In figure 3.15a we show that our algorithm converges across 4 different trials for a particular

set of hand dimensions. We have evaluated the algorithm for 60 object sizes ranging from 1mm

diameter to 40mm diameter. We also observe from figure 3.15b that the ratio rRS =
WR

Ws

also

converges across different subjects and trials.

(a) Convergence of the algorithm across 4 different
trials
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Figure 3.15: Convergence of the algorithm and variation of
WR

WS

with change in object size

Figure 3.16 shows the possible positional and orientation workspaces of the manipulator.

We note from figure 3.16a that WS is smaller then WR and is inscribed in the same and the

maximum orientation workspace shown in figure 3.16b is not very significant for a dexterous

manipulation task with a spherical object due to it’s symmetry. We have included figure 3.16b

to demonstrate that the entire workspace W, W ∈ SE(3), can be obtained and represented by

our algorithm.

From observations in daily life, the experiments in section 3.3.7.1 and results obtained

so far we observe that the values of WR and WS vary widely with change in object size.

Therefore, using the developments so far, we try to obtain a relationship between the best cross

sectional area of a spherical object (Aobject) for dexterous manipulation and the human hand

dimensions. For this we chose the palm area, area of the 4B0
1B

0
2B

0
3 in figure 3.6 denoted by

Apalm = d × h, as a characteristic dimension of the human hand and obtain the values of

WR and WR with varying palm area-object area ratios rpo =
Apalm

Aobject

. We choose 8 data sets

designated as {M32,M24,M26,M28,M30,M39, F24, Sh} denoting the hand dimensions of 6 adult
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Figure 3.16: Workspaces of hand described in tables 2.1, 3.5 and 3.6 manipulating a ball of
radius 17.5 mm

male subjects, 1 female subject and the Shadow hand (see [92]) respectively f with suffixes in the

figure represent the quartic polynomials fitted to the obtained data sets as given in figures 3.14a

and 3.14b. The models for the fingertips for the male subjects were scaled up/down from the

model developed in section 2.4 and a separate model was obtained for the female subject’s

hand by the technique discussed in section 2.4. The finger models and hand dimensions for

the Shadow hand were obtained from specifications laid down by the [92]. For each of the

subjects values of WR and WS were obtained for 60 object sizes across 4 separate trials, their

convergence was ensured and the combined data is plotted in figure 3.14. A summary of the

results is given in table 3.8. From the table we can conclude that the human hand can attain

the highest workspace for a spherical object when the object cross section area is approximately

equal to the palm area. Figure 3.14c shows that the results in table 3.8 is independent of the

bounds on the condition number imposed by us in equation (3.5).

Table 3.8: Means and standard deviations of rpo for the maximum workspace

Type of contact r̄po σ(rpo)
Rolling type r̄po = 1.004 σ(rpo) = 0.0443
S joint type r̄po = 1.016 σ(rpo) = 0.0761

In summary, the human hand grasping an object has been modeled in two ways, namely

point contact with friction and a contact allowing rolling without slipping. In both these

situations, we model the three-fingered hand grasping a sphere as a hybrid parallel manipulator

with six degrees of freedom and present an algorithm to obtain the well conditioned workspaces
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Table 3.9: Sample finger and hand segment lengths (refer figure 3.17 for symbols)

Hand part Symbols Values (mm.)
Index finger {l11, l12, l13} {35, 23, 28}

Middle finger {l21, l22, l23} {41, 22, 28}
Thumb {l31, l32, l33} {45, 36, 34}
Palm {d, h} {13, 82}

of the hybrid parallel manipulators. The main results are presented in section 3.3.7 and we

show that the maximum workspace of the grasped object is obtained when the palm size is

same as the grasped object size. We also show that the maximum workspace could be as much

1.5 times when rolling without slipping is allowed. In section 3.3.7.1, experimental results on

dexterous manipulation are presented to set a perspective for the numerical experiments and

to make them more realistic are described. It is shown that the experimental results agree

reasonably well with numerical simulation results.

3.4 Example 2: Workspace of the Stanford-JPL hand

In this work, we study the Stanford-JPL hand (also known as the Salisbury hand), a well known

six-degree-of-freedom multi-fingered hand, originally proposed by Salisbury[5], as a hybrid par-

allel manipulator. The work has been very well documented in robotics literature and has been

extensively studied by researchers (see e.g. Ghosal [81]) etc. To start with, we define the well

conditioned workspace of the manipulator by setting realistic constraints on the actuated and

passive joints and by restricting the condition numbers of the equivalent Jacobians (relating

the linear and angular velocities of the end effector separately with the joint rates) to be less

than 100 at all times. Next, using the definition of the well conditioned workspace, we formu-

late the problem of obtaining the well conditioned workspace of the parallel manipulator as an

integration problem in the task space (in <3 for the linear component of the motion and in

SO(3) for the angular component of motion of the end effector).

3.4.1 Description of the manipulator and solution of inverse kine-

matics problem

The kinematic model shown in figure 3.17 represents a three-fingered hand grasping an object.

The grasping of the object is assumed to be point contact with friction and thus modeled as

spherical joints. The manipulator shown in and schematically in figure 3.17, is a parallel 6-

DOF manipulator with a moving platform or the “gripped object” {S1, S2, S3} connected to a

fixed base {B0
1 , B

0
2 , B

0
3} connected by three 3-R serial manipulators of link lengths {li1, li2, li3}

59



CHAPTER 3. MANIPULATOR WORKSPACE USING MONTE CARLO METHOD

γ

{O}
S1

S2

S3

̂
Y

̂
Z

̂
X

{Object}

θ2 ψ2

φ2

θ1
ψ1

φ1

θ3

ψ3
φ3

d

h

l11

l12 l13

l31 l32

l33

l21
l22

l23

Thumb

Index finger

Middle finger

B0
2

B1
2

B2
2

B0
1

B1
1

B2
1

B0
3

B1
3

B2
3

Figure 3.17: Schematic of the Salisbury hand (from Ghosal [81])

Table 3.10: Joint notations in figure 3.17 and maximal permissible motions

Joint center Joint variable Type Value/range
B0

1 and B0
2 θ1 and θ2 Active −45◦ to 45◦

B0
3 θ3 Active −45◦ to 45◦

B1
1 and B1

2 ψ1 and ψ2 Active 0◦ to 90◦

B1
3 ψ3 Active 0◦ to 90◦

B2
3 φ3 Passive 0◦ to 30◦

B2
1 and B2

2 φ1 and φ2 Passive 0◦ to 30◦

B0
3 γ Fixed γ = 45◦

S1, S2 and S3 {ξiX , ξiY } Passive ±45◦

∀i = 1, 2, 3. The contacts between the gripped object and the distal ends (from the base) of

the serial manipulators are modeled as 3 un-actuated “S” joints with three rotational degrees

of freedom but no translational degree of freedom. It may be observed that the last “R” joint

from the base towards the object shown by {B2
1 , B

2
2 , B

2
3} in figure 3.17 is un-actuated. Due to

this un-actuated joint it not a true parallel manipulator and has been referred to as a hybrid

manipulator. Also the thumb axis , shown here to be along the Z direction, need not be like

that always, in fact in the analysis an inclination of 45◦ in the direction out of the plane has

been considered. We can find the vectors from the base {O} to the points of contact with the

object {S1, S2, S3}.

OB0
1 = {0,−d, h}T ; OB0

2 = {0, d, h}T ; OB0
3 = {0, 0, 0}T (3.37)
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OSi =Base Bi +R[Ŷ , γi]




cos (θi) [li1 + li2 cos (ψi) + li3 cos (ψi + φi)]

sin (θi) [li1 + li2 cos (ψi) + li3 cos (ψi + φi)]

li2 cos (ψi) + li3 cos (ψi + φi)


 (3.38)

∀i = {1, 2, 3}; γ = [0, 0, π/4]

Equation (3.38) along with the constraints imposed on the manipulator by the 3 spherical joints

will be used to formulate and solve the inverse kinematics problem and the definition of the

condition number of the Jacobian for the well conditioned workspace of the manipulator.

The inverse kinematics problem of the manipulator can be very simply stated and solved

as follows. For a given position vector of the point S1, (see figure 3.17) the expressions of the

X, Y and Z coordinates of the point S1 are given as the rows of equation (3.38). From which,

by simplifying X2 + (Y + d)2 + (Z − h)2 we can obtain the expression with only φ1, given in

equation (3.39).

4l211(l212 + l213 + 2l12l13 cos(φ1)) = C2
1 + 4l11C

2
2 (3.39)

Where, in equation (3.39), C1 ≡ C1(l11, l12, l13, d, h, φ1) and C2 = h − Z. Substituting cos(φ1)

with the its tangent half angle equivalent in equation (3.39) we can obtain a quadratic expres-

sion for φ1. ψ1 can be solved from the eliminant obtained by using Sylvester’s dialytic method

and θ1 is obtained as θ1 = atan2(Y + d,X). The inverse kinematics problem for the middle

finger and the thumb can be solved in a way similar to index finger shown above.

Since the the manipulator described in section 3.3.1 bears resemblance to the Stanford-JPL

hand, the expressions of the manipulator Jacobians can be obtained as shown in section 3.3.4.

With the solution of the inverse kinematics and the expressions of the manipulator jacobians at

hand, we can proceed to finding the well-conditioned workspace of the manipulator as described

in section 3.2.

3.4.2 Workspace of the Stanford-JPL hand

Table 3.11: Means and standard deviations of rpo for the maximum workspace

Type of contact r̄po σ(rpo)
S joint type r̄po = 1.043 σ(rpo) = 0.05
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Figure 3.18: Workspace of the Salisbury hand (Stanford-JPL hand)

The well-conditioned workspace of the manipulator, denoted by W, is a quantity in SE(3).

Using the method described above, we can obtain separate representations of the workspace in

<3 and SO(3). Figure 3.18a shows the representation of the workspace in <3 as a triangulated

domain enveloping the cloud of points inside the well-conditioned workspace. Figure 3.18b

shows the well-conditioned workspace of the parallel manipulator in SO(3) as a cloud of points.

The dimensions of the hand segments were taken from table 3.5 and the object size (circum-

radius of 4S1S2S3 in figure 3.17) was taken as 20mm. The volume of the obtained workspace

is 1.83×103mm3. Figure 3.19a shows the variation of the workspace of the hand across varying

hand and object sizes. For this, we considered 7 data sets (like the ones shown in table 3.5)

from the hand dimensions of 6 male and 1 female subjects. The horizontal axis in figures 3.19a

and 3.20a denotes the quantity rpo =
AObject

APalm

where AObject is the area of the circum-circle of

4S1S2S3 and APalm is the area of 4B0
1B

0
2B

0
3 in figure 3.17. It may be noted that the hand

workspace is the largest when the area of the palm is approximately equal to the object area.

The statistical details of the claim are given in table 3.8.

Since the method of obtaining the workspace is an iterative one, we demonstrate the con-

vergence of our algorithm in figure 3.19b. Figure 3.20a demonstrates that the result presented

in table 3.11 is independent of the upper bound on the condition number set in equation (3.5),

to ensure we obtain a conservative representation of the well-conditioned workspace. In fig-

ure 3.20b we show that the workspace of the Salisbury hand using the joint limits prescribed

in table 3.10 is smaller than the workspace we have obtained for the human hand.
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Figure 3.19: Variation of the workspace with varying object sizes and convergence of the algo-
rithm
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3.5 Conclusion

In this chapter we have demonstrated the use of Monte Carlo method for obtaining the

workspace of a manipulator. We started by describing the Monte Carlo method and dis-
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cussing the advantages and disadvantages of using it to obtain the well conditioned workspace

of a parallel manipulator. In the next two sections, we discussed the usage of the method for

finding the workspace of 6 degrees of freedom parallel manipulators. The first example dealt

with the workspace of the human 3 fingered grasp. The human hand grasping an object has

been modeled in two ways, namely point contact with friction and a contact allowing rolling

without slipping. In both these situations, we model the three-fingered hand grasping a sphere

as a hybrid parallel manipulator with six degrees of freedom and present an algorithm to ob-

tain the well conditioned workspaces of the hybrid parallel manipulators. The main results are

presented in section 3.3.7 and we show that the maximum workspace of the grasped object is

obtained when the palm size is same as the grasped object size. We have also shown that the

maximum workspace could be as much 1.5 times when rolling without slipping is allowed. In

section 3.3.7.1, experimental results on manipulating a grasped object are presented to set a

perspective for the numerical experiments and to make them more realistic. It is shown that

the experimental results agree reasonably well with numerical simulation results. In the next

section we obtained the well conditioned workspace of the Stanford-JPL hand by the same

method. With these two examples we could show that the Monte Carlo method can represent

and quantify the workspace of a manipulator and in the next chapter we demonstrate how the

Monte Carlo method can be used for optimal synthesis of parallel manipulator for a desired

well conditioned workspace.
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Chapter 4

Optimal synthesis of parallel

manipulators using Monte Carlo

method

4.1 Introduction

In this chapter we discuss the use of Monte Carlo method, in conjunction with gradient based

optimization methods for optimal kinematic synthesis of parallel manipulators for a given

workspace. We begin by posing the optimization problem, discussing the underlying proce-

dure to carry out the gradient based optimization in section 4.2. Following which we provide

two examples of optimal kinematic synthesis of parallel manipulators– in section 4.3.5 we discuss

the optimal synthesis of a planar 5R manipulator and in section 4.4.6 we discuss the optimal

synthesis of a Stewart platform manipulator. In these examples we demonstrate the sensitivity

of the workspace of the manipulator to perturbations in the design constraints and finally in

section 4.5 we discuss the sensitivity of the multi-fingered hand workspaces to perturbations in

design constraints. We conclude the chapter by summarizing the main results.

4.2 Formulation and solution of the optimization prob-

lem

To attempt the problem of optimal synthesis for a manipulator, we need to start by posing an

optimization problem with a twice differentiable and continuous objective function. However

we note that barring a few cases like the 5-R planar manipulator, the planar 3-RRR or the

planar 3 RPR manipulators, we do not have analytical expressions for the workspace. The
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workspace for the planar 5R manipulator is described by circular arcs and the expression of

the workspace for the most general case, as given in equation (3.7), can be directly taken as

the objective function. The situation is more complicated while we are dealing with optimal

synthesis of higher degrees of freedom mechanisms. From the developments in chapter 3 we

note that the Monte Carlo method provides a conservative estimate and representation of the

workspace which is known to be not exact. Therefore arriving at a closed form of the objective

function is not possible. However, we can get around the problem by assuming, without any

loss of generality, a transformed position of the manipulator where the X axis passes through

the entire workspace1. Now, considering a plane at X = c we can obtain the closed level set

curve which forms the boundary of the workspace at that plane. All the points on this curve

are on the Z−Y plane, and the square of the distance of any point on the curve from the origin

on the plane (Z, Y = 0, and X = c) is given as D = z2 + y2, where z and y are the coordinates

of the point on the center of end effector (for example the centroid of 4S1S2S3 in figures 3.6

and 3.17). Maximizing the quantity D for all values of c will result in the maximization of the

workspace.

The optimization problems of the 4 manipulators that we have studied in the thesis– the planar

5-R parallel manipulator, the 6 DoF approximation of the human hand, the Salisbury hand

and the Stewart platform manipulator are all non-convex in nature. This means that there are

multiple local optima in the parameter space of these manipulators and gradient based methods

cannot be relied upon to converge to the global optimum2. For the planar 5R manipulator,

the reason for the non-convex nature has been discussed in detail in section 4.3.5, for the multi

fingered hands, the expression of D is identically dependent on the palm dimensions (d and

h in figures 3.6 and 3.17) so the Hessian of the objective function is sub-rank and hence the

problem becomes non-convex. The optimization problem of the Stewart platform manipulator

in the configuration we have considered is known to be non-convex (see Lou et al. [48]) and

hence we are not attempting to prove the same.

In the next section, we discuss the “Karush-Kuhn-Tucker conditions” or “KKT conditions”

and provide a basic introduction to algorithm we have used to solve the optimization problem.

4.2.1 Interior point methods and KKT conditions

In this section we present a brief overview of the KKT conditions and interior point method,

which have been used for solving the optimization problem for the parallel manipulators. For

1An example of the transformation would be the case when the origin is at the centroid of 4B0
1B

0
2B

0
3 in

figures 3.6 and 3.17 instead of B0
3

2See e.g. the works by Lou et al. [48], [50], where the authors arrive at global optima by using controlled
random search based methods.
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a more detailed treatment on the subject, one may refer to the chapter 11 of the book by Boyd

and Vandenberghe [74]. The general statement for a constrained optimization problem, with

regards to optimal synthesis of parallel manipulators may be given as :

Maximize
P

W (P) (4.1)

Subject to, hi(P) = 0 ∀i = 1, 2, ...,m

gj(P) ≤ 0 ∀j = 1, 2, ..., n

Where, W(P) is the workspace of the manipulator described as a function of the geometrical

parameters P that uniquely describe the manipulator. hi and gj are m equality and n inequality

constraints specified by the designer. We assume that the problem is feasible, i.e. in the feasible

parameter space P, ∃P∗ ∈ P which is an optimum for the manipulator. Therefore, for the

feasible optimization problem, we write the necessary and sufficient conditions for finding and

optimum, also known as the KKT conditions as given in equation (4.2).

hi(P
∗) = 0 i = 1, 2, ...,m

gj(P
∗) ≤ 0 j = 1, 2, ..., n

λ∗j ≥ 0 j = 1, 2, ..., n (4.2)

λ∗jgj(P
∗) = 0

∇PW(P∗) +
m∑

i=1

µ∗i∇Phi(P
∗) +

n∑

j=1

λ∗j∇Pgj(P
∗) = 0

Where, in equation (4.2), λj∗ and µ∗i are the Lagrange multipliers at the optimum P∗. Interior

point methods solve the optimization problem by applying Newton’s method to the KKT con-

ditions in equation (4.2). The solver associated with fmincon in Matlab[57] uses the barrier

method– a type of interior point method to solve the problem in equation (4.2). We also note

that, in our case, the Monte Carlo methods just gives a scalar value of W(P) in equation (4.1)

therefore, the gradients and the Hessian of the objective function have to be calculated numer-

ically.

4.2.2 Design sensitivity analysis

To understand the sensitivity of the objective function to slight changes in the constraints, we

introduce small perturbation {bi} in the neighborhood of 0 for the equality constraint and {ej}
for the inequality constraints in equation (4.1), noting that both {bi} −→ 0 and {ej} −→ 0
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i.e. are sufficiently small.

Clearly, the new optimum point of problem in equation (4.1), P’ has changed from the

original solution P∗ and now depends on the infinitesimally small perturbations about zero.

Therefore, we may write, P’ = P’(b, e) and the new cost function value also depends on

the value of the perturbations, however there is little merit in finding the same. Assuming

that W(P), h(P) and g(P) have two continuous derivatives, and the optimal solution P∗, the

Lagrange multipliers µ∗ for the equality constraints and λ∗ for the inequality constraints satisfy

all the necessary and sufficient KKT conditions (equation (4.2)), we can state the sensitivity

theorem after Arora [112] as,

If for each g(P’) it is true that λsi > 0, then the solution of the system P′ = P’(b, e) of the

modified system is a continuously differentiable function in the neighborhood of {b} = 0 and

{e} = 0. Also,

∂W

∂bi
=
∂W (P′(0, 0))

∂bi
= −λi∀i = 1, 2, ...m (4.3)

∂W

∂ej
=
∂W (P′(0, 0))

∂ej
= −µi∀j = 1, 2, ...n (4.4)

Therefore, from the above equations (4.3) and (4.4) and considering that {b, e} are sufficiently

small, we can further write an expression for the perturbed value (first order change) of the

cost function as,

W(bi, ej)−W∗(0, 0) = ∂W = −{λibi + µjej},∀i = 1, 2, ...m, j = 1, 2, ...n (4.5)

Where W∗ is the value of the original cost function before perturbation. The above outcomes

of the theorem are stated without a proof. For a more rigorous treatment one can refer to

the textbook by Arora [112]. For evaluating equation (4.5) we need to extract the Lagrange

multipliers at the optimal point. We can easily get them while using fmincon in Matlab [57].

Design sensitivity analysis is only possible because we are using gradient based methods for

optimization. This feature lets us analyze the sensitivity of the manipulator workspace to all

the manipulator dimensions, put forth as constraints, which is an added advantage. Interval

analysis based methods like the ones by Hao and Merlet [26] propose the use of a threshold

quantity ε to accommodate manufacturing errors that might creep in and result in a non-optimal

manipulator, however, it does not tell anything about the effects of each of the individual design

parameters to the workspace of the manipulator.

In the next two sections we will use the methodology developed above to perform dimensional
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User Input
1. Workspace dimensions
2. Joint limits
3. Other constraints

Choose search space by
overestimating

workspace dimensions
by 25 % in each directon

random positions and orientations
of manipulator inside search space

Formulate and solve the
inverse kinematics problem and
obtain joint values {~θi} and {~φi}

Check if all {~θi, ~φi} are

manipulator is well conditioned

NO

Discard the

and position data
orientation

YES

Evaluate the objective function,

Use the objective function and

the constraints to run a

”gradient based optimization algorithm”

Run another MC simulation

and obtain the
histogram of reachable points

Is the required workspace dimension
a subspace of that spaned by the

of each X, Y and Z ?

YES
Design done

NO

Use the obtained optimum design parameters to run a
new optimization with a modified search space.

Good initial guess

obtained histogram

with obtained optimal Pi

Generate ηTotal

X

κV ≤ κ∗ κω ≤ κ∗

W(P)

&

permissible and, the

Figure 4.1: Block diagram of the design process

synthesis for two parallel manipulators. In the first example, we choose the earlier described

planar 5 bar closed-loop mechanism with two degrees-of-freedom and obtain the dimensions

for the largest well-conditioned workspace. In the second example, we perform dimensional

synthesis for the well-known semi-regular Stewart platform manipulator. The optimization

procedure is outlined in figure 4.1.

4.3 Example 1: Optimal synthesis of a 5 bar planar

closed-loop mechanism

The workspace of a 5R two-degree-freedom closed-loop mechanism can be thought of as in-

tersection of the workspace of two planar 2R manipulators. The workspace of a planar 2R

manipulator, in general, is a a hollow circular disk with an inner and outer radius. Depending

on the inner and outer radius for each of the two disks, the shape of the workspace of the 5R

mechanism can be of four generic types with bounding circular arcs whose equations can be

easily obtained from the equations given in section 3.2.1 (see also the works by Macho et al.

[84], Cerventes-Sanchez et al. [83], and Liu et al. [20]). To make the optimization problem

realistic, we impose generic constraints on the rotations at the joints and the link lengths. The
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generic constraints are as given in table 4.1. The constraint on the last column has been used

Total length of links Constraints on joint rotations Constraints on link lengths
10 units θj = [0, 2π] ∀j = 1, ..., 5 li ≥ 1 ∀j = 1, ..., 5 unit

Table 4.1: Generic constraints for the manipulator

so that all the link lengths are of the same order and some special optimum cases with one link

length equal to zero can be avoided. This special case of a symmetrical manipulator with d = 0,

was considered by Liu et al. [20], where a considerably large annular workspace was obtained.

In this example, we perform dimensional synthesis for a general planar 5R manipulator for four

generic workspace shapes with the above mentioned constraints. We use equation (3.7) along

with geometric constraints to form the objective function and use a gradient based optimization

method to analyze the four different workspace configurations of the 5R planar manipulator.

It was observed that the optimization problem is non-convex, and a probable reason for its

non-convexity is given in section 4.3.5.

From Algorithm 1, the equivalent definition of workspace is W =
ηPosibleA

ηTotal
. For a unit

rectangle completely enveloping the possible workspace denoted by the plain zone and excluded

workspace as the hatched zone.

4.3.1 Case I: Workspace bounded by 2 continuous circular arcs

In this case, the workspace is bounded by two continuous circular arcs placed between the two

centers O1 & O2, as shown in the figure 4.2a. For this case, the constraints are,

l1 + l2 − d < 0

l3 + l4 − d < 0

ds < d− (l1 + l2)

db < d− (l3 + l4)

(4.6)

The result of the optimization problem with the constraints listed in table 4.1 and in equa-

tion (4.6) yielded the results given in table 4.2. The maximum workspace is shown in figure 4.2b.

In this case we observe the following:

• Both the solutions given in table 4.2 are the same, i.e., one is the reflection of the other

about the perpendicular line form P to O1O2 in figure 4.2a.
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d

l1

l2 l3

l4

r = |l3 + l4|
R = |l1 + l2|

P

P’

O1 O2

ds = |l3 − l4|
db = |l2 − l3|

(a) Generic workspace shape in Case I (b) Maximum workspace in Case I

Figure 4.2: Workspace bounded by two continuous circular arcs

Initial guess for {L} Optimum value for {L} Workspace area in unit2

[4,1,3,3,1] [4,3,1,1,1] 5.6123
[4,3,3,3,3] [4,1,1,1,3] 5.4612

Table 4.2: Optimal solutions for Case I

• Both the cases yield about the same workspace area but for the second case the workspace

is the reflection of the plain bounded zone in (figure 4.2b) about the line x = 4.

This case has been analytically solved in section 2.3.

4.3.2 Case II: Workspace bounded by 2 circular arcs outside and 2

circular arcs inside

The shape of the workspace is as shown in figure 4.3a. For this case, the general constraints

are

l1 + l2 − d > 0

l3 + l4 − d > 0

ds < d− (l1 + l2)

db < d− (l3 + l4)

(4.7)

Another constraint on db and ds can be added to the problem to have two disjoint circles

centered at O1 and O2.

l1 − l2 + l4 − l3 − d < 0 (4.8)

The result of the optimization problem attempted with general constraints from table 4.1,
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the constraints from equation (4.7) and the additional constraint form equation (4.8) yielded

the results given in table 4.3.

Initial guesses for {L} Optimum values for {L} Workspace area in unit2 Constraints
[3, 3, 2, 2, 3] [1.00, 1.00, 4.31, 2.68, 1.00 ] 25.04 Eq. 4.7
[3, 3, 2, 2, 3] [1.25, 3.74, 1.05, 1.26, 2.68] 24.95 Eqs. 4.7 & 4.8

Table 4.3: Optimal solutions for Case II

The maximum closed and bounded workspace obtained by using the proposed optimization

algorithm is shown in figure 4.3b. In this case, we can see that as we increase the number of

constraints, the usable workspace decreases.

O1 O2

r = l3 + l4 R = l1 + l2

d

l1

l2

l3

l4

P

P’

db = |l1 − l2| ds = |l4 − l3|

(a) Generic workspace shape in Case II (b) Maximum workspace in Case II

Figure 4.3: Workspace bounded by 2 circular arcs outside and 2 circular arcs inside

4.3.3 Case III: Workspace bounded by 4 circular arcs

In this case the shape of the workspace is as shown in figure 4.4b. For this case, the general

constraints are

l1 + l2 < ds + d

l3 + l4 < db + d

l1 + l2 > d− ds
l3 + l4 > d− db

(4.9)
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Initial Guesses for {L} Optimal values for {L} Workspace area in unit2

[2.85, 2.63, 0.93, 0.93, 2.63] [2.33, 2.87, 1.00, 1.12, 2.67] 12.74
[2, 2.5, 1.5, 1.5, 2.5] [1.75, 2.14, 1.37, 1.37, 3.34] 22.94

Table 4.4: Optimal solutions for Case III

The maximum workspace obtained after optimization is shown in figure 4.4b and obtained

link lengths are given in table 4.4. It maybe mentioned that the initial guesses used are from

the work by Cerventes-Sanchez et al. [83], where this case has been analyzed.

P

P’

O2O1

l1

l2 l3

l4

d

db = |l2 − l3|
ds = |l3 − l4|

r = l3 + l4
R = l1 + l2

(a) Generic workspace shape in Case III (b) Maximum workspace in Case III

Figure 4.4: Workspace bounded by 4 circular arcs

4.3.4 Case IV: Workspace bounded by 3 circular arcs with a circular

exclusion zone

In this section, the schematic diagram of the workspace is shown in figure 3.2. The constraints

for the case are as follows:
l1 + l2 > d+ ds

l3 + l4 < d+ db

ds < l1 + l2 − d
db > l3 + l4 − d

(4.10)

The results of the optimization problem, after using the constraints form equation (4.10)

are given in table 4.5. The two optimum workspaces for the manipulator are given in figure 4.5.
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Initial Guesses for {L} Optimal values for {L} Workspace area in unit2

[2.85, 2.63, 0.93, 0.93, 2.63] [1.00, 4.00, 1.00, 1.82, 2.17] 28.63
[2, 2.5, 1.5, 1.5, 2.5] [3.26, 1.73, 1.63, 1.63, 1.73] 13.56

Table 4.5: Optimal solutions for Case IV

X
-4 -2 0 2 4 6

Y

-4

-2

0

2

4

(a) Generic workspace shape for Case IV

X
-2 0 2 4

Y

-3

-2

-1

0

1

2

3

(b) Maximum workspace for result # 2 in table 4.5

Figure 4.5: Workspace bounded by 3 circular arcs with a complete circular exclusion zone.

As it is clear from the above 4 examples, the objective function, unlike general optimization

problems, is related to the constraints we choose for a given case. This effect is well known

for the simple case of a 5R planar manipulator. In fact, the optimization problem can be

analytically shown to be a non-convex one. We attempt to demonstrate the same in the next

section.

4.3.5 Proof of non-convexity of the optimization problem for 5R

mechanism

The general statement for the constrained optimization problem of 5 R manipulator may be

given as :

Min
{L}

W (L) (4.11)

Subject to, E1 : d+ l1 + l2 + l3 + l4 − LTotal = 0

Ie1 : l3 + l4 − d+ db < 0

where LTotal is the total length of all the links combined. The inequality constraint Ie1 was

chosen so that the point P is always on the right side or near O2 in figure 3.2 and the formula
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for workspace in (equation (3.7)) is always valid. The problem is known to be feasible because

it has been successfully attempted numerically (see for example Huang [113]). In this section

we show that it is a non-convex problem.

The Lagrangian formulation of the problem with the constraints is given as,

L = W(L) + λE1 + µIe1 (4.12)

Following Boyd and Vandenberghe [74], we use the second-order condition for testing non

convexity. The condition states that the function L in equation (4.12) is strictly convex if the

Hessian [H(L)]i,j =
∂2L

∂Li∂Lj
of the function L is positive definite. For our case, the Hessian

matrix H(L) turns out to be rank deficient and hence is not positive definite but at best

positive semi-definite. This is further validated by the negative determinant value for the second

principal sub matrix, or the first 2× 2 sub matrix on top left in our case. For a simpler choice

of objective function as stated before, the matrix is still rank deficient. We present the findings

in table 4.6. The data for the design variable {L} has been used from [83] for the first two cases

and from [113] for the last case. The cause of rank deficiency is equivalent dependence of the

{L} = [d, l1, l2, l3, l4] Cause of rank deficiency Form of A from eq. 3.7

{12, 13, 4.5, 4.5, 13} H(4, i)=H(5, i) Full

{12, 13, 4.5, 4.5, 13} H(2, i)=H(3, i) & H(4, i)=H(5, i) 1st 3 terms

{1.16, 1, 1, 1, 1} H(4, i)=H(5, i) Full

Table 4.6: Reason for rank deficiency of H

objective function on two design variables, i.e., at a point P = {dP , lP1 , lP2 , lP3 , lP4 } in parametric

space the gradient of the objective function in equation (4.12) does not have unique components

in each of the parameter space directions. We have

∇L =
∂L

∂d
|
P
êd +

∂L

∂l1
|
P

êl1 +
∂L

∂l2
|
P

êl2 +
∂L

∂l3
|
P

(êl3 + êl4) (4.13)

From equation (4.13) it is clear that the 4th & the 5th columns of the Hessian will be the same

and hence the Hessian will be of lower rank.

It was also seen that the objective function in equation (4.11) given by equation (3.7) is

dependent of the constraints in equation (4.11), which is not common for general optimization

problems. However it is easy to see the dependence of the objective function with the constraints
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in this problem because of the planar nature and simple geometry of the manipulator. The

constraint-objective function relationship is much difficult to visualize for a parallel manipulator

with multi degree of freedom, principally because the geometry is complex and the direct

kinematics problem is hard to solve.

4.3.6 Conclusions and sensitivity analysis

For this particular problem, we found that the largest workspace was obtained for Case IV with

constraints in equation (4.10). However, there may be other special case with other particular

geometric constraints which may increase the area further. Given the non-convex nature of the

problem, we cannot exactly say which constraints we should choose. However if we perform

a sensitivity analysis we can get some insight on the problem. The Lagrange multipliers for

the constraints were extracted as the optimization algorithm converged to the result given in

the first column of table 4.3. It is known (see chapter 4 of Arora [112]) that any positive

perturbations to the constraints associated with the negative Lagrange multipliers will increase

the value of the objective function from the value obtained at an optimum. Therefore, we can

conclude the following:

1. The Lagrange multiplier for the equality constraint l1 + l2 + l3 + l4 + d − LTotal = 0

was obtained to be −3.877 × 103. The non-zero value of the multiplier indicates that

this constraint was active and the large value with a negative sign indicates that the

workspace area is very sensitive to this constraint and with increasing the value of LTotal

the workspace would increase by a factor of 3.877×103 with other factors remaining same.

2. The only negative Lagrange multiplier is the one associated with the equality constraint.

All other Lagrange multipliers are positive, and hence perturbations of those constraints

might decrease the workspace area.

3. All the constraints in equation (4.7) remained inactive and hence the optimum value was

not influenced by these constraints. Therefore the dependence of the problem on the

geometry of the 5R mechanism is less and these constraints would serve as a good choice

for a further complicated optimization problem with joint limit constraints.

4. The Lagrange multipliers for the constraints given in the last column of table 4.1 were

large positive numbers. Therefore, the constraints preventing any difference in magnitude

between the values of the link lengths were active. The largest positive Lagrange multiplier

was associated with d > 1, l1 > 1 and l4 > 1.
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4.3.7 Dimensional synthesis of a 5R mechanism

In all the cases studied above, the coordinates of O1 in figures 3.2, 4.2a, 4.3a and 4.4a, has

been chosen to be the origin and O2 was fixed to lie on the X axis. As a result the workspaces

obtained in figures 4.2b, 4.3b, 4.4b, 4.5a and 4.5b are all symmetric about the horizontal axis.

It may be noted that to cross the symmetry axis, the 5R mechanism will have to go through

a singular configuration. To avoid singularity, the desired workspace is chosen on one side of

the X axis and for a required workspace, we can obtain the link lengths using the algorithm

developed in this work. For the cases discussed, the search-space was assumed to be bounded

by X ∈ [−6, 6], Y ∈ [−6, 6] and having an area of 144 unit2.

Example 1: Required workspace: Xd ∈ [2, 4], Yd ∈ [2, 4].

From the figures showing obtained workspaces, it is clearly seen that figure 4.5a includes most

of the area of the area of the design space. The optimum link lengths for this example are

found to be [1.00, 4.00, 1.00, 1.82, 2.17] length units.

Example 2: Required workspace: Xd ∈ [−4, 4], Yd ∈ [2, 4]

For this we undertook the optimization procedure once more with a relaxed boundary of Xs ∈
[−4.5, 4.5], Ys ∈ [1.5, 4.5]. The following results given in table 4.7 were obtained with the

binding constraints in table 4.1. It may be noticed that wanted workspace is symmetric about

the Y axis therefore, the choice of the coordinates for O1 at the origin is obvious. In case,

required workspace is not symmetric the coordinate of O1 can be set to the middle of range of

X.

Case Design parameters Area
I [1, 1, 4.31, 2.68, 1] 8.55
II [2.24, 3.75, 1.04, 1.25, 2.70] 9.08
III [1, 3, 1, 1, 4] 7.85
IV [1, 4, 1, 1.82, 2.17] 10.62

Table 4.7: Results of the design problem

4.4 Example 2: Optimal synthesis of a semi-regular Stew-

art platform manipulator

The Stewart platform manipulator is a six degrees-of-freedom platform type parallel manipula-

tor extensively studied by several researchers (see the review paper by Dasgupta and Mruthyun-
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b

aα

β

(a) SRSPM in the normal configuration

α

β

(b) SRSPM in the crossed configuration

Figure 4.6: Two configurations of the SRSPM

jaya [114] and the references contained therein ). In this section, we attempt the optimization

of a Stewart platform in a special configuration known as the Semi Regular Stewart Platform

Manipulator or SRSPM, first proposed, analyzed and constructed by Fichter [115]. The design

of the SRSPM for a desired workspace was attempted by Chatterjee and Ghosal [116], where

the authors have used a predefined search path to search through the parameter space and

attain an optimal result. Lou et al. [50] attempted the optimization of an SRSPM by using

fewer parameters and a controlled random search (CRS) method to obtain the global optimum

solution. We use the method presented in this work to address the following questions:

• What are the optimum design parameters for a SRSPM for the largest workspace in a

given design space with joint constraints?

• How can one design SRSPM for a desired workspace?

• Which of the two configurations of SRSPM shown in figure 4.6 gives a larger workspace

with joint limits? Or, in other words, which of the two configurations is better in terms

of kinematics and workspace?

4.4.1 Description of the manipulator

As shown in figure 4.7a, in a SRSPM the top and bottom platforms are described by two

equilateral triangles with the sides truncated before the vertices and forming an angle of α for

78



CHAPTER 4. OPTIMAL SYNTHESIS OF PARALLEL MANIPULATORS USING MONTE
CARLO METHOD

the base triangle and β for the top triangle. The ratio of the side lengths of the manipulator

platform and base triangles are given as Rab =
b

a
, where a is the side of the platform triangle

and b is the side of the base triangle. All 6 actuators for the manipulators are considered to

be identical and have unextended length of l0 and maximum possible extension of δl units.

The SRSPM can be uniquely described the geometric parameters α, β, a, b, l0 and δl. In the

optimization, we have used Rab since normalization, by considering a = 1, does not change the

geometry of the SRSPM and reduces the number of variables by 1.

In figure 4.7b, the base frame is denoted by {B0} and the top platform frame is denoted by

a = 1

α

β

li = l0 + δli

b = a×Rab
Platform

Base

∀i = 1, 2, ...6

A1

A2 A3

A4

A5A6

B1

B2 B3

B4

B5B6

{normalizing parameter}

OA

OB

(a) Geometric description of the SRSPM

{P0}

XP0

YP0ZP0

P0pi
Si

li = l0 + δli

{B0}
ZB0

XB0

YB0
B0bi

P

B

Ui

XiYi

Zi

B0t

(b) Schematic diagram of a leg of the SRSPM

Figure 4.7: Geometric description and schematic diagram of the SRSPM

{P0}. From a given distance B0t of the platform center P from the base center B, the vector

from {B0} to any point Pi on the platform can be given as,

B0pi =B0
P0

[R] P0pi +B0 t (4.14)

From equation (4.14), the location of the ith spherical joint from the base can be given as:

B0Si =B0 pi −B0 bi

4.4.2 Inverse kinematics of the SRSPM

The solution to the inverse kinematics problem of the manipulator is well known and can solved

in the following steps.
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• Obtain input B0t and B0
P0

[R] from the random configuration generating subroutine.

• From the known geometry of the manipulator and figures 4.7a and 4.7b, obtain expressions

for P0pi,
B0bi and [R(Ẑ, αi)], or the orientation of the ith universal joint Ui with respect

to {B0}.

• The inverse kinematics equation are obtained as

[R(Ẑ, αi)]
T [(x, y, z)T −B0 bi] = li




sin(φi) cos(ψi)

− sin(ψi)

cos(φi) cos(ψi)


 (4.15)

Using equation (4.15), we can obtain the actuated joint values, i.e., li. The U joint variables,

φi and ψi, can also be solved from twelve constraints, 6 for the 6 S joints and 6 which ensures

the planarity of the top platform points (see section 4.4.3). At this point, it may be noted that

the expressions for the quantities P0pi,
B0bi and [R(Ẑ, αi)] will be different for the normal and

crossed configurations of the manipulators and hence the constraints will also be different.

4.4.3 Constraints for an SRSPM and definition of equivalent Jaco-

bian

The SRSPM is a six degree-of-freedom parallel manipulator. The six actuated joints are the

prismatic joints in each leg and the six universal (U) and six spherical (S) joints are passive.

As shown in Ghosal [81], we can derive 12 constraint equations which can be used to solve the

angles φi and ψi (i = 1, ..., 6) in the U joints. The first six constraint equations are derived

from the fact that the distance between two consecutive S joint is fixed. We get

|B0pi −B0 pi+1|2 = |Si − Si+1|2 (4.16)

where Si and Si+1 are the position vector of the two consecutive spherical (S) joints from the

chosen origin. The second set of constraints ensure that a) the distance between two non-

consecutive points on the platform, for example S1 & S3, are also fixed, and b) the diagonal

lines connecting two pair of non-consecutive vertices, for example (S1 & S3) and (S1 & S4) are

on the same plane, namely the plane of the top platform. These six constraints are given by

|B0p1 −B0 p3|2 = |S1 − S3|2
|B0p1 −B0 p4|2 = |S1 − S4|2
|B0p1 −B0 p5|2 = |S1 − S5|2





(4.17)
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(B0p1 −B0 p3)× (B0p1 −B0 p4) · (B0p1 −B0 p2) = 0

(B0p1 −B0 p4)× (B0p1 −B0 p5) · (B0p1 −B0 p3) = 0

(B0p1 −B0 p5)× (B0p1 −B0 p6) · (B0p1 −B0 p4) = 0





(4.18)

In may be noted that all the above 12 equations are only functions of the translation at the

six actuated prismatic (P) joints variables denoted by l and the twelve (2 × 6) rotations at the

passive U joints denoted by γ.

The twelve constraints equations can be differentiated and partitioned according to terms

associated with actuated and passive variables, l and γ, to obtain

[K(l, γ)]l̇ + [K∗(l, γ)]γ̇ = 0 (4.19)

It is easily seen that [K∗] is a square matrix of dimension 12 × 12. Equation (4.19) can be

solved for γ̇, given det(K∗) 6= 01, and we can obtain

γ̇ = −[K∗]−1[K]l̇ (4.20)

The position vector of the center of the platform in figure 4.7a is given by,

OAPOB
=

1

6

3∑

i=1

OABi (4.21)

and the orientation of the top platform with respect to the base can be written as

B0
P0

[R] =

[
OAB1 −OA B3

|OAB1 −OA B3|
Ŷ

(OAB1 −OA B5)× (OAB1 −OA B3)

|(OAB1 −OA B5)× (OAB1 −OA B3)|

]
(4.22)

where Ŷ is obtained by the cross product of the third and first column of the matrix in equa-

tion (4.22).

By differentiating the expressions for the position and orientation of the end-effector ob-

tained from equations (4.21) and (4.22) and partitioning the expression for actuated and passive

joints, we have,
B0VP0 = [JV ]l̇ + [J∗V ]γ̇ (4.23)

1In the simulation, it was ensured that det(K∗) 6= 0 and the condition number of K∗ was ≤ 104 at all points
inside the obtained workspace.
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B0ωP0 = [Jω]l̇ + [J∗ω]γ̇ (4.24)

Using equation (4.20) in equations (4.23) and (4.24) we obtain

B0VP0 = ([JV ]− [J∗V ][K∗]−1[K])l̇ (4.25)

B0ωP0 = ([Jω]− [J∗ω][K∗]−1[K])l̇ (4.26)

The matrices multiplying l̇ are the equivalent Jacobian matrices for the linear and angular

velocity parts. These are given as

JVeqv = (JV − J∗V [K∗]−1[K]) (4.27)

Jωeqv = (Jω − J∗ω[K∗]−1[K]) (4.28)

The equivalent Jacobian matrices are used to obtain the κV and κω, the 2-norm condition

numbers of JVeqv and Jωeqv.

4.4.4 Formulation and results of the optimization problem

The non-convex nature of the optimization problem of a SRSPM for the maximum well-

conditioned workspace is known from literature (for example see the work by Chatterjee and

Ghosal [116] and Lou et al. [50]) and hence, we attempt to find a local optimum by starting

from a reasonable guess. The optimization problem for this case can be formulated as,

Minimize W (α, β,Rab, l0, δl) (4.29)

Subject to, a = 1

li + δli = 1.8 , ∀i = 1, 2, ...6
π
12
< α < π

4
& π

12
< β < π

4

0.5 < Rab < 1.0 & li > 0 & δli > 0

Out of the three angles (θi, ζi, ηi) in a S joint, the range of ηi, measured about the vector
−−→
UiSi

in figure 4.7b is typically 0 to 2π. We restrict the ranges of the other two angles for a more

practical design and the ranges are given in table 4.8. It may be noted that S joint values (θi

and ξi) for the crossed configuration of the SRSPM are generally higher than that of the normal

configuration because of the skewed arrangement of the legs. This was also noted by Fichter et

al. [115] where the S joints were replaced by gimbals which provide significantly higher range

of motion than conventional S joints.
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Configuration φi ψi θi ζi

Normal
[
−π

3
,
π

3

] [
−π

3
,
π

3

] [
−π

4
,
π

4

] [
−π

4
,
π

4

]

Crossed
[
−π

3
,
π

3

] [
−π

3
,
π

3

] [
−π

4
,
π

4

] [
−π

4
,
π

4

]

Table 4.8: Un-actuated joint limits for SRSPM

In this example the starting guesses are the vectors given in equations (4.30) and (4.31) and

the search space was chosen as X ∈ [−2.5, 2.5], Y ∈ [−2.5, 2.5] and Z ∈ [1, 3] to capture the

entire workspace of the SRSPM with normalized dimensions.

(α, β,Rab, l0, δl) = {1.2, 0.8, 0.3, 1, 0.8} for normal configuration (4.30)

(α, β,Rab, l0, δl) = {0.8, 0.8, 0.36, 1.4, 0.4} for crossed configuration (4.31)

The results of the optimization problem (equation (4.29)) is shown in table 4.9 below.

Configuration Optimum design parameters Workspace volume (unit3)
Normal {0.60, 0.5, 0.75, 1.44, 0.35} 2.030
Crossed {0.76, 0.74, 0.726, 1.48 0.32 } 1.843

Table 4.9: Optimum design parameters for the SRSPM

Figure 4.8 shows the available workspaces for the SRSPM. In figure 4.8b a comparison of

the available workspaces of the SRSPM in normal configuration (indicated in gray) and crossed

configuration (in yellow) is given. As shown in table 4.9, the workspace of the manipulator is

significantly less in crossed configuration than in the normal configuration. Additionally, from

figure 4.8c one can observe that the workspace of the SRSPM is not continuous and there are

‘holes’ inside the well-conditioned workspace.

In equation (3.5) we have used an upper bound on the condition numbers, κ∗ to be 100.

Though the value 100 was arbitrarily chosen, similar results can be obtained for any chosen

upper bound κ∗. Figure 4.9 shows the obtained workspace as the upper bound is increased. It

can be seen that the chosen upper bound of 100 gives a conservative estimate and if the upper

bound is increased we get a larger workspace.

4.4.5 Sensitivity analysis and observations

The SRSPM has many more parameters when compared to the 5R example and the effect of

the geometric constraints on the workspace volume is more difficult to obtain. The values of
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Figure 4.8: Workspaces of the optimum SRSPMs obtained for a given search space

the Lagrange multipliers for the problem have been extracted and plotted in figure 4.10 and we

can make the following general observations.

• The values of Lagrange multipliers for the normal case are lesser than the crossed case

by 4 orders of magnitude. This indicates that the optimization problem for the normal

case was not much affected by the chosen constraints. However, the common theme is

that the nature of the Lagrange multipliers for each case are the same, i.e., the equality
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Figure 4.9: Dependence of well-conditioned workspace on chosen κ∗ for the SRSPM in normal
configuration

constraints have negative Lagrange multipliers and the inequality constraints have positive

valued multipliers.

• In each case the equality constraints, i.e., a = 1 and li + δli = 1.8 ∀i = 1, 2, ..., 6 bear

a negative valued Lagrange multiplier. This indicates the obvious result that the larger

manipulator with a larger actuator range will have a larger workspace.

• The Lagrange multiplier associated with the constraint Rab > 0.5 remained positive for

both the cases indicating that the constraint reduced the workspace volume value at the

optimum. This constraint was used to ensure that the top platform is not smaller than

half of the base.

• The constraints li > 0 remained inactive for both of the problems. This is consistent

with the intuition that linear actuator should have a positive length. The constraint

δli > 0 remained inactive for the normal configuration but had a high positive value

for the crossed configuration. We recall that the equality constraint on the extension of

the linear actuator is at most 80 % of the original length. Since at most of the feasible

configurations of the crossed manipulators, the linear actuator is slanted, the points at

the lower level (about the Z direction) of the search space were omitted since δli > 0 and

used the particular un-actuated length of the linear actuators. The high positive value

of the δli > 0 constraint for the crossed configuration of the manipulator is due to this

reason.
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Figure 4.10: Lagrange multipliers for the optimization problem at an optimum

• The constraints on the upper limits of α and β were inactive but the constraints α >
π

12
and β >

π

12
both had positive valued Lagrange multiplier. This finding suggests that a

triangular top platform (also known as the 6-3 configurations) gives a larger workspace for

both manipulator configurations. As documented in [115], Fichter has used a triangular

top platform to analyze the SRSPM.

4.4.6 Dimensional synthesis of a SRSPM for a desired workspace

In this section, we attempt the problem of designing an optimal Stewart platform manipula-

tor for a desired workspace by using the optimal dimensions we obtained (see table 4.9) in

section 4.4.4. For a arbitrarily desired well-conditioned workspace of 1.5 units along X, 2

units along Y and 0.4 units along Z and a volume of 1.2 unit3, the search space is chosen as
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(c) Histogram of the total workspace of the SRSPM

Figure 4.11: Workspaces and histogram of the SRSPM in normal configuration

X ∈ [−2.5, 2.5], Y ∈ [−2.5, 2.5] and Z ∈ [1, 3] to capture the entire workspace of the SRSPM.

The parameters giving the maximum workspace for both configurations are given in table 4.9.

The histogram obtained for the optimal SRPSM, using a Monte Carlo simulation, is shown in

figure 4.11c. The histograms show that the ranges in the normal configuration can be chosen

as X ∈ [−0.5, 1], Y ∈ [−1, 1] and Z ∈ [1.8, 2.2]. Using the ranges, we run a separate Monte

Carlo simulation and obtain the volume of the workspace as 0.87 unit3 which is somewhat less

than the desired workspace volume.

To obtain the desired larger volume, we observe from figure 4.11a that the workspace of the
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synthesized Stewart platform manipulator is almost equally distributed around the Z axis (also

observed by Masory and Wang [39]). To increase the volume, we can modify the equality con-

straints involving a and l0 + δl. From the sensitivity analysis in section 4.4.5, we recollect that

the equality constraints a = 1 and l0 + δli = 1.8, are associated with a negative Lagrange mul-

tiplier. Therefore, by introducing a as a design variable with a suitable upper and lower bound

(to ensure that the optimization problem is bounded), a larger workspace may be obtained. To

obtain the value of a which gives the desired volume of 1.2 unit3, we relax the constraints a

and l0 + δli to a = 1.5 and l0 + δli = 2.5 and perform the optimization again with the values

obtained above as initial guess. It was found that the desired workspace volume 1.2 unit3 can

be achieved from a new histogram where the ranges chosen are X ∈ [−0.5, 1], Y ∈ [−1, 1] and

Z ∈ [2.0, 2.4]. This is shown in figure 4.11a. The parameters of the Stewart platform manipula-

tor, (α, β,Rab, l0, δl, a), to obtain the desired workspace are (0.713, 0.708, 0.802, 1.72, 0.78, 1.5),

respectively.

Figure 4.11b shows the orientation workspace of the optimal manipulator at the center of

the well-conditioned workspace shown in figure 4.11a. As shown in figure 4.7a, θ, φ and ψ are

the Euler angles about X, Y and Z axes indicating the orientation of the top platform P with

respect to the base B.

4.5 Design parameter sensitivity of Multi-fingered hands

Hand workspaces vary as the hand is manipulating objects of varied sizes. This is evident from

our daily experiences and the same effect is also prevalent for multi-fingered robotics hands.

This effect is demonstrated in figures 3.14 and 3.19a. We observe that the available workspaces

for hands of different sizes vary widely and for manipulating the same object a larger hand

has a larger workspace. To analyze the dependence of the human hand workspace volume

on individual hand dimensions like finger lengths and palm area etc. we pose the following

problem:

Problem To obtain the dimensions of the 95th percentile male human hand with the largest

well conditioned workspace area while manipulating a spherical object of a given size.

Solution To solve the problem, we parametrize the hand (as shown in figures 3.6 and 3.17)

with the dimensions given below

P = {d, h, l11, l12, l13, rm, rt} (4.32)

where, in equation (4.32), rt and rm are the ratios of the total length of the thumb and the

middle fingers divided by the total length of the index finger. Next, we formulate the following
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optimization problem

Maximize
P

WS(P) (4.33)

Subject to h× d ≤ 1000,
3∑

i=1

l1i = 80

rm < 2, rt < 2, l1i ≥ 20, ∀i = 1, 2, 3

d > 0, h > 0 , d ≤ 20, h ≤ 80 & d ≤ 0.3h

The constraints as well as their numerical values have been obtained for the 95th percentile

male according to the studies by [117] and [118]. The Lagrange multipliers for the equality and

inequality constraints are also obtained at the optimum. A scaled plot containing the constraint

Lagrange multipliers is given in figure 4.12. At an optimum point ~P, the Lagrange multipliers,

~µ and ~λ, give the effect of the perturbation on the constraints. Any positive perturbations to

the constraints associated with the negative Lagrange multipliers will increase the value of the

objective function from the value obtained at an optimum [112]. Therefore, from figures 4.12a

and 4.12b, we can conclude the following:

• The constraints limiting the hand size i.e., palm area and index finger length given by

l × d < 1000 and
3∑
i=1

l1i = 80, have negative Lagrange multipliers associated with them,

which signifies the obvious result that a larger hand has a larger workspace.

• From the value of the Lagrange multipliers for the constraints we observe that the

workspace is more sensitive to a change in palm area than a change in finger length.

• The workspace is not very sensitive to the upper limits on rm and rt. Also, at an optimum

we obtain rm = 1.1 and rt = 1.35 which are quite close to the values suggested by [117]

and [118].

• The workspace is quite sensitive to lower bounds on the fingers segments, however, the

workspace is not sensitive to the lower limits on d and h.

• Values of the Lagrange multipliers associated with constraints on the upper limits on d

and h suggest that the workspace is equally sensitive to these constraints.

As it is evident from the schematic of the multi-fingered hands from figures 3.6 and 3.17,

the variation of the hand workspaces with object size from figures 3.14 and 3.19a and the

sensitivity of the hand workspace to the hand dimensions form figure 4.12, we can conclude
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(a) Lagrange multipliers for the human hand model at an optimum

(b) Lagrange multipliers for the Salisbury hand at an optimum

Figure 4.12: Lagrange multipliers for the multi-fingered hands at an optimum

that, geometrically the 6 DoF approximation of the human hand (as discussed in section 3.3)

and the Salisbury hand (as discussed in section 3.4) are quite similar.

4.6 Conclusion

In this chapter, we have shown that we can use the Monte Carlo method in conjunction with

a traditional gradient based optimization method to formulate the optimization problem for a

parallel manipulator. We have presented two demonstrative examples of optimization of parallel

manipulators. The first example in section 4.3 compares analytical and numerical approach for

the optimization of the 5R planar mechanism and provided some mathematical insights into

the dependence of the objective function on constraints. In section 4.4 we have attempted a

general optimal design problem of the well known semi-regular Stewart platform manipulator
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(SRSPM). In both examples, we have attempted a design problem with realistic constraints and

demonstrated that the approach presented in this work can be used by a designer to efficiently

design an optimum parallel manipulator. Finally in section 4.5 we have demonstrated the

sensitivity of the well conditioned workspace of the multi fingered hands to perturbations in

design constraints.
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Chapter 5

Conclusions and Future work

5.1 Summary

In this thesis, we have attempted to put forth a method for optimal kinematic design of parallel

manipulators. We began by presenting the general motivation for the problem in chapter 1.

We noted that for designing parallel manipulators, we need to start by representing and quan-

tifying the workspace of the manipulator. To this end, we presented a review of the current

state of the art in obtaining the workspace of the manipulators and subsequently proposed a

Monte Carlo based method for obtaining the workspace. Next, we discussed the problem of

optimum design of parallel manipulators for the largest workspace. Regarding this, we reviewed

the current state of the art to outline the different choices of objective functions and techniques

for undertaking the said problem. Subsequently, we chose the quantity called “well-conditioned

workspace” of the manipulator as the objective function and proposed the use of gradient based

optimization techniques to arrive at the optimal dimensions of the manipulator.

In chapter 2 we reviewed the key mathematical and modeling concepts used in the work.

We started by discussing the Monte Carlo method. We presented a basic introduction to the

technique, a possible improvement on the naive Monte Carlo method and discussed how we

have used it in our work. Following which, we discuss how we have represented the workspace

of the manipulator using techniques from computational geometry. We finished the chapter by

discussing a method of fitting super-ellipsoids to a cloud of points and a technique to obtain

the volume of intersection between two arbitrarily placed super-ellipsoids without calculating

their distance of closest approach.

In the following chapter 3, we have discussed the application of Monte Carlo method to

obtain the workspace of a manipulator. We started by discussing how we have used the Monte

Carlo method for obtaining the workspace of the manipulator, as well as advantages and dis-
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advantages of using the Monte Carlo method. Next, we demonstrated the technique with two

examples of obtaining workspaces of multi-fingered hands. In the first example, we discussed a

6 degrees of freedom hybrid parallel manipulator to emulate the kinematics of the human three

fingered manipulation and obtained the workspace of the hand. We demonstrated the effective-

ness of our formulation by comparing theoretically and experimentally obtained workspaces of

the hand. In the second example, we obtained the workspace of the Stanford-JPL hand.

Finally, in chapter 4 we presented a method for optimal synthesis of parallel manipulators

for a required workspace. We started by discussing the gradient based optimization method

and presented two examples to demonstrate the technique. In the first example, we discussed

the optimal synthesis of a 2 degrees of freedom 5R planar parallel manipulator for a given

workspace considering four different workspace topologies arising from four different assembly

conditions. In the second example, we discuss the optimal synthesis of a Stewart platform for a

required workspace. Finally, as a consequence of using gradient based optimization techniques,

we could also demonstrate the sensitivity of the well conditioned workspace of the manipulator

to perturbations to the design constraints of the manipulator.

5.2 Scope of future work

The thesis focuses on kinematic design and optimal synthesis of parallel manipulators, which,

concerning design of parallel manipulators, can be regarded as the first step. However, based

on the current developments documented in the thesis, the following areas may be explored in

future:

• Optimal synthesis of parallel manipulators

The work presented in the thesis may be regarded as the first step in design of parallel

manipulators. Results from the current work can be used as possible design parameters

to start with and techniques described for visualizing the workspace may be considered.

• Control and path generation of multi-fingered manipulation

We have discussed the kinematics of the three fingered manipulation in section 3.3, by

formulating and solving the inverse kinematics problem, assuming realistic joint ranges,

finger segment dimensions and nature of contacts between the fingers and the objects.

These can be extended to solve path generation and control of multi-fingered manipulation

of objects.
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Appendix

A Obtaining the joint values of a spherical joint connect-

ing two bodies

In this appendix, we present a method to obtain the joint values of a spherical joint connecting

two bodies. For this we present a general case as shown in figure 1.1a, where an object is

connected to a body by a spherical joint S, three revolute joints (θi, i = 1, 2, 4), a prismatic

joint δ3 and 4 links of link lengths li, i = 1, 2, 3, 4. We need to obtain the joint values to describe

the spherical joint S in a given configuration of the manipulator in figure 1.1a.

As the configuration of the manipulator is known, we know all the joint values {θ1, θ2, δ3, θ4}
and the position and orientation of the object with respect to the body (i.e. Object

Body [T ]). Since

the joint values are known, we can also obtain the position and orientation of the link connected

to the object by the spherical joint (i.e. l4
Body [T ]). From this information, we can obtain the

orientation of the link l4 and the object with respect to the body frame (i.e. l4
Body [R] and

Object
Body [R]) individually by extracting the top left 3×3 matrix from each of l4Body [T ] and Object

Body [T ]

respectively.

Subsequently to obtain the rotation of the S joint we observe, following Ghosal [81], that a

spherical joint can be expressed as a combination of 3 mutually perpendicular revolute joints.

The relative rotation between the link l4 and the object is given by the rotation matrix R∗ as

given in equation (1.1)

R∗ =l4
Body [R]T Object

Body [R] (1.1)

For the rotation matrix R∗ with elements rij, i, j = 1, 2, 3, the three rotations (Z-Y-X

rotation)1 is found out by using the following algorithm:

1For details on the choice of this rotation matrix see Shyam [119]
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Figure 1.1: Manipulator with a spherical joint

If r31 6= ± 1, then

ξY = atan2[−r31,±
√

r2
32 + r2

33 ]

ξZ = atan2[r21/ cos(θξY), r11/ cos(θξY)]

ξZ = atan2[r32/ cos(θξY), r33/ cos(θξY)]

If r31 = 1, then

ξY = −π
2
, ξY = 0, ξX = atan2[−r12,−r13]

If r31 = -1, then

ξY =
π

2
, ξZ = 0, ξX = atan2[r12, r13]

where atan2 is the four quadrant inverse tangent function.
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