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Abstract

Quadrupeds robots can move on uneven and rough terrain where mobile robots cannot venture. Al-

though bipeds have more capabilities, they are inherently unstable and difficult to control. Most

quadrupeds today are built with a rigid spine. In nature, however, all quadruped have a flexible

spine, and it provides better agility and more efficiency in motion. This thesis deals with the study of

the development of a method to develop a flexible spine for Quadruped robots. At first, we explore

the idea of discretizing a continuous beam into multiple rigid and flexible body element. The flexi-

ble elements are considered to be linear torsional spring on a rotary joint (R). We developed a simple

algebraic formulation to discretize a continuous beam in any desired number of rigid and flexible ele-

ments.We show that, for small deflection, this method covers all types of boundary condition generated

in a beam formulation. Next, we exploit the idea of transforming the continuous structure into a rigid-

flexible structure to generate spine-like structure for quadruped robot. We use ideas from structural

optimization to produce a shape of the articulated structure that can support the desired load while

providing the needed flexibility. The objective function used in the optimization represents the rigidity

of the structure, and the constraints contained the flexibility desired. A gradient-based optimization

method is used to obtain various structures under similar constraints for different endpoint flexibility.

Additionally, we analyze the response time of the structure. It is shown that the desired response time

can be obtained by introducing damping in various parts of the structure. Again a gradient-based

optimization is used to obtain the damping in the structure to achieve the desired response time.

In the second part, we deal with the development of quadruped robots with the rigid and flexible

spine. The CAD models of the robots created and simulated in the physics engine. Once validated, the

segments and modules of the robots are manufactured and assembled with the servo motors. The con-

trollers and power source are added afterward completing the design. The robots are both controlled

with coupled nonlinear oscillator without any feedback. By controlling the coupling, we generated

various gaits in the robots such as trot, bound and canter. In the simulation result, we found the veloc-

ity of the flexible spine quadruped is higher than a rigid spine quadruped for a bounding gait. In this

part, we also describe the use of the optimal spine in the development of the quadruped and problems

experienced while executing it in real life.
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Chapter 1

Introduction

1.1 Motivation

The analysis, design and fabrication of quadruped robots are one of the key topics of interest in the

field of robotics. This is motivated by four-legged animals which can carry large loads on their back

and also navigate through rough terrains which are inaccessible to wheeled mobile robots. Several

such legged robots have been designed and built (for example, HyQ2Max [1], ANYmal [2], Big-dog

[3]). They mimic the motion of quadruped animals. Most of these robots have a rigid central structure

along its primary axis, which reduces the flexibility of their body. The lack of flexibility reduces ma-

neuverability and stride length. Motivated by nature, recently researchers have attempted to design

an articulated spine for a quadruped robot[4] and this has shown encouraging results, in terms of en-

ergy efficiency and average running speed (see, for example, the MIT Cheetah [5],Lynx [6], Bobcat [7]).

These designs can be classified into two broad categories, namely, active actuated spine [8] and pas-

sive flexible spine [9, 10]. In recent work, researchers [11] have also studied a bionic flexible body for

side-wise bending.

(a) CheetahCub (b) MIT Cheetah 2 (c) HyQ

Figure 1.1: Various rigid spine quadruped robots built so far

1



Chapter 1. Introduction 2

(a) Lynx SV3 (b) MIT Cheetah (c) Cheetah

Figure 1.2: Various flexible spine quadrupeds

1.2 Challenges in designing a flexible spine quadruped

The analysis and fabrication quadruped robots has drawn large amount of world wide interest with

various groups working on the topic. Creating a flexible spine quadruped is very challenging, and

so far, there has not been any formal way to design a flexible spine quadruped. Work done on MIT

Cheetah and EPFL Lynx is one of the prominent example of flexible spine quadruped. Both however

suffers from the issue of stability. The problem with stability arises due to two major reasons. First,

The internal load experienced by the body is significant enough to cause deformation in the spine if it

is no rigid enough. This results in undesired movement of spine even in gaits which does not require

spine movement at all. Hence, the body becomes unstable. Also, the loading experienced by the body

is much more than the static loading value of the structure. The second reason of instability is due to

presence of undesired degrees of freedom in the spine, such as off plane bending and torsion. As there

are no actuators in the direction of the undesired movement, there are no mechanism to correct the

error generated due to these motions. In this work, we address the first issue with help of parameter

optimization process and while designing the experimental model we experience the second issue.

1.3 Parameter optimization

In the field of designing structures by objective function minimization[12], parameter optimization is

a standard procedure. Work done by Xu and Ananthasuresh[13], Zhou and Ting[14] have solved a

similar problem but with a continuous beam. In these works, first, the variable was parameterized.

Next, the desired objective was considered as a constraint in the optimization. Finally, an objective

function was selected to be minimized. In reference [13], the ratio of mutual strain energy and strain

energy is selected to be the objective function. Once the optimization problem is designed, gradient-

based methods are used to determine the solution. In reference, [13] the parameters of a bezier curve

and in [14] parameters of a wide curve were determined with the gradient-based approach. Finally, the
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optimal solutions of these problems were used to design compliant mechanisms. The hardware model

developed by the optimal solution shows desired properties provided as constraints earlier.

In this work, we pose the problem of rigidity and flexibility of the spine similarly. The desired

objective, flexibility, is set as a constraint for the optimization problem and the rigidity, strain energy, is

posed as the objective function. The solution of this problem provides the shape and nodal stiffness of

the spine. Unlike the works in reference [13], this works deals with the multi-body system rather than

a continuous beam.

1.4 Contribution of this thesis

The goal of this work is towards the development of flexible spine for a quadruped robot. The main

contributions of the thesis are in the area of development of an optimization approach to the develop-

ment of the flexible spine and hardware to validate the design of quadruped robot with a flexible torso.

Specific contributions of this work are as follows:

• Development of a simple approach to pseudo-rigid modeling of a continuous beam.

• An optimization scheme to develop an articulated spine-like structure with different boundary

conditions under discrete and periodic loading.

• Designing a hardware to act as a flexible multi-segment spine with desired properties. The de-

veloped hardware allows the user to make modifications to the shape of the spine after manufac-

turing. Easy to replace and manufacture, without any moving parts and modular, the structure

developed provides a unique way provide multi-degree freedom in the spine.

1.5 Preview

The organization of the thesis is as follows: In chapter 2, the idea and the result of simple transfor-

mation between pseudo-rigid-body and a continuous beam are discussed. Chapter 3 describes the

optimization problems developed to obtain an articulated spine-like structure for a quadruped robot.

This chapter also provides an analysis of the optimized structure under static and dynamic loading.

Chapter 4 presents the details regarding the prototype simulation, design, and control. Finally, Chapter

5 provides the conclusions and future directions for the future work.



Chapter 2

Continuous to discrete modeling: a

simple approach

2.1 Introduction

Pseudo rigid models are an excellent way to mimic the behavior of a continuous body system. Work

done by Howell and Midha [15], Su[16] cover this topic to a great extent. However, these works also

raise a few questions. First, all these cases had a clear view of the trajectory of the end point of a

cantilever. So is it a must to have a complete set of FEM solution for development of pseudo-rigid-

body? Second, what would happen the number of links chosen is greater than 4? Third, The effect of

various boundary conditions on the pseudo rigid modeling.

In this chapter, we developed a multi-link pseudo-rigid model for small deflection of a beam and

the analyze the effect under different boundary condition on the modeling procedure.

2.2 Mathematical model

The mathematical model of a pseudo-rigid beam is made up of rigid links and joints with springs.

We determine a simple approach to obtain the number of links and the stiffness at the joints for a

known deflection at a point. The pseudo-rigid-body model is compared with a standard finite element

analysis based approach, and it is shown that we can obtain the pseudo-rigid-body approximation

with reasonably small errors. It may be mentioned that we assume small deflection.

4
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Pl

K1

K2

K3

θ1

θ2

θ3

(a) Lumped model of a cantilever

−PyL2 cosφ2

−K2(φ2 − φ1)

PyL1 cosφ1

K2(φ2 − φ1)−K1φ1

(b) Free body diagram of two interacting link

Figure 2.1: Lumped modeling of a cantilever and Free body diagram

2.2.1 Pseudo rigid modeling of a cantilever

Figure 2.1 shows a cantilever discretized with three rigid links with an end load P . For a cantilever

beam, we assume,

1. All link lengths are equal.

2. All the stiffness other than those at the boundary are equal. This is done to simulate the homoge-

neous nature of the structure.

Under these assumptions, we now discuss the algorithm to transform a continuous cantilever beam int

a pseudo-rigid model.

1. Maximum deflection is determined, and with its help, the equivalent stiffness is determined(Keq).

2. The desired stiffness is provided by the user, and α is calculated.

3. The boundary stiffness(Kb) and endpoint stiffness(Ke) is provided. Using these, γ and σ is deter-

mined.

4. The following equation is used to determine the number of links so that the deflection at the end

remains unchanged.

σn4+(4+4σγ−4σ−12ασ)n3+(−12ασγ−12α−6+12ασ+5σ−6σγ+12γ)n2+(2γσ−2σ+2)n = 0 (2.1)

Keq =
2EmI

L
; α =

Kd

Keq
; γ =

Kd

Kb
; σ =

Ke

Kd
;

Where, Kd is the prescribed torsional stiffness, Ke is the torsional stiffness at the end point, Kb is the

torsional stiffness at the boundary.
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The number of link obtained is a fractional value. But in practice that is not possible. So links are

rounded up to their closest integer value and the desired stiffness(Kd) is determined for that integer

value using eq. (2.2).

Kd = Keq

σ

12
n4 +

1 + σγ − σ
3

n3 +
5σ − 6γσ + 12γ − 6

12
n2 +

γσ − σ + 1

6
n

(σn+ σγ + 1− σ)n2
(2.2)

The origin of eq. (2.1) and eq. (2.2) has been discussed in appendix C. Equation (2.1) is a fourth

order polynomial hence it will have 4 roots. However apart from one root all the others tends to be

zero or imaginary. The observation of the solution gives us a linear relationship between the Kd and

link number (n), for a given end point deflection and boundary conditions,fig. 2.2.

Figure 2.2: Solution of eq. (2.1) for various α

The solution of equation (2.1) under two different boundary condition, fixed end and a spring

loaded end, is provided in fig. 2.3(a) and fig. 2.3(b). Each of the figures shows the solution for multiple

end conditions.

(a) Cantilever with a spring loaded base (b) Cantilever with a fixed base

Figure 2.3: Solution of the polynomial under different conditions
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2.2.2 Pseudo rigid body model of a beam with both end free

PY

K

K

2K

2K

K

K
K

K

Figure 2.4: Splitting a single beam into two cantilevers.

In this section, we will extend the idea of the pseudo rigid modeling from cantilever to beams with

supports at both ends. To derive the pseudo rigid model, we first split the beam into two cantilevers

on the point of maximum deflection, fig. 2.4. The point of the division now becomes boundary for the

cantilevers and the nodal stiffness there is considered as the boundary stiffness (Kb). It is two times

the desired stiffness (Kd). Since the supports were free, the end stiffness (Ke) is considered to be zero.

The assumptions in section 2.2.1 and eq. (2.1) are used to derive the number of links required for the

pseudo rigid model. In eq. (2.1), σ is set to be 0 and γ is set 0.5.

2.2.3 Pseudo rigid body model of a beam with both end fixed

The process to determine the pseudo rigid model for beams with both ends fixed is similar to free end,

but with one key difference. Here, the end stiffness is considered to be very high, usually 106 times.

Hence in eq. (2.1), σ is set to be 106 and γ is set 0.5.

Due to the nature of the eq. (2.1), γ and σ can be interchanged with certain transformation. If point

of devision is considered to be the end point rather than the base then γ is 10−6 and σ is 2. In both the

cases the solution is same.

2.3 Results and discussion

In this section, we discuss the results obtained the formulations from the mathematical models. The

results obtained from eq. (2.1) is used decide the number of links and the nodal stiffness of the lumped
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multi-body system. The system is then loaded with a prescribed force/moment, and the final deformed

structure is recorded.

Next, we compare these results with the results obtained from a standard linear finite element anal-

ysis under the same external loading and geometric constraints. For the simulation, we have used 100

one dimensional elements on a 2m long slender beam1. The Young’s modulus is 2.1GPa, the width of

the rectangular cross-section is 10cm and the height is 10cm. Initially, all the beams are kept horizontal.

For the cantilever, the load is applied at the very end of the beam. For the supported beams, the load

is applied at the middle. Figure 2.5 describes the pseudo rigid model designed from the results obtain

0 0.5 1 1.5 2 2.5

Beam Length (m), link no.=12

-0.02

-0.018

-0.016

-0.014

-0.012

-0.01

-0.008

-0.006

-0.004

-0.002

0

D
ef

le
ct

io
n 

(m
)

Rigid body
Nodes
FEM results

Figure 2.5: Pseudo rigid solution obtained from the formulation

from eq. (2.1) and eq. (2.2). In the same figure we also compare the results to a finite element solution.

The error are less than 0.1 %.

In fig. 2.6, a 2m long fixed-fixed beam of width 10cm and height 10 cm is described. A vertical load of

1000N is applied at the middle of this beam. the Young’s modulus of the beam is 2.1GPa. Similar to

the cantilever we compare it with the finite element solution(blue).

In fig. 2.7, a 2m long simple supported beam of width 10cm and height 10 cm is described. A vertical

load of 1000N is applied at the middle of this beam and the solution is compared with the finite ele-

ment solution(blue).

Error due to approximation

Since we are using a very specific loading condition to generate the number of links used in pseudo

rigid modeling, the solution produces an error when the loading condition changes. Apart from the

change in loading condition, the decrease in the number of links also leads to increase in error. In

1Developed by M2D2 Laboratory, Mechanical Engg., IISc, Bangalore
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Figure 2.6: Beam with both end fixed
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Figure 2.7: Simple supported beam

fig. 2.9 variation of error with the increase in the number of links is described. In fig. 2.10, the loading

condition is changed from endpoint external force to endpoint external moment. Figure 2.10(c) de-

scribes how the error changes with an increase in the number of links.
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Figure 2.8: Beam with one end free and other end free

(a) Cantilever deflection and pseudo rigid
modelling

(b) Change in error with the variation of the number
of links

Figure 2.9

2.4 Summary

In section, we derived a mathematical formulation for designing n-link pseudo rigid model from con-

tinuous beam and compared the results obtained from this model to standard finite element method.

We also describe how the error discovered during comparison and how the link number affects it.

The lumped pseudo rigid modeling provides us with the notion that continuous beams can be made

into lumped parameters models. Under this notion we extend the ideas to structural optimization. The

pseudo rigid model helped us to identify the parameters, link number, nodal stiffness, link length to

be used as optimization variable for the optimization problem.



Chapter 2. Continuous to discrete modeling: a simple approach 11

(a) Error generated in a 8 link model (b) Error generated in a 11 link system (c) Behavior of the error due to change
in loading type

Figure 2.10: Error generated due to the change in loading type, 100 N-m moment is applied at the end
node



Chapter 3

Optimization scheme for spine like

structure

3.1 Introduction

The spine or the vertebrae column in an animal is a flexible multi-body structure with multiple degrees

of freedom (DoF) at each joint. These joints are actuated and constrained by many muscles and tendons

leading to a limited motion of the spine. A one-dimensional serial chain connected by more than three

joints, moving in a plane, can be thought of as a hyper-redundant serial manipulator [17]. If the end

of such a hyper-redundant serial robot is given a desired displacement, then there exists an infinite

number of solutions for the joint variables to achieve the end displacement. To find an unique solution,

also called the resolution of redundancy [18], there exists several approaches. All these approaches deal

with position and/or velocity of the rigid segment and not with the response to an external loading. In

the statics of serial manipulators or a hyper-redundant manipulator, the issue of redundancy does not

arise. For a given external force and/or moment applied at the end-effector, the reaction torques or the

applied torque at the joints can be obtained from the transpose of the manipulator Jacobian matrix [19].

However, for a given prescribed end-effector motion together with external loading at the joints or at

the end, the joint torques cannot be obtained uniquely for a hyper-redundant manipulator. This is

because the Jacobian depends on the configuration of the manipulator that is to be determined.

The spine under external loading can be treated as a loaded multi-body serial manipulator with

a constrained end-point motion. The equations of motion of a serial manipulator, redundant or oth-

erwise, can be formulated and solved numerically. From this formulation, for a given torque at the

joints, the motion of the links can be obtained and likewise the torque at the joints can be computed for

a desired motion of the links. In our one-dimensional model, the muscles and tendons of the original

12
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spine are approximated by torsional springs rather than actuators. As none of the joints are active, with

the introduction of torsional springs at the joints, the hyper redundant manipulator problem becomes

a problem of an under-actuated system [20]. Obtaining the desired motion of an under-actuated serial

robot and its shape, when subjected to transverse and axial loading, is much more difficult. In the case

of a flexible spine, the model contains a large number of rigid segments to obtain realistic motion. As

we do not introduce any actuators capable of directly controlling the states of the system, it can be

described as an articulated passive system. The primary reason for this effort, when compared with a

spine of a single rigid segment, is that the flexible central structure is known to be more energy effi-

cient [21, 22, 23]. It also known to enable a higher average speed as compared to a rigid central frame.

Work done by Khormoashiha and Ijspeert [7] shows the benefits of an active spine. It is clear from this

work that the larger the spine deflection the better the average gait speed.

Obtaining the shape of a flexible structure subjected to loading or an end-point displacement and or

force is also dealt in the context of shape optimization in compliant mechanisms (see, for example, the

work by Xu and Ananthasuresh [13] and the references contained therein). In these studies, the flexible

links are modeled as continuous beams and a finite element formulation is used to determine the shape

of the structure against external loading and desired deflection. In reference [13], the parameters of

Bezier curve have been used as the design variables. A modified version of the work has been done by

Zhou and Ting [14] where they have used wide curves to take into account the variable width-profile

of the beams. In the case of the spine, the assumption of discrete rigid segments connected by joints

is more reasonable and the motion of the rigid segments and the rotations at the joints can be large

resulting in significant change in their orientation.

In this chapter, we focus on modeling and design of flexible spines that can bear loads transverse to

its axis and also deform in a desired manner due to a load applied along the axial direction. We have

used the equation of motion to study the motion of a serial chain of rigid segments connected by joints

with torsional springs and damping at the joints. The theory developed is applicable to an arbitrary

number of segments. We assume reasonable constraints on the angular motion at the joints. For a given

transverse loading, the spring stiffness and link orientation at the joints are obtained by optimizing

an appropriate objective functions related to the work done by the loads. Next, for a desired end-

point motion, we use a modified objective function and techniques from structural optimization [12]

to obtain a design which is not only is capable of bearing transverse loads but also provide the desired

end-point motion. Additionally, we attempt to design the flexible structure to give a desired time

response by obtaining appropriate damping at the joints. The designs are obtained using a gradient-

based optimization techniques.

The chapter is organized as follows: In Section 3.2, we briefly describe the modeling of the flexible

one-dimensional spine as a serial chain manipulator, and then derive the equations of motion including
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the effect of the springs and dampers at the joints, external loads acting on the nodes and the axial force

applied at the free end. In Section 3.3, we analyze the optimization problem for a serial chain with two

links and present the necessity of using an optimization approach for a system with large number of

links. In Section 3.4, we frame the optimization problems for the static deflection and the dynamic

response. In Section 3.5, we describe the numerical methods used to solve the optimization problems

and present numerical results for the static and dynamic cases. We are able to show that many of

the structures obtained from optimization have similar features to that of the vertebrae of fast moving

quadrupeds. In Section 5.1, we present the conclusions, limitations and scope for further work.

3.2 Modeling of a multi-link flexible serial chain

Modeling and analysis of animal spine has become a focus of many research efforts related to loco-

motion [24, 25]. A realistic view of the vertebrae column would require each segment to have all

six degrees-of-freedom (DoF) at each joint if the constraints due to the muscles and tendons are ig-

nored [26]. However, this is computationally intensive. Furthermore, many of the DoFs in the 6-DoF

model are unnecessary. To simplify our modeling, we consider the spine to be a multi-body serial ma-

nipulator with rigid segments and joints with some limits to the angle of rotations at the joints. We also

assume that the joints have torsional springs that offer resistance to the rotations at the joints. Figure 3.1

shows a N link serial chain with one end fixed and the free end subjected to a horizontal force result-

ing in a desired end motion. The rotations at the joints, θi, are with respect to a horizontal X axis and

hence are absolute rotations. Each joint has an associated lumped stiffness Ki and a lumped damping

Ci. At each joint, there is a loading along the negative Y axis denoted by PY which the structure must

be capable of bearing in addition to the self-weight. The desired end motion is denoted by δX and this

is due to a horizontal actuating force PX . We have no control over the given axial force.

PY,2

PX,N+1

PY,1

PY,3 PY,4

PY,N−1

PY,N

PY,N+1

Y

X

Figure 3.1: An N link constrained serial chain with axial and transverse loading



Chapter 3. Optimization scheme for spine like structure 15

3.2.1 Equilibrium equation and equations of motion

The location of each joint (Xi, Yi) is given by

Xi =
i−1∑
j=1

Lj cos θj , Yi =
i−1∑
j=1

Lj sin θj (3.1)

The Y deflection of the end-point is assumed to be zero and hence there exists a constraint, denoted by

Φ(θ), of the form

Φ(θ) =
N∑
i=1

Li sin θi = 0 (3.2)

Denoting the deflection at the ith joint along X and Y axes by ∆Xi and ∆Yi, respectively and rotation

by δθi, we can obtain the total potential energy as

PE =
1

2

N∑
i=1

Kiδθ
2
i −

N+1∑
i=1

PX,i∆Xi −
N+1∑
i=1

PY,i∆Yi −
N∑
k=1

mkgYgk (3.3)

where, δθi = (θi−θ0,i)−(θi−1−θi−1,0), θ0,i is the original orientation of the ith angle, θi is the deformed

orientation of the ith angle, Ki is the torsional stiffness of the ith joint, Li is the length of the ith link,

PX,i, PY,i are the loads applied along X and Y axis on the ith joint respectively, g is acceleration due to

gravity and Ygk is the position of the center of mass of the kth link with mass mk.

Associating a Lagrange multiplier λ with the constraint in equation (3.2), we can write the La-

grangian

L = −PE + λΦ(θ) (3.4)

and we can generate N + 1 equilibrium equations by taking partial derivative with respect to states θi

and co-state λ. We get,

Kmδθ = P(θ) (3.5)

where, P(θ) denotes the load vector generated due to loadings and constraints.

For a dynamic system we use the Lagrangian (KE − PE) and Lagrange multiplier (Λ) with the

constraint equation, to develop the equations of motion. Following the standard approach [19], the

equations of motion can be written as

MA(θ)α̈+ CA(θ, θ̇)α̇+KAδα = P(θ, t) (3.6)

where, α is [θ Λ]
T with Λ denoting the Lagrange multiplier, MA(θ) is the augmented mass matrix, CA

is the matrix of Coriolis and damping terms, P is the moment vector due to loadings and constraints.
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The above equilibrium equations and the equation of motion determine final states when a loading is

applied. These equations will be considered as a constraint for the optimization problems discussed in

Section 3.4.

3.3 Analysis of the multi-link system

As mentioned earlier, the aim of this work is to design a flexible structure to withstand transverse loads

and have a desired motion due to an axial load. To get an insight into the problem, we begin with a

simple two-segment system as shown in Figure 3.2. For deriving the mathematical expression we

consider the following conventions: θ0,i is the unloaded orientation of the ith link, θ1,i is the orientation

of the ith link when only the vertical loading is applied, θ2,i denotes the orientation of the ith link when

both vertical and horizontal loading is applied. Additionally, we remove the two springs at joint 1 and

θ0,2

θ0,1

L1

L2

(a) The unloaded structure
expressed in general form

θ1,2

θ1,1

PY,1

PY,2

PY,3
L1

L2

(b) Structure loaded by the
passive loading, PY

θ2,2

θ2,1

PY,1

PY,2

PY,3

PX ,3

L1

L2

(c) Loaded structure with
the horizontal force PX

Figure 3.2: 2 link system with flexible node

3 and consider the two link system with only one torsional spring at the second joint with a spring

stiffness denoted by K. The second joint is a also loaded with a vertical force PY . It is prescribed that

the system deflect by δ along X-axis under the action of an actuating force PX . The link lengths are

assumed to be equal and hence, θj,1 = −θj,2 = θj . We wish to determine the undeformed angle θ0 such

that for the given nodal stiffness, K, the end point deflection due to the loading PX is δ.

The static equilibrium equation for the loading conditions is given by

4K(θ1 − θ0) = PY L cos θ1 (3.7)

4K(θ2 − θ0) = −2PXL sin θ2 + PY L cos θ2. (3.8)

The end point deflection by δ can be expressed as L(cos θ2,1 − cos θ0,1) +L(cos θ2,2 − cos θ0,2) and since

θ2,1 = −θ2,2 = θ2, we get

cos θ2 = cos θ0 +
δ

2L
. (3.9)
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For a given small δ, equations (3.8) and (3.9) can be solved in closed-form to give θ0 in terms of K as

θ0 =
1

2

sin−1

 2PX −
4Kδ

L2√
P 2
Y + 4P 2

X

− tan−1

(
2PX
PY

) (3.10)

Likewise we can obtain an expression for K in terms of θ0 as

K =
L

2δ

(
2PXL sin2 θ0 − PY L sin θ0 cos θ0 −

δ

2L
[2PXL cos θ0 + PY L sin θ0]

)
(3.11)

For large δ, closed-form expressions are not available and equations (3.8) and (3.9) need to be solved

simultaneously using numerical techniques.

The two equations (3.8) and (3.9) are in terms of three variables θ0,K and δ and there exists infinitely

many solutions for these three variables for a given loadingPX andPY . This feature makes the problem

amenable to optimization of an objective function and we use the minimization of the strain energy

stored in the system to obtain an unique solution. We assume that the energy stored in the system is

minimum under zero axial loading, i.e., when PX=0. We pose the optimization problem as follows.

min
θ0,K

J = 2K(θ1 − θ0)2

Subject to cos θ2 = cos θ0 +
δ

2L

(3.12)

where θ1 is the deflected angle obtained from equation (3.8) under PY loading, θ2 is the deflected angle

obtained from equation (3.8) under loading PX and θ0 is the undeformed angle.

From the objective function J = 2K(θ1 − θ0)2, we can obtain

dJ
dK

= 2(θ1 − θ0)2 + 4K(θ1 − θ0)
dθ1

dK
(3.13)

dJ
dθ0

= 4K(θ1 − θ0)

(
dθ1

dθ0
− 1

)
(3.14)

From equation (3.7), we get

dθ1

dK
= − 4(θ1 − θ0)

4K + PY L sin θ1

dθ1

dθ0
=

4K

4K + PY L sin θ1
(3.15)
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and substituting the above in equation (3.13) we get

dJ
dK

= 2(θ1 − θ0)2

(
1− 2PY L sin θ1

4K + PY L sin θ1

)
dJ
dθ0

= 4K(θ1 − θ0)

( −PY L sin θ1

4K + PY L sin θ1

)
(3.16)

and finally we can find the ratio of the percentage change in J with respect to K and θ0 as

R =
2K

cot θ1 + 2(θ1 − θ0)
(3.17)

Since K >> 1 and as long as θ1 is not close to zero, R is greater than 1. From this we can conclude

that the objective function is more sensitive to change in θ0 in comparison to change in K and change

in shape is preferred to change in stiffness. The negative sign implies than increase in K decreases

θ1. The preference of shape over stiffness was also seen in the numerical simulations when there are

large numbers of rigid segments. We also use this observation to define a scaling CK for the general

multi-link case discussed later.

The constrained Lagrangian can be written as

L = J + λ1

(
cos θ2 − cos θ0 −

δ

2L

)
. (3.18)

where λ1 is the Lagrange multiplier. The gradients with respect to the design variables can be written

as

dL
dK

= 2(θ1 − θ0)2 + 4K(θ1 − θ0)
dθ1

dK
− Λ1 sin θ2

dθ2

dK
(3.19)

dL
dθ0

= 4K(θ1 − θ0)

(
dθ1

dθ0
− 1

)
+ Λ1

(
− sin θ2

dθ2

dθ0
+ sin θ0

)
(3.20)

where the derivatives are obtained from equation (3.8) under different loading conditions.

As θ1−θ0 in very small hence (θ1−θ0)2 is less than θ1−θ0. Also, 1 ≤ K, making 4K(θ1−θ0) ≥ 2(θ1−
θ0)2. From this it can be said that

dL
dK

is less than
dL
dθ0

. This means that changing shape is preferred by

the system to changing nodal stiffness. This behavior was also observed in many simulations, specially

with larger number of links.

General form for multi-link system

The general form of the energy stored in the N link system due to the loading Py,i, denoted by J , can

be written as

J =
1

2
∆θT1 Km∆θ1 (3.21)
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where, Km denotes the stiffness matrix and ∆θ1 denotes the change in angle θ0 under vertical loading

only – the general form for change in angle is ∆θk = θk − θ0. where, θk = [θk,1 ... θk,i ... θk,N ]T . The

constraints for general formulation are given by

Φ1 =
N∑
i=1

Li sin θ0,i, Φ2 =
N∑
i=1

Li (cos θ2,i − cos θ0,i)− δ

where N denotes the number of links.

For the N link system, the Lagrangian, L, can be written as

L = J + λ1Φ1 + λ2Φ2, (3.22)

The gradient with respect to Ki is given as

dL
dKi

=
1

2
∆θT1

dKm

dKi
∆θ1 + ∆θT1 Km

dθ1

dKi
− λ2

N∑
j=1

Lj sin θ2,j
dθ2,j

dKi
(3.23)

and the gradient with respect to θ0,i is

dL
dθ0,i

= ∆θT1 Km

[
dθ1

dθ0,i
− dθ0

dθ0,i

]
+ λ1Li cos θ0,i − λ2

N∑
j=1

Lj sin θ2,j
dθ2,j

dθ0,i
+ λ2Li sin θ0,i (3.24)

The expressions of
dθk
dθ0,i

,
dθk
dKi

, k = 0, 1, 2 are given in Appendix A.

For the two link system without K3, for a small deflection, we get from equations (3.22)

Km =

K1 +K2 −K2

−K2 K2

 ; (3.25)

∆θk =


K1 +K2 −K2 L1 cos θ0,1

−K2 K2 L2 cos θ0,2

L1 cos θ0,1 L2 cos θ0,2 0


−1 

PY,2L1 cos θ0,1 − PX,3L1 sin θ0,1

PX,3L2 sin θ0,2

−L1 sin θ0,1 − L2 sin θ0,2

 ; (3.26)

where, k =1 if PX,3 =0, k =0 if PX,3 =0 & PY,2 =0 and k =2 if PX,3 & PY,2 are non-zero.

For small deflection,

sin θj,i = sin θ0,i + cos θ0,i∆θj,i; cos θj,i = cos θ0,i − sin θ0,i∆θj,i;
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The gradient with respect to K is given as

dL
dK1

=
1

2
∆θ2

1,1 + Λ1
dΦ1

dK1
+ Λ2

dΦ2

dK1
; (3.27)

dL
dK2

=
1

2
(∆θ1,1 −∆θ1,2)2 + Λ1

dΦ1

dK2
+ Λ2

dΦ2

dK2
; (3.28)

and the gradient with respect to θ0,i is given as

dL
dθ10

= ∆θTKm
dθ1

dθ10
−∆θT1 Km

1

0

+ Λ1
dΦ1

dθ0,1
+ Λ2

dΦ2

dθ0,1
; (3.29)

dL
dθ20

= ∆θT1 Km
dθ1

dθ20
−∆θT1 Km

0

1

+ Λ1
dΦ1

dθ0,2
+ Λ2

dΦ2

dθ0,2
; (3.30)

where,

dΦ2

dθ2,1
= −L1 sin θ2,1;

dΦ1

dθ0,1
= L1 cos θ0,1;

dΦ2

dθ2,2
= −L2 sin θ2,2;

dΦ1

dθ0,2
= L2 cos θ0,2;

dΦ2

dλ
= 0;

dΦ1

dλ
= 0;

To be an optimal solution the equations (3.27) to (3.30) must be equal zero. To normalize the effects of

change in stiffness and the shape, we introduce a modified stiffness Kdi. The relationship between Kdi

and Ki is given by

dL
dKd1

= CK
dL
dK1

,
dL
dKd2

= CK
dL
dK2

where CK equal to 1 implies there is almost no participation of stiffness in the optimization scheme

(for a large number of links) and a large CK such as 1000 indicate that there is a significant effect of

stiffness. The CK scales the gradients to a comparable values. This allows the two type of variables to

change simultaneously.

3.4 Optimization problems

For a multi-link system, there are no closed-form solutions just from the equilibrium equation and

constraint equations. To generate an unique solution, we formulate an optimization problem. We

follow the the structural optimization approach as shown in Haftka [12] and others and choose an

objective function. We assume that the flexible structure must first support its own weight.
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To be able to withstand its own weight, the internal strain energy(PE) stored should be minimum

due to passive loading, P1(θ). We can write the internal energy stored as follows:

PE =
N+1∑
i=1

1

2
Ki(θ1,i−1 − θ0,i−1 − θ1,i + θ0,i)

2 (3.31)

To achieve the desired flexibility we introduce a local constraint under active loading, P2(θ).

N∑
i=1

Li(cos(θ2,i)− cos(θ0,i))− δd = 0. (3.32)

The above equation describes the end point deflection to be δd if the loading condition on the structure

is P2(θ). However, the loading condition P2 need not be constant with time and it could be a periodic

function (as in running). We address this by considering first a constant loading condition and second

a periodic loading where, the force changes as a function of time. Against a constant force we solve for

the shape and stiffness under statics condition and the time response under dynamic condition. For

periodic forces, we solve these two simultaneously.

3.4.1 Optimization problem: Static deflection

The general form for an optimization problem for an arbitrary number of segments can be posed as

follows:

min
θ0,Kv

J =
1

2

N+1∑
i=1

Ki(∆θ1,i −∆θ1,i−1)2

Subjected to: Km(θ1 − θ0)− P(θ1) = 0

Km(θ2 − θ0)− P(θ2) = 0

δ =
N∑
i=1

Li(cos(θ2,i)− cos(θ0,i))

δ − δd = 0

Li = Lx,i/ cos θ0,i

Data: (Kinitial, θinitial,Kboundary, Lx, δd)

(3.33)

In the above, Ki are spring stiffness at the joints, P(θi) denote the loading, Li are the link lengths, δd

is the desired end-point deflection along the axial direction and θi is the vector of joint angles at ith

loading condition. The constraints and ranges on θ0 and K are based on informed guess work as there

no data available for these type of problem from a biological system or a robot (see also Section 3.5).

In Section 3.3 to study the relative effect of stiffness (K) and orientation (θ0), we had introduced a
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factor CK . In terms of this factor, we can frame the optimization problem as

min
θ0,C

−1
K Kv

J =
1

2

N+1∑
i=1

Ki(∆θi −∆θi−1)2 (3.34)

where, CK is the factor that equalizes stiffness magnitude to the radians. This allows the system to

change both the stiffness and orientation simultaneously.

In Section 3.5, we use a gradient based technique to solve the aforementioned optimization problem.

3.4.2 Optimization problem: Dynamic response time

For the dynamic case, we assume a constant actuation at the endpoint and determine the response

time of the structure. To remove oscillations within the structure we ensure the structure to be over-

damped by adjusting the lower limit of the damping coefficient. To control the time response against

the constant loading, we introduce the square of the damping coefficient to be the objective function.

Under large dissipative forces in the system, the end point motion behavior is similar to the equa-

tion of (1− e−αt). To control the rise time, we consider a cutoff value1 from the equilibrium value – we

have assumed ∆cutoff as 0.9 times the deflection value at equilibrium, δd. The optimization problem

for the dynamic case can be framed as

min
~Cv

Λ

2
~Cv
T ~Cv

Subjected to M(θ)θ̈ + C(θ, θ̇)θ̇ +K(θ − θ0)− P(θ) = 0

t|δ=δd = Td

Data: Cinitial, Cboundary, Td

(3.35)

In the above,Cv denotes the damping and as in the static optimization, we assume reasonable damping

– in our simulation we have assumed 1 ≤ Cv,i ≤ 103. The optimization problem in equation (3.35) is

solvable because there exists a direct closed-form relationship between the constraints (cut-off time and

end point deflection). The end point deflection is given by

δx(t) = δd(1− e−τt) (3.36)

where, τ = − 1
Td

ln
∆cutoff

δd

Here, δx(t) is the end point deflection with time, ∆cutoff is the magnitude deflection corresponding

to time Td. ∆cutoff and Td are two user prescribed values determine the response time of the end

1We use eventfunction is Matlab [27] during numerical simulations.
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point motion against a constant loading. The lower limit of the nodal damping is set, through trial and

error, to ensure the end point motion will be always a second order over damped motion. To simplify

our approach we directly assume the motion to be a 1st order motion and make predictions about the

response. This assumptions are backed by numerical results described in Section 3.5.

In a combined static and dynamic optimization case, we consider the forcing function to be periodic

with a frequency of
Ω

2π
Hz. Our objective is to generate a set of parameters of the N link system that

will satisfy our demand for a maximum deflection of δd while maintaining minimum strain energy

under passive loading. The optimization problem can be stated as follows:

min
K

1

2

N+1∑
i=1

Ki(∆θ1,i −∆θ1,i−1)2

Subjected to K(θ1 − θ0)− P(θ1) = 0

M(θ2)θ̈2 + C(θ2, θ̇2)θ̇2 +K(θ2 − θ0)− P(θ2,Ωt) = 0

min

(
N∑
i=1

Li(cos(θ2,i)− cos(θ0,i))

)
− δd = 0

Data: (Kinitial, θinitial,Kboundary)

(3.37)

It can be observed that the above combined optimization problem involves a differential equation

(equation of motion) as a constraint. In addition, a constraint involving a minimum is also present. A

gradient-based optimization does not yield results if the constraints contain a maximum or minimum

value from a series of data and a genetic algorithm or pattern search yields more effective results [31].

We have used genetic algorithm to generate the solution for the combined dynamic problem.

3.5 Numerical methods and results

The optimization problems in equations (3.33) and (3.35) were solved in Matlab [27] using fmincon

which is a gradient based optimization procedure. However the optimization problem in equation

(3.37) could not be solved using fmincon and we have used genetic algorithm and pattern search. We

have used Matlab [27] library function ga and patternsearch for implementing genetic algorithm and

pattern search. The length of each link along X-axis are assumed to be equal and given by Lx/N m

with Lx as the total length of the flexible spine andN is the number of links. Apart from the constraints

described earlier, we list below additional constraints and choices made for the numerical simulations

which make the solutions more reasonable.
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Geometrical and stiffness values

We have used the following constraints and ranges for the geometrical and stiffness variables in all the

numerical simulations.

• Length constraint: Li =
LX,i

cos θ0,i

• Angle constraint: −π6 ≤ θi0 ≤ π
6

• Relative angle constraint: −π6 ≤ θ0,i − θ0,i+1 ≤ π
6

• Stiffness limit: 102 ≤ Ki ≤ 104

• Geometric upper and lower limit: 0.01 ≤ Y0,i ≤ 0.25Lx

The upper and lower bound of the nodal stiffness is based on the study done by Lavaste and

Mazel [28]. They state the average approximate torsional stiffness against flexion to be 3 N −m/deg
or 172 N − m/rad for spine motion segment. We have used 100 N-m/rad as the lower bounds and

1000 N-m/rad as the upper bound for the stiffness value at the joints. The upper limit of Y0,i is an user

prescribed criteria as no such number is available in literature. Like wise the choice lower limit of Y0,i

is also arbitrary. The only constraint on the lower limit is to ensure that the Y value is not negative.

The initial orientation, θ0,i, is constrained to ensure link length dimension Llink =
LX,i

cos θ0,i
is reason-

able. If θ0,i is large then the link length can be come very large and we have constrained θ0,i to be

between ±π/6. The local orientation, θ0,i − θ0,i−1, constraint prohibits the structure from generating

sharp changes in rotation between two links or form knots when there is a large number of links.

Applied force value selection

To the best of our knowledge there are no estimates for the applied axial force in a moving quadruped

robot and likewise in the muscles of a fast moving animal. It is known in literature [29] that for an active

young adult male tennis player, the volume of the muscle is approximately 480 cm3 and in a study done

by Akagi and Fukunaga [30], it is mentioned that a 350 cm3 muscle generates approximately 76 N-m

of torque. Dividing this number with the arm length, the force generated by the muscle, at it’s peak, is

about 310 N of force. In our simulations, we have assumed the axial force, PX,2(N + 1, 1) as - 400 N.

However, any other value could also be used.

3.5.1 Static optimization

The solutions to the optimization for different static loading and different number of rigid segments

is presented here. As stated in Section 3.4, the initial angles and the nodal stiffness are considered as

the design variables. We solve for the optimal values for 5 and 10 rigid segments. The simulation is
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conducted under an uniform vertical loading of -10 N/node for 5 segment system and -5 N/node for

the 10 segment system. The horizontal force applied at the end node is -400 N. The initial solution

provided for the optimization problem, for 5 link system, is {π
5

,0,0,0,-
π

5
,10000,250,250,250,250,0}. The

results of the static optimization problem described in equation (3.12) are shown in figure 3.3.
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Figure 3.3: (a) undeformed and deformed structure of a 10 segment system, (b)the nodal stiffness of
the structure, (c) undeformed and deformed structure of a 5 segment system, (d) the nodal stiffness of
the structure

Next, we demonstrate the localized stiffening of the structure and end point motion indifference to

the variation of localized loading. The number of rigid segments chosen are 10. The vertical loading

at every node from 1 to 5 is -20 N and all other nodes loading force is -5 N. While the horizontal axial

loading is -400 N at the end node. The results described in figure 3.4 have similar condition of that

described in this problem except the vertical loading is uniform all over the nodes. From the results

displayed in figure 3.4, it can be seen by changing the orientation of links of the loaded region the effect

of the extra load is mitigated and end effector motion remains unchanged. This validates our claim of

”localized stiffening of the structure and end point motion indifference to the variation of localized

loading ”.

The factor CK in the optimization problem changes the gradient with respect to the modified nodal

stiffness. This is similar to putting a cost on the design parameters. A very high CK means the cost
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Figure 3.4: (a,b) Node 1 to Node 5, -20 N per node, rest -5 N per node and (c,d) Uniformly loaded with
-5 N per node

of changing stiffness is high compared to the cost of changing orientation and vice versa. This idea

can be verified by the variation of shape (fig. 3.6(a) to fig. 3.8(a)) and variation of stiffness (fig. 3.6(b)

to fig. 3.8(b)). As the CK is increased the stiffness variation between the nodes increases where as the

change in orientation of the links is less apparent.

3.5.2 Dynamics

In this section we describe the results related to the response of the structure for constant and periodic

loading. We consider the structures obtained from the static optimization process under the prescribed

static loading condition and attempt to control their response time by parameter optimization. Towards

the end of this section we show that a structure obtained from static optimization process can also be

used with periodic loading if the response time of the structure is fast enough.
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Figure 3.5: (a) Variation of design variable θ0 under various loading condition and (b) Variation of
design variable K under various loading condition

0 0.2 0.4 0.6 0.8 1

length(m)

0

0.2

0.4

0.6

0.8

1

le
ng

th
(m

)

(a)

1 2 3 4 5 6 7 8 9 10 11

Node

0

100

200

300

400

500

600

700

800

900

1000

K
(N

-m
)

(b)

Figure 3.6: CK=1, Transverse loading -5N per node, Link no. 10, Axial loading -400 N

Case 1: Application of constant force

In real world scenario the structure deforms over a certain amount of time before it attains equilibrium

for a constant force. By adjusting the nodal damping we can predict the response of the structure. The

results, figure 3.9, describe the response of a 5-link and a 10-link structure, fixed at one end and free

at other, when actuated by a constant force. As it can be seen from equation (3.36) one can predict the

response of the structure quite accurately. The time constant of the structure is obtained as τ = 11.5

sec−1.
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Figure 3.7: CK=102, Transverse loading -5N per node, Link no. 10, Axial loading -400 N
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Figure 3.8: CK=104, Transverse loading -5N per node, Link no. 10, Axial loading -400 N

Case 2: Application of periodic force

We optimize the structure for a periodic end force to simulate rapid and periodic movement of the

end point. The number of links chosen for this simulation is 7 and we use a genetic algorithm for

optimization in this case. The vertical loading on each node is assumed to be -50 N and from node

2 to 4 it is assumed as -100 N. The horizontal loading is chosen to be -4000 N. We assume the nodal

damping as 50 N-m/(rad/s) and mass of the links as 0.5 kg. The results from optimization are shown

in figure 3.10. It can be seen that the end-point reaches the desired δ in 0.5 seconds. However, when the

load is removed the structure returns to its original state in about 0.25 seconds. This result indicates

that the release of stored energy is much faster.
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Figure 3.9: (a) End point response of structure with 10 link, (b) Nodal damping of the 10 link system,
(c) Undeformed and deformed structure of a 10 link system, (d) End point response of structure with 5
link, (e) Nodal damping of the 5 link system, (f) Undeformed and deformed structure of a 5 link system

Fast responsive constant load solution

Figure 3.11 shows the response of the 10 link structure obtained using gradient based optimization

algorithms. Comparing this result with that obtained by genetic algorithm indicates that for a fast-

responsive structure, the response at the end point is similar. The gradient based approach is however

much faster for simulation.

As can be seen from the figures fast-responsive structure can generate motion as per our require-

ment even if the actuating force is not constant. This approach is valid only for loading patterns with

lower frequency, fig. 3.12. With a small modification in the actuating force application, we can achieve

structure supporting fast locomotion with static optimization.

It has been observed from extensive simulations that the general optimization problem, (3.33), is

a non-convex system. Thus there are many solutions. Secondly, in all the numerical simulations we

have used a chosen set of parameter values based on informed guess work and literature. The gradient

based or the genetic algorithm [31] based solution procedure is in no way limited by these choices and

can be used for other parameter values.
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Figure 3.10: 7 link structure nodal stiffness optimization under dynamic loading
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Figure 3.11: (a) Pulsating oscillation and it’s corresponding end point motion, (b) Response of the
structure to the oscillation.

3.6 Summary

This chapter deals with the formulation, description and numerical solution of an optimization prob-

lem. First we describe why the articulated spine generation should be considered to be an optimization

problem. Next, the formulation and solution if the optimization problem provides us with the shape

and the stiffness of the spine. The objective function of the optimization problem represents the rigidity

and the constraint of optimization problem contains the flexibility. The second optimization provides

us with the nodal damping on various parts of the structure, which controls the response time of the

spine. Once generated, we test the spine under periodic loading conditions and analyze the end point

motion of it.
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Figure 3.12: (a) Response time 0.2s for 90% of the maximum deflection, (b) Response time 0.1s for 90%
of the maximum deflection, (c) Response time 0.05s for 90% of the maximum deflection.



Chapter 4

Hardware design and experiments

4.1 Introduction

Quadruped robots comes in various forms and features. These features can be classified on the basis of

speed of locomotion, fast moving[32, 5] and slow moving quadruped[1]. On the basis of actuation, it

can be electrically actuated[34] or pneumatically actuated or hydraulically actuated[1] or on the basis

of design they can be bio-inspired or bio-mimetic or some other type of quadruped. For the problems

at hand, we are interested in bio-inspired, fast moving quadruped. These types of quadrupeds are

mostly operated by electric actuator, rotary or otherwise. The demand for higher efficiency and speed

out of a quadruped, is making researchers to look into animal anatomy for answers. For all purposes

the cheetah and other fast galloping mammals’ anatomy are at the center of these attention. These

studies have now set a few standard design feature for fast moving quadrupeds. Robots such as MIT

cheetah[5], Cheetah-cub[32], Onichela, etc. have incorporated these features. To develop our own the

hardware, we followed the mechanical design and control of these fast motion quadrupeds. During

our survey, the approach taken by Alexander Sproiwitz, in the development of cheetah cub, was the

most affordable one we came across.

4.2 Design of a Quadruped

Cheetah-cub along with all other fast moving robots have some distinct features. Such as Pantograph

style legs, lower leg inertia, compliance in the structure to save energy and shock absorption capacity.

In this section these features will be discussed in details along with how they are applied in designing

of ”Prototype” 1 & 2.

32
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Pantograph leg

Fast running animals have natural shock absorbers and compliance in their legs structure. Pantograph

like leg structure is one such design. Nearly all quadruped mammals pose this pantograph like struc-

ture. The main benefit of such a design is its ability to absorb impact and store the energy in the

compliance attached to it. An open pantograph with a compliant link, as in ASLIP, is able to absorb

shock during impact. Te reduced impact causes less energy loss and less strain on the structure of the

leg. However, the complicated design of the leg poses a challenge for simulation process. To avoid this

Figure 4.1: Closed pantograph style legs

complication and for the ease of simulation and design, we have used closed pantograph structure in

place of open pantograph structure.

Leg design with wire actuation

We previously discussed the advantages of pantograph style leg; now we will discuss methods to

reduce over all inertia of the leg to make the motion of the legs faster.

The main contributors to the weight and inertia of the legs are the actuators. To reduce weight, the

actuators are placed on the main body. With the help of wire based transmission system the motion of

the knee joint is controlled. This mechanism and its physical model is shown in fig. 4.2(a) and fig. 4.2(b)

respectively. To avoid the loss of movement, the wire is passes node at the hip, white cover in fig. 4.2(b).
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Figure 4.2(a): Pulley mechanism for motion of the knee, Figure 4.2(b):Hardware model of individual
module of prototype 2.

Flexible spine

The central part of our conjecture is the flexible spine. Our goal is not just to design and attend the

flexibility but also leave room for modification on the hardware itself. For robots, changing stiffness

at the nodes of the spine is hard compared to changing length and orientation of the rigid element.

Keeping this idea in mind, we developed a flexible spine with different orientation of the elements.

For the rigid elements, we used laser machined Acrylic pieces. Same materials are also utilized

in the development of the Gear-shaped component. The internal and external toothed components

are cut from a single piece. This allows the teeth to have a tight lock once one is placed inside the

other. The component has a resolution of 9 degrees per tooth rotation. These components enables us

to provide the spine with any shape we desire without developing multiple components with various

fixed orientations. For the flexible part, we have used thin polycarbonate strips, 6 mm, and secured

them between two rigid elements. Use of polycarbonate strips is a suitable and is a more compact

alternative for standard torsional springs. The picture of the actual spine utilized in the robot has been

shown in fig. 4.2.

Tracked foot

The foot is an important aspect of the quadruped robot. It is also one of the most challenging aspects to

design. As the slipping between the ground and the fast moving feet is a common phenomenon, it is
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Figure 4.2: Physical model of the flexible spine

recommended to use high friction material at the bottom of the foot. After multiple trial and error, we

have used tracks in the lower part of the foot to provide maximum traction. In fig. 4.3 we have shown

the hardware model of the tracked foot.

Figure 4.3: Foot with tracked shoe

4.3 Simulation development and results

To test our hypothesis, we started developing a robot, Prototype 1, which is similar to cheetah-cub.

Cheetah-cub[32] is a rigid body quadruped robot with compliant legs and string-driven knee joints.

The success of the Prototype 1 allowed us to develop further and design more complicated model of

the quadrupeds, i.e. Prototype 2.
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4.3.1 CAD model

The first prototype was designed as the proof of concept of the quadruped robot. We used the make

block servo motor as the primary attachment between the legs and the central structure. The mod-

ules hosting the servo motor are designed to be same for both front and hind part of the robot. All

these features can be seen in the complete assembly of the robot in fig. 4.4(a). In ”Prototype 2” mod-

ules/multiple motor housings were created to accommodate the new servo motor. Details drawing of

modules and the rigid spine can be found in Appendix B.

(a) CAD model of the quadruped robot, Prototype 3 (b) Simulation model designed in webots.

Figure 4.4: CAD model and simple geometry simulation model

Once we have developed a CAD model of the quadruped we go on to simulate it in Webots[33], a

physics simulation software. This simulator allows us to make the designs as real as possible, mini-

mizing the error encountered while developing a physical model.

4.3.2 Simulation

The primary purpose of the simulation is to conduct as many experiments as possible without reducing

the life of the physical model or increasing the cost of the design. Also, simulation allows us to test

various controllers that would other wise be very expensive to test on real robots. To simulate we have

used webots as the simulation software. There we have made a model of a rigid quadruped robot to

test our hypothesis. We used CPG as the primary controller for this simulation. We used the multi

segmented spine, fig. 4.4(b), with very high nodal torsional stiffness at the hinges to make the robot

behave as a rigid spine robot.

For a smooth simulation, we have used simple collision shapes while designing this robot in webots.
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Figure 4.5: Simulation of a flexible spine quadruped on bounding gait

4.4 Control strategy

So far all the discussion was about the design, simulation of the quadruped robot. In this section,

the control strategies involved with motion of the quadruped robots will be discussed in details. In

everyday life, we mostly observe two types of locomotion around us. First being the discrete type

locomotion and second being the rhythmic form of locomotion. Walking, running, scratching or any

periodic motion falls under the category of rhythmic locomotion or movement. Since we are dealing

with quadruped locomotion, specifically bounding gait, we will deal with rhythmic movement only. In

this work, we consider the approach taken to design the controller of cheetah-cub, coupled nonlinear

oscillators. In section 4.4.1 we describe how the oscillators work and how they can be combined to

generate the desired gaits.

4.4.1 Controllers

We used central pattern generator (CPG) as the main controller for the robot. The idea of central pattern

generator was introduced in biological science to explain the rhythmic behavior in the animal motion.

In 1985, studies conducted by Matsuoka, K. [39] uses an artificial neural network to generate various

patterns. However, ANN is computation intensive. To avoid significant computation and to generate
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Figure 4.6: Distance covered by a flexible spine quadruped and a rigid spine quadruped via bounding
gait

a simple parameterization, the nonlinear oscillator is a preferable choice for the pattern generator. To

develop the controller we followed into the works of Auke Jan Ijspreet [40, 41, 42, 43] related to the use

of nonlinear oscillator as CPG. In the works done by A.Sprowitz[32] and Eckert[6], a simplified CPG is

used to control the motion of the quadruped. This open loop strategy is both self stabilizing and cost

effective. In section 4.4.1 we describe the mathematical formulation of the CPG.

Abbri. Abbri.
φi oscillator linear phase O[h,k] Desired offset of hips/knees
f Stride frequency A[h,k] Amplitude of hips/knees
ki,j Coupling between hips o[h,k] Instantaneous offset of hip/knee
ϕi,j Phase difference between hips a[h,k] Instantaneous amplitude of hip/knee
ϕh,k Phase difference between hip and knee. Dvir Virtual duty factor
Γhi Hip motor input/ Hip joint angle Θ

[h,k]
i Phase of hip/knee joint

Γki Knee motor input Ast Amplitude in stance phase
α Time constant Asw Amplitude in swing phase

Table 4.1: Nomenclature of the terminologies used in CPG

Mathematical formulation

There are two parts of the non-linear oscillator based controller design. First, the coupled hip move-

ment and second, the hip and knee coupling. Gaits, such as bound, gallop, trot, canter can be generated

with the help of the coupling between the oscillators in the hips. By solving equation (4.1) to (4.5) we
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(a) (b)

(c) (d)

Figure 4.7(a): Central pattern generator for a quadruped robot with rigid spine, Figure 4.7(b): Central
pattern generator for a quadruped robot with flexible spine, Figure 4.7(c) Raspberry pi 3b as the

hardware for the controller, Figure 4.7(d) describes how the servos are controlled with help of CPG.

generate the movement pattern of the hips.

φ̇i = 2πf +
∑
j 6=i

ki,j sin(φj − φi − ϕi,j) (4.1)

ȧhi = α(Ahi − ahi ) (4.2)

ȯhi = α(Ohi − ohi ) (4.3)

Θh
i =



φi
2Dvir

0 ≤ φi ≤ 2πDvir

φi + 2π(1− 2Dvir)

2(1−Dvir)

(4.4)

Γhi = ahi cos
(
Θh
i

)
+ ohi (4.5)
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Once the coupled hip motion is solved, the solutions of the hips are sent their respective knee. The

coupling between hip and knee motion creates the signal the drives the knee motor from the hip signal.

Θk
i = Θh

i + ϕh,k (4.6)

aki =

Ast Θk
i ≤ π

Asw Θk
i ≥ π

(4.7)

ȯki = α(Oki − oki ) (4.8)

θ = 2

[
Θk
i

2π
mod (0.5)

]
(4.9)

γi =

−16θ3 + 12θ2

16(θ − 0.5)3 − 12(θ − 0.5)2 + 1

(4.10)

Γki = aki γi + oki (4.11)

The signals sent to the servo motors are obtained by solving equation (4.5) and (4.11) respectively.
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Figure 4.7: Outputs of the CPG sent to the servo motors

4.5 Prototype development and experiment

To test our hypothesis, we developed two robots, a rigid spine (Figure 4.9(a)) quadruped robot and

a flexible spine quadruped robot(Figure 4.9(b)). In the simulation result, we have already seen the

flexible spine quadruped robot performs better, which is to say running faster, than the rigid spine

quadruped robot under the same bounding gait. In fig. 4.10, we display the movement of ”Prototype
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(a) Trajectory highlighted (b) Compliant leg, red dot represt the point being tracked

Figure 4.8: Trajectory generated by the complaint leg using CPG

Hardware Function Number
Makeblock servo (Prototype 1) Actuator 8
Kondo KRS2350 servo (Prototype 2) Actuator 9
Raspberry Pi 3b Onboard computation 1
Compression spring Compliance and energy storage 4x2
11.3V, 2200mah LiPo Battery pack (Pro-
totype 2)

Power source for the motors 1

Standard power-bank (Prototype 2) Power source for the raspberry pi 1
Torsion springs Absorption of the impact load and sta-

bility of the foot
4

Polycarbonate strips (Prototype 2) Generate flexibility in the spine 4
Fuse 1.25A Servo over-current protection 9
VNC Viewer & Smart phone Communication and display unit

(USB)
1

Table 4.2: Components used to make the quadruped

1” while executing a trot gait.

4.6 Observations made during experiment

• During the experiment the disparity between simulation and experiment became apparent. In the

simulation, the slipping of the foot and ground were not a very important issue, as the contact

model in the simulator has been simplified for a more real-time simulation. However, in the

physical model, it is an important factor. To counter that we have used tracked shoes, which

improved the friction between the foot and the ground.
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(a) Quadruped robot with rigid spine,
Prototype 1

(b) Quadruped robot with flexible spine,
Prototype 2.

(c) Quadruped robot with rigid
spine, Prototype 3

Figure 4.9: Robot developed for hardware testing.

(a) 1 (b) 2 (c) 3

(d) 4 (e) 5 (f) 6

Figure 4.10: Hardware testing of a rigid spine quadruped on trot gait

• The flexibility of the spine helps the robot move faster but at the cost of stability of the struc-

ture. This instability became noticeable with the second degree of freedom of the spine, Torsional

motion.

• The height of center of mass and the width of the robot are also important for the stability. The

height of the center of mass was high in Prototype 2. Along with a leaner design than Prototype

1, the robot became unstable to some extent.

• The torsion spring placed between foot and the leg was not soft enough to reduce the effect of

impact on the robot.

• During the development, we used the structure of the servos as a part of the primary load bearing

structure for prototype 1. For time being it seemed ok, but over time the motor casings began to
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come off due to shock and vibration generated due to impact.

4.7 Summary

In this chapter, we discussed the design, control, simulation and experiment of the quadruped robots

with both flexible and rigid spine. In the design section, we discussed on how the legs, foot, spine, and

knee mechanism worked. In the control section, we discussed on how to create open-loop synchronous

oscillators which can help the robot to walk. In simulation part, we discussed on how to create a model

in webots and tested it.



Chapter 5

Conclusions

5.1 Summary

This thesis is an attempt to design flexible spine for a quadruped robot by using optimization. The

main reasons for such a change is the ability of the scheme to provide the user with the control of the

static and dynamics response property of the spine. In chapter 1, the motivation, literature survey

and challenges associated with the designing of flexible spine are discussed. It is shown most of the

quadrupeds developed have a rigid spine, only a few has flexible spine. The chapter ends with the

scope and contribution of the thesis.

Chapter 2 presents idea of pseudo rigid body model and transformation between continuous beams

to lumped model system.The flexible structure is modeled as a series of rigid segments with springs

and dampers at the joints. It is shown there is an analytical relationship between the continuous beam

and a pseudo rigid model, for small deflection. Additionally, the chapter also contains multiple exam-

ple of comparison between FEM results and pseudo rigid modeling.

Chapter 3 discusses optimization scheme to develop the flexible spine. A parameter optimization

based approach is used to develop a spine like structure with the constraints provided by both the user

and the manufacturing process. The optimization problem has been solved for some standard forces

generated by the human body. It is shown that when large number of links are used, the optimization

scheme would prefer one set of variable over another. The results for 10 links shows unless the magni-

tudes are scaled the scheme prefers to change the shape over stiffness. Additionally, another gradient

based optimization scheme has been used to obtain the user prescribed response time from the flexible

structure. Finally, it is shown, the flexible spine obtained with the help of these optimization scheme,

can respond to periodic loading of low frequency equally well.

Chapter 4 deals with the design, simulation, and hardware modeling of two quadruped robot. This

44
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chapter also gives a detailed description of the CAD model, various mechanical aspect of the robot, the

control strategy implemented using python and raspberry pi 3b. Multiple simulation runs and a few

experimental runs were conducted in the laboratory. It is shown in the simulation model the flexible

spine quadruped moves at a much higher speed than a rigid spine quadruped robot. It is also shown

the problems associated with the design and development of the quadruped robot.

5.2 Scope of future works

The approach and the results reported in this work can be extended in several ways. We list some of the

main ones below. In future models, we need to address this issues and build a more robust structure.

1. In spite of the simulation results showing the requirement of our hypothesis when implemented

in hardware, it ’s hard to establish the premises just yet.

2. Both the robots have flaws when it comes to impact. First, the system we designed is still too

rigid for the absorption impulsive-load, resulting the body to experience high impulse every

time it moves. Second, the closed pantograph style legs are also an issue. Open pantograph

style legs with spring loading allow the system to be a much better shock absorber, a feature we

overlooked. Third, the spine flexibility is itself an issue. We have already discussed the trade-off

between flexibility and rigidity.

3. During the hardware experiments, we came across the torsional flexibility, due to nature of our

spine. This relative motion caused undesired deflection in the structure during trot gait.

4. In terms of controller it is an open loop system. In future it can be extend it to closed loop system

with camera, force sensor and IMU modules.



Appendix A

Expressions for gradients

In this Appendix, the details of the mathematics for the case of large deflection case are presented.

The internal energy stored due to the passive loading is J . This and the constraints, Φ1 Φ2, are given

as

J =
1

2
∆θT1 Km∆θ1. (A.1)

Φ1 =
N∑
i=1

Li sin θ0,i (A.2)

Φ2 =
N∑
i=1

Li (cos θ2,i − cos θ0,i) (A.3)

where, θ0 is the vector of initial undeformed angles, ∆θ1 is the vectors of the angular deflection due

to the passive loading P(θ1), θ2 is the vectors of the final state of the angles due to the passive and

active loading combined, P(θ2). Combining all the constraints and objective function we generate the

Lagrangian. It is given by

L = J + Λ1Φ1 + Λ2Φ2 (A.4)

where, Λ1, Λ2 are Lagrange multipliers. Now we compute the gradients of the Lagrangian with respect

to the design variables (K, θ0). Here K is a (N + 1 × 1) vector, and θ0 in a (N × 1) vector. Ki, θ0,i are
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the ith element of the vectors. The gradient with respect to individual elements are as followed.

dL
dKi

=
dJ
dKi

+ Λ1
dΦ1

dKi
+ Λ2

dΦ2

dKi
(A.5)

=
dJ
dKi

− Λ2

N∑
j=1

Lj sin θ2,j
dθ2,j

dKi
(A.6)

=
1

2
∆θT1

dKm

dKi
∆θ1 + ∆θT1 Km

dθ1

dKi
− Λ2

N∑
j=1

Lj sin θ2,j
dθ2,j

dKi

dL
dθ0,i

=
dJ
dθ0,i

+ Λ1
dΦ1

dθ0,i
+ Λ2

dΦ2

dθ0,i

=
dJ
dθ0,i

+ Λ1Li cos θ0,i − Λ2

N∑
j=1

Lj sin θ2,j
dθ2,j

dθ0,i
+ Λ2Li sin θ0,i (A.7)

= ∆θT1 Km

[
dθ1

dθ0,i
− dθ0

dθ0,i

]
+ Λ1Li cos θ0,i − Λ2

N∑
j=1

Lj sin θ2,j
dθ2,j

dθ0,i
+ Λ2Li sin θ0,i (A.8)

 dθ2

dKi
dλ

dKi

 =

Km −∇θ2P(θ2) −dP(θ2)

dλ

∇θ2ΦT3 0

−1
−dKm

dKi
∆θ2

0

 (A.9)


dθ2

dθ0,i
dλ

dθ0,i

 =

Km −
dP(θ2)

dθ2
−dP(θ2)

dλ

∇θ2ΦT3 0


−1Km

dθ0

dθ0,i

0

 .

where, Km is the stiffness matrix used in equilibrium equation. The form of Km is given as follows:

Km =



K1 +K2 −K2 . . 0 0

−K2 K2 +K3 −K3 . . 0

. . . . . .

. . −Ki Ki +Ki+1 −Ki+1 .

. . . . . .

0 . . −KN−1 KN−1 +KN −KN

0 0 . . −KN KN +KN+1


(A.10)

here, λ represents the Lagrange multiplier introduced for the constraint, equation (A.11), to generate

the equilibrium equations. The Λi and λ are of generated from two different optimization problems.
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The constraint for the large deflection, Φ3,

Φ3 =
N∑
i=1

Li sin θi.

∇θΦ3 =



.

.

.

Lj cos θj

.

.

.


PX and PY are vectors containing the forces applied at the nodes along X-axis and Y-axis. For the

problem discussed, other than PX,N+1 all other PX,i are zeros. The load vector for the equilibrium

equation for large deflection is as followed.

P(θ) = LCAPY − LSAPX + λ∇θΦ3; (A.11)
dP
dθi

=
dLC
dθi
APY −

dLS
dθi
APX + λ

d∇θΦ3

dθi
;

=
dLC
dθi



.

.∑N+1
j=k PY,j

.

.


− dLS

dθi



.

.∑N+1
j=k PX,j

.

.


− λ



0

.

Li sin θi

.

0


;

= −



0

.

.∑N+1
j=i (PY,jLi sin θi + Li cos θiPX,j) + λLi sin θi

.

.

0


(A.12)

dP
dλ

= ∇θΦ3. (A.13)
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where,

LC =



L1 cos θ1 0 . . 0 0

0 L2 cos θ2 0 . . 0

. 0 L3 cos θ3 0 . .

. . 0 Li cos θi 0 .

0 . . 0 LN−1 cos θN−1 0

0 0 . . 0 LN cos θN


(A.14)

LS =



L1 sin θ1 0 . . 0 0

0 L2 sin θ2 0 . . 0

. 0 L3 sin θ3 0 . .

. . 0 Li sin θi 0 .

0 . . 0 LN−1 sin θN−1 0

0 0 . . 0 LN sin θN


(A.15)

A =



1 1 . . 1 1

0 1 1 . . 1

0 0 1 . . 1

. . . . . .

0 . . 0 1 1

0 0 . . 0 1


(A.16)
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Stages in quadruped development

In this chapter we will discuss various parts of the hardware design which are not directly relevant to

the theory presented but essential towards the development of quadruped.

B.1 Detailed model of prototype 1

The ”Prototype 1” contained a string driven mechanism just like the Prototype 2. But the string do

not pass through the node at the hip. This caused a loss of motion during the movement which is

undesirable. The legs are provided with a two parallel compression spring rather than a single one

to counter the bending moment developed due to the single spring. This feature was included in

”Prototype 2” for better and friction lock free leg design.

B.2 Detailed model of prototype 2

The ”Prototype 2” is developed by considering it to be a flexible spine quadruped. We previously

showed the flexible spine model, made out of acrylic and polycarbonate material. Now we will de-

scribe the details of the model.

Development of the flexible spine started with the design of the rigid segment. In fig. B.2, a CAD

model of a rigid segment is shown. Individual rigid link consists of four parts, the rigid central link

(Red), the external toothed circle(Grey), a cover(White) and the internal toothed polycarbonate connec-

tor(Blue or the transparent component). The wide top on the connector(Blue) provides the mounting

point for the polycarbonate strip. By varying the length of the polycarbonate strip, the nodal stiffness

is designed.

The toothed components changes the angle between two rigid links to vary up to a certain extent.

This allows us to change the shape of the spine, hence the overall stiffness. For all practical purposes,
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Figure B.1: Pulley mechanism to drive knee motion for Prototype 1

changing the overall stiffness by rotating the toothed component is much cheaper than changing the

flexible component while maintaining the same shape.

Modules

The design of the Prototype 2 required a new set of parts to house the Kondo motors. In ?? we describe

the servo housing of the quadruped robot. Each servo housing/ module can contain up to 5 Servo

motors. The pulley at the front of the housing is designed to mount the motor, moving the spine. On

each side, two servo motors can be mounted to move the legs. Also the modules can house a host

sensors and structures on the top and bottom of the servos.

The module is made out of acrylic material. By laser machining , components were produced

in large numbers. The components are designed to be assembled by press fitting. This reduces the

requirement of screws and unnecessary drills in the component.
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Figure B.2: Assembly model for the rigid segment

B.3 Details of prototype 3

The final prototype was designed with all the errors of ”Prototype 1” and ”Prototype 2” in mind.

The robot was a rigid spine quadruped robot. In the following sections we introduce the design of

quadruped robot.

The main body was made modular as ”Prototype 2” and the modules can contain up to five servos

each. Steel wire,(2mm) was used instead of nylon and cotton threads. The compliant segments were

made more compact.

(a) Prototype 3 (b) CAD model of Prototype 3

Figure B.3
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Figure B.4: Assembly of the body

Figure B.5: Module and motor housing
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Figure B.6: Parts of the module
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Figure B.7: Makeblock aluminum block

(a) Front leg (b) Hind leg

Figure B.8
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Figure B.9: Rigid links of the legs
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Figure B.10: Spring

Figure B.11: Design for the springs



Appendix C

Derivation of the polynomial equation

By referring to the fig. 2.1, we can write

δ =
n∑
i=1

Liθi

where δ is the deflection of the end point of the cantilever beam for equal L and K

δ = L
n∑
i=1

θi

or, δ = L
n∑
i=1

i(θi − θi+1)

or, αn2 =
n∑
i=1

i2,

or,
n3

3
+ (

1

2
− α)n2 +

n

6
= 0 (C.1)

θn+1 = 0

Where, α =
Kδ

Pn2L2

As a special case if γ is chosen as 1 we get

PL2

K
(
n∑
i=1

i2 + (γ − 1)n2) = δ

which simplifies to
n3

3
+ (

1

2
− α)n2 +

n

6
= 0
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