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Abstract

Over-constrained mechanisms have mobility over a finite range of motion even though they

should be structures according to the Grübler- Kutzbach mobility criterion. This happens

because of the unique geometry of over-constrained mechanisms which results in motion of the

links of the mechanism. In over-constrained mechanisms, some of the constraints are redundant

and not all reactions at the joints can be solved for uniquely. Solving for such reactions would

require us to give up the rigid-body assumptions and consider the links as flexible. The usual

strategy that is employed by many multi-body simulation packages is to either ask the user to

remove such redundant constraints, or eliminate the constraints automatically, both of which

can lead to erroneous joint reactions. Other methods use purely mathematical operations and do

not take into account the physical properties of the mechanism. Further, methods have been

developed which add weighing factors, reflecting the elasticity of the links/joints, into these

mathematical methods. Finally, the most reliable way is to bring the material constitutive

equations into the picture and solving the problem using finite element analysis (FEA) solvers.

In this thesis, we propose a different strategy based on the observation that some of the joint

reactions may be solved for uniquely in over-constrained mechanisms solely on the basis of rigid-

body assumptions. We propose a method to find such a set of uniquely solvable joint reactions.

If the desired constraint reactions are in this set, then there is no need to pass the problem

over to the FEA solver and, hence the proposed approach can hugely benefit us in terms of

computational efficiency. The method to obtain the uniquely solvable joint reactions is named

as “Reaction Solvability Analysis (RSA).” In this thesis, we present an algorithm for RSA based

on the investigation of the Jacobian matrix of the over-constrained mechanism. The developed

RSA methodology is tested on various mechanisms using different coordinate formulations and

a comparison is made of their efficiency. It is shown that the well-known natural coordinates

can be modified to make them very useful for RSA. The RSA approach is illustrated on several

planar and spatial over-constrained mechanisms. The constrained dynamics equations are also

derived and from the simulations, the joint reactions for the uniquely solvable joints are obtained

as a function of time.
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Chapter 1

Introduction

In this chapter, we introduce the problem studied in this work, discuss the motivation behind

the problem, and the related work that has been done in this area. The terminology used

throughout the work is also introduced in this chapter.

1.1 Motivation

In some mechanisms, the actual degree of freedom (DOF) is more than the number as computed

using the well-known Grübler-Kutzbach criterion[1]. This happens when multiple joints are

constraining the same degrees of freedom. Such joint constraints are redundant, and they

give rise to what is called as redundantly constrained or over-constrained mechanisms.

Over-constrained mechanisms are an important class of mechanisms since, due to redundant

constraints, they have better load-bearing capabilities when the movement is stopped – once

the motion of a link in the over-constrained mechanism is stopped they become structures (with

DOF less than zero) and can withstand external loads. For this reason they are widely used as

deployable mechanisms in space and other terrestrial applications[2].

However, over-constrained mechanisms have always been considered paradoxical and tough

to analyze. This is because of several reasons:

1. It is difficult to calculate the correct mobility of the mechanism using simple counting-

based criterion such as the Grübler-Kutzbach criterion.

2. The kinematics of the mechanism can be solved only after the redundant constraints have

been identified and removed.

3. Not all the joint reactions in these mechanisms can be obtained as there are linearly-

dependent constraint equations leading to singular Jacobian matrices.
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It is the third paradoxical property (3) of over-constrained mechanisms that is the topic of

this thesis.

Over-constrained mechanisms have been analysed extensively for their interesting properties.

Waldron [3, 4] did rigorous mathematical analysis and gave the first comprehensive list of

over-constrained linkages. Mavroidis [5] presented a new systematic method for dealing with

over-constrained mechanisms using which they were able to verify all previously known over-

constrained mechanisms. Mavroidis [6] then gave a new general method which allowed them

to verify all known over-constrained mechanisms. While earlier works dealing with finding new

over-constrained mechanisms were either not analytical or restricted to specialized groups, [6]

presented a general analytical method.

1.2 Understanding Redundant Constraints

Redundant constraints are those that can be removed from the multi-body system without

changing the kinematics of the system[7]. These constraints are often introduced due to con-

struction or fabrication. For example, consider a door with 3 hinges. The motion of the door

remains kinematically the same even if we remove 2 of the hinges. However, having 2 extra

hinges allows for a more sturdy door and the door can withstand larger loads.

Prof� A� Ghosal

Figure 1.1: Hinged Door

Mathematically, redundant constraints are constraint equations which are linearly depen-

dent, hence giving rise to a rank-deficient Jacobian matrix.
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1.2.1 The Problem of Joint Reaction Determinacy

Redundant constraints can be eliminated from the mathematical model of a multi-body system

to solve for its kinematics. The choice of constraints which are eliminated is usually arbitrary.

Again using the hinged-door analogy, a hinged door will rotate the same if any 2 hinges are

removed. However, situation is different in dynamic (or kinetostatic) analysis. Two bodies

that form a kinematic pair act on each other by a reaction force and/or torque. These reaction

forces/torques obtained from different sets of constraint equations will usually be different.

Hence, one can not really solve for unique joint reactions in such a system. To solve for joint

reactions in such a system, one needs to discard the rigid body assumption, introduce flexibility

and constitutive relations of the material and resort to finite element analysis. This problem of

indeterminacy of reactions solely on the basis of equilibrium equations is well known in statics

since the time of Maxwell and is known as indeterminate structures[8].

1.2.2 Redundant Constraints Handling Strategies

There are various strategies employed for redundant constraints handling (termed as RCH,

henceforth):

RCH Strategy 1 The multi-body system is solved by eliminating any arbitrary set of depen-

dent constraints equations.

RCH Strategy 2 The set of equations is not modified and algorithms capable of dealing with

dependent equations are used. For example the minimum-norm solution and augmented La-

grangian [9] approach can be used.

RCH Strategy 3 Some of the methods in 2 are purely mathematical operations and do not

reflect any physical properties of the system. To make methods in 2 resemble reality closely,

penalty-based and weighing factors based methods are used.

RCH Strategy 4 The material constitutive equations are brought in and the problem is solved

using finite element analysis (FEA) solvers.

For the purpose of kinematic analysis, all RCH strategies yield correct results. Hence, RCH

strategy 1 and 2 are used as they are the easiest to implement. RCH Strategies 2 and 3 have

been developed and deployed for dynamics problems by [10, 11].

For dynamic analysis of over-constrained mechanisms, where joint reactions have to be

calculated, RCH strategies 1 and 2 give incorrect results[12]. Strategy 3 is an improvement and

3



strategy 4 yields the most accurate results. In this work, we propose an alternative strategy in

Section 1.2.4, which would be the most preferable in certain cases, where the joint reactions of

interest turn out to be solvable without considering constitutive equations.

In line with the Strategy 2, Liu et. al. [13, 14] gave a method for the force analysis

of over-constrained parallel mechanisms using a weighted Moore-Penrose generalized inverse.

Wojtyra et. al. [15] gave a comparison of three different approaches : elimination of redundant

constraints, pseudoinverse-based calculations, and the augmented Lagrangian formulation.

Strategy 3 presents better methods for handling the indeterminacy problem, by using

penalty methods and weighting factors. Gonzalez [16] discussed the use of penalty formulations

in dynamic simulation and analysis of redundantly constrained multibody systems. Ruzzeh [17]

discussed another penalty based method for dynamics analysis of over-constrained mechanisms.

Strategy 4 involves using the material constitutive equations to get a full set of equations.

In this spirit, [18] extended the Newton-Euler formulation to develop the dynamic model of

an over-constrained parallel kinematic machine. Zahariev et. al. [19] discussed generalized

Newton-Euler dynamic equations and applied them for the case of finite element discretization

of flexible links.

The general problem statement of handling redundant constraints has been well compiled

in the review papers by Liu et. al. [20] and Garcia et. al. [12].

1.2.3 Status of RCH in Multi-body Dynamics Solvers

Redundant constraints are a source of trouble for most multi-body software packages. It is

recommended that they be avoided and this is evident from the manuals of well-known packages

such as SolidWorks [21, 22] and SimMechanics [23]. A forum page [23] on redundant constraints

reads as:

When you have redundant constraints in your model, the computed forces in your

model can not be guaranteed to be correct. While solving the system, Simulink

needs to disregard one of the constrains in order to make the simulation succeed.

Often redundant constraints can lead to errors while simulating so it is a good

practice to avoid them.

1.2.4 An Alternative RCH Strategy

In this work, we propose an alternative strategy for redundant constraints handling (RCH). It

is a combination of the four strategies discussed in 1.2.2. The strategy is based on the idea

that even though not all the joint reactions can be solved for uniquely in an over-constrained
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mechanism on the basis of dynamics equations alone, some joint reactions can be solved for

uniquely, and as a consequence, some amount of extensive computations can be avoided. For

the joint reactions which cannot be solved for uniquely, an FEA solver or other strategies need

to be used. The focus of this work is to obtain the joint reactions which can be solved for

uniquely in an over-constrained mechanism. This is named as Reaction Solvability Analysis

(RSA) and formally

RCH Strategy 5 (Reaction Solvability Analysis (RSA)) Obtain the set of joint reac-

tions which can be solved for uniquely, without considering flexibility, in an over-constrained

mechanism. If the desired reactions are in this set, then there is no need to use an FEA solver.

As mentioned, this strategy provides opportunities for vast improvements in computational

performance of many multi-body problems as these problems can now be solved simply using

rigid-body assumptions.

For RSA, an algebraic approach using mobility equation was suggested by [24]. Later,

Jacobian-based methods were suggested by [25] and [9]. The approach for RSA which we

propose in this thesis has its roots in [9].

1.3 Coordinate Formulations for RSA

Most dynamics formulations usually hide joint reactions and only a few coordinate formulations

actually allow finding joint reactions. Among them, absolute coordinates are the most natural

choice when it comes to finding joint reactions. However, Blajer et. al. [26] has suggested a

novel method for finding joint reactions using relative coordinates, termed as “augmented joint

coordinate method”.

In this work, we have suggested a modified form of natural coordinates which can be used

for reaction solvability analysis (RSA), although we still have to resort to absolute coordinates

for finding joint reactions. This has not been done before, to the best of our knowledge. Natural

Coordinates offer the benefit that the constraint equations are maximally quadratic [27]. This

advantage has proved Natural Coordinates to be a better choice in many applications[28].

Further, work related to the physical interpretation of joint reactions using Natural Coordinate

(i.e. finding out the joint reactions using Natural Coordinates) has been discussed by Liu [29]

and Czaplicki [30].

1.4 Scope and Contribution of the Thesis

The main goal of this work is to develop a methodology for reaction solvability analysis for

the proposed RCH Strategy 5, and implement that methodology for a few over-constrained
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mechanisms to demonstrate its usage. We have also compared the implementation of our

methodology using various coordinate formulations, and in doing so, improved upon an existing

coordinate formulation and found it to be the most suitable one for RSA. The main contributions

of this thesis are:

• Formulating an RSA algorithm using Jacobian matrix investigation and implement it on

a class of over-constrained mechanisms, which haven’t been dealt with before in existing

literature. Programs for implementing the algorithm were written in MathematicaR©.

• Comparing different coordinate formulations for the kinematic modeling of mechanisms

based on their effectiveness for our RSA algorithm. Several researchers have shown that

absolute coordinates are the most natural choice. However, it is shown that the natural

coordinates, in their slightly modified form, called as joint-augmented natural coordinates

makes them not only suitable for RSA algorithm, but are better than absolute coordinates

in terms of computational efficiency.

• (Auxilary Contributions) A Python program was developed for automatically generating

constraint equations in natural coordinates. Another Python program was developed to

automatically generate CAD models of single-loop spatial parallel mechanisms. A SymPy

(a Python library for symbolic mathematics) module was developed for implementing

quaternions symbolically. These contributions have been included in the Appendices.

1.5 Outline of Thesis

Rest of the thesis is organized in the following manner. In Chapter-2 Kinematics and Dynamics

of Robotic Mechanisms, we first discuss the kinematic modeling of mechanisms using different

types of coordinates and compare them based on their usability for RSA. We propose the

“Joint Augmented Natural Coordinates” which modifies the natural coordinates to make it more

suitable for RSA. Second, this chapter establishes the conventions used throughout the thesis for

specifying rotations and other variables. In Chapter-3 Methodology Development, we discuss

and develop methodology for RSA, based on the investigation of Jacobian matrix. Further, we

present the dynamic equations of over-constrained mechanisms used in Chapter 5 to solve for

the “solvable” joint reactions. In Chapter-4 Implementation of Reaction Solvability Analysis,

we present the results of the implemented RSA algorithm on a select few over-constrained

mechanisms. In Chapter-5 Implementation : Finding Joint Reactions, we use the dynamics

equations to simulate a planar over-constrained mechanism by giving initial conditions and

force excitations. The “solvable” joint reactions of that mechanism are then solved for using

6



these equations. In Chapter-6 Conclusions, we provide concluding remarks and discuss further

research scope for this thesis.
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Chapter 2

Kinematics and Dynamics of Robotic

Mechanisms

In this chapter, we discuss the methods used in this thesis for modeling the kinematics of mech-

anisms. This includes description of the used coordinate systems and methods for representing

translation and rotation (pose). The different coordinate system formulations are compared on

the basis of their usability for performing reaction solvability analysis (RSA) and we propose a

modification of the natural coordinates named as “joint augmented natural coordinates”. Fi-

nally, the forward dynamic equations of the mechanisms are derived, which are used to simulate

the forward dynamics of the mechanisms and subsequently find the joint reactions in the final

chapter.

2.1 Representation of Rotations

There are multiple ways of representing rotations of a rigid body each with their merits and

de-merits. Here, we discuss only 2 of them, namely rotation matrices and quaternions, and

present the basic algebra associated with them.

To specify a general rotation of a rigid body in 3D space, we need a minimum of 3 parameters.

Rotation matrices have 9 parameters, hence they have 6 redundant parameters or in other words

there are six constraints among the 9 parameters. Quaternions have 4 parameters, hence only

1 redundant parameter. We consider quaternions to be a superior option over most other

representations as they provide the minimum number of parameters without the problem of

singularity normally associated with representations having minimal parameters such as the

three Euler angles.

8



2.1.1 Rotation Matrices

Given a vector ~v in 3D Euclidean space, we can rotate the vector by applying a matrix trans-

formation. For example, consider the vector ~v (yellow) in Figure 2.1. We can rotate it around

X-axis by multiplying it with a rotation matrix and transform it into vector ~u. We can write

RX~v = ~u

Figure 2.1: Rotation around X-Axis

The rotation matrix RX used above can be written as

RX =

1 0 0

0 cos(α) − sin(α)

0 sin(α) cos(α)

 (2.1)

where α is the angle of rotation about the X-axis.

In the general case, we use the notation ARB to denote a rotation matrix which rotates a

vector in a coordinate system B to a vector in a coordinate system A. For a general translation
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and rotation of a vector in 3D space, we can write

~r(A)
p = ~r

(A)
Bo

+
[
ARB

]
~r(B)
p (2.2)

~�
��)
p

~�
��)
B

~�
�B)
p

Frame-B

Frame-A

Figure 2.2: General transformation of a vector in 3D

2.1.2 Quaternions

Quaternions are a 3D counter-part of unit complex numbers in 2D. In 2D complex-plane, we

can represent rotations of vectors by multiplying them by unit complex numbers. This idea was

extended by Hamilton in 19th century to represent rotations in 3D space using unit quaternions.

Quaternions are generally represented in the form [31] :

a+ bi+ cj + dk (2.3)

where a, b, c, and d are real numbers and i, j and k are the fundamental quaternion units.
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The following relation holds between the quaternion units:

i2 = j2 = k2 = ijk = −1 (2.4)

Details about quaternions are easily available – see, for example, reference [31].

2.1.3 Composition of Rotations

Often two successive rotations of a vector is performed. In the case of matrices and quaternions,

the algebra for composition is quite straightforward and uniform in both cases. If we rotate a

body by multiple rotations – first by α about X-axis, then β about Y-axis, and then γ about

Z-axis, then in body-fixed axes, the composite rotation is given by

(Matrix Composition)R = Rx(α)Ry(β)Rz(γ) (2.5)

(Quaternion Composition)Q = Qx(α)Qy(β)Qz(γ) (2.6)

As can be seen in Equations (2.5) and (2.6), the composition of rotations is same for both

quaternions and rotation matrices.

2.2 Equations of Motion of Multi-body Systems

In the thesis, we will be using the standard representation used in [32] and [33] to represent the

dynamics and constraint equations of multi-body systems.

The equations of motion of a multi-body system can be written as

Mq̈ + f = Q (2.7)

where Mnxn is the mass/inertia matrix, qnx1 = (q1, q2, ..., qn)T is the vector of generalized

coordinates, and Qnx1 is the vector of external forces and other inertia terms such as the

Coriolis and centripetal terms.

A multi-body system is a constrained system. The mathematical form of its constraint

equations is different for different sets of coordinates used to describe bodies in the multi-body

system. In general, regardless of the coordinates used, we will represent the constraint equations
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of a multi-body system as a vector containing all constraint equations. This is of the form

Φ(q) =


Φ1(q)

Φ2(q)
...

Φm(q)

 = 0 (2.8)

where, Φ(q) : Rn → Rm is the vector containing all scalar constraint equations.

If some of the equations in (2.8) are dependent, it gives rise to a redundantly constrained

system. It is convenient to check for this redundancy by checking the rank of the Jacobian

matrix of this system. The mxn Jacobian matrix of this system can be written as

Φq(q) =


∂Φ1

∂q1

∂Φ1

∂q2
· · · · · ·

∂Φ2

∂q1

∂Φ2

∂q2
· · · · · ·

...
...

. . .
...

∂Φm

∂q1
∂Φm

∂q2
· · · ∂Φm

∂qn

 = 0 (2.9)

The generalised force vector fn×1 can be written as:

f = Φq
Tλ (2.10)

where λm×1 is the vector of Lagrange multipliers.

Equation (2.10) is the key equation of importance in this work. This equation tells us

how we can get constraint reaction forces from the given constraint equations. The reaction

solvability analysis (RSA) methodology developed in Section 3.4 is based on this equation.

From equation (2.7) and (2.10), we can write

Φq
Tλ = Q−Mq̈ = f (2.11)

The above equation (2.11) is a convenient representation in the familiar linear-algebraic form of

Ax = b. This equation can be investigated using tools from linear algebra in the next section

we present two important propositions.

2.3 Coordinates for Kinematic Modeling

We discuss 3 types of coordinates which can be used to model the geometry of a mechanism.

These are known as absolute coordinates (or reference point coordinates), natural coordinates
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(or fully Cartesian coordinates), and relative coordinates (or joint coordinates). Absolute co-

ordinates are used in multi-body packages such as Adams and DADS [33], natural coordinates

were proposed by [27] and relative coordinates are popular in the field of robotics [34, 35]. We

illustrate these using a planar 4-bar mechanism, as shown in Figure 2.3.

2�1�

A� B�

�x�� y�) �x2� y2)

(a) Natural Coordinates

��

�2

��

�3

(b) Relative Coordinates

��

Y�

�x�; y�; ��)

�x2; y2; �2)

�x3; y3; �3)

�� B�

(c) Absolute Coordinates

Figure 2.3: Planar 4-Bar Modelled with different Coordinates

2.3.1 Absolute Coordinates (Reference Point Coordinates)

For modeling the 4-bar mechanism using absolute coordinates, we attach a reference frame

and an origin to every link. The origin is usually attached to the center of mass of the link,

although this choice is arbitrary. For planar mechanisms, this amounts to 3 coordinates per

link – 2 Cartesian coordinates specifying the position of the origin and 1 angle specifying the

orientation of reference frame with respect to the base frame. Figure 2.3(c) shows the planar

4-bar mechanism modeled with absolute coordinates. The absolute coordinates for the planar

4-bar are q = (x1, y1, θ1, x2, y2, θ2, x3, y3, θ3), i.e., we have 9 coordinates. The 4-bar mechanism

is known to have one DoF, hence 8 constraint equations are required to represent the 4-bar
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mechanism using absolute coordinates. The can be written as

(xa − x1) + (l1/2) cos(θ1) = 0 (2.12)

(ya − y1) + (l1/2) sin(θ1) = 0 (2.13)

(x1 − x2) +
l1
2

cos(θ1) +
l2
2

cos(θ2) = 0 (2.14)

(y1 − y2) +
l1
2

sin(θ1) +
l2
2

sin(θ2) = 0 (2.15)

(x2 − x3) +
l2
2

cos(θ2) +
l3
2

cos(θ3) = 0 (2.16)

(y2 − y3) +
l2
2

sin(θ2) +
l3
2

sin(θ3) = 0 (2.17)

(x3 − xb) +
l3
2

cos(θ3) = 0 (2.18)

(y3 − yb) +
l3
2

sin(θ3) = 0 (2.19)

For spatial mechanisms, 6 coordinates – 3 for specifying position of origin and 3 for specifying

rotation (using Euler Angles) – are required. If quaternions are used to specify rotation, we

have 4 coordinates for rotation, instead of 3 Euler angles. Often the use of quaternions results

in significant computational efficiency. Absolute coordinates are the most natural choice when

it comes to modeling multi-body systems and they have been used in many early textbooks in

multi-body dynamics[32].

2.3.2 Natural Coordinates (Fully Cartesian Coordinates)

As the name suggests, fully Cartesian coordinates have only Cartesian components and no

rotation components. The rotation is specified by the relative position of more than two points

in 3D space. In using natural coordinates, we define several “basic” points in space for each link

(rigid body) of the multi-body system. Then, constraints are defined for the rigidity of the links

and for joints between links. In Figure 2.3(a), the planar 4-bar mechanism is modeled using

natural coordinates. The coordinates in this case are q = (x1, y1, x2, y2), i.e. 4 coordinates.

The mechanism has 1 DoF and hence 3 constraint equations are required. These are

(x1 − xa)2 + (y1 − ya)2 = l21 (2.20)

(x1 − x2)2 + (y1 − y2)2 = l22 (2.21)

(x2 − x3)2 + (y2 − y3)2 = l23 (2.22)

The biggest benefit that the natural coordinates offer is that all the constraint equations
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are polynomials of degree 2 at the worst case. This is very helpful in developing symbolic

algorithms for RSA since finding linear independence in polynomials constraint equations is

easier than transcendental equations obtained for absolute or relative coordinates.

2.3.3 Relative Coordinates (Joint Coordinates)

They are the most minimal form of coordinates and very popular in modeling robots. Their use

not only result in minimum number of variables and constraint equations but they are also the

most intuitive. In Figure 2.3(b), the planar 4-bar mechanism is modeled using relative coordi-

nates. The coordinates used are q = (θ1, φ1, φ2, φ3), i.e., with 4 coordinates. The mechanism

has 1 DoF, hence 3 constraint equations are required. These constraint equations are of the

form of loop-closure equations[34] and can be written as

l1 cos(θ1) + l2 cos(θ1 + φ2) + l3 cos(θ1 + φ2 + φ3) = l0 (2.23)

l1 sin(θ1) + l2 sin(θ1 + φ2) + l3 sin(θ1 + φ2 + φ3) = l0 (2.24)

θ1 + φ2 + φ2 + (π − φ1) = 4π (2.25)

In this work, the use of relative coordinates is not desirable – since by their very nature, they

hide the constraint reactions forces. For serial (open-loop) mechanisms, no constraint equation

are required in relative coordinates and hence no constraint reactions can be found out. For

parallel (close-loop) mechanisms, they offer loop-closure equations, using which the reactions

of the closing constraints (in the cut joints) can be determined [26]. However, if one wishes to

find constraint reactions when using joint coordinates, methods have been proposed to do the

same and these are called augmented joint coordinate method [36].

2.4 Constraints and Joint Reactions

In this section, we discuss how to define constraints using different coordinate formulations and

how to obtain the joint reactions based on those constraints. We show that some coordinate

formulations facilitate calculating of joint reactions naturally while others do not and the choice

of coordinates directly affects RSA. The use of absolute coordinates are the most facilitating

when it comes to calculating joint reactions as they naturally encapsulate all the joint reactions

by the very nature the constraint equations are defined using them. This is the reason why most

works use absolute coordinates when it comes to calculating joint reactions. Natural coordinates

facilitate joint reaction calculation for some joint types. However, we can modify the natural

coordinate formulation so that they provide constraint equations for all joint reactions. Relative

coordinates only allow for calculating joint reactions for closed-loop mechanisms, and do not
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allow for any joint reaction calculation for open-loop mechanisms.

In the following, we will only focus on showing how different types of constraints help us

get the joint reactions. For detailed information on how to model various joint constraints, one

should refer [32] for constraints using absolute coordinates, reference[11] for natural coordinates

and reference [34] for relative coordinates.

2.4.1 Joint Reactions from Absolute Coordinates

For planar 4-bar mechanism given in Figure 2.3(c), the constraint equations using absolute

coordinates were given in Equations (2.12) – (2.19). The Jacobian matrix for these constraints

can be calculated by using equation (2.9) and the constraint reactions can be obtained using

the relation (2.10)

f8x1 = Φq
Tλ

Here, all the constraint reactions encapsulated in f8×1 correspond to joint reactions – the first

2 elements of f8×1 correspond to the first joint, the next 2 elements correspond to the second

joint and so on.

2.4.2 Joint Reactions from Natural Coordinates

The planar 4-bar modeled using natural coordinates, shown in Section 2.3.2, is reproduced in

Figure 2.4.

2�1�

A� B�

�x�� y�) �x2� y2)

Figure 2.4: 4-Bar Modelled with Natural Coordinates

The equations for this modeling were given in equations (2.20) – (2.22) as

(x1 − xa)2 + (y1 − ya)2 = l21

(x1 − x2)2 + (y1 − y2)2 = l22

(x2 − x3)2 + (y2 − y3)2 = l23

16



In these equations, the first corresponds to the rigid-body constraint for the first link, the second

one for the rigidity of second link and so on. The revolute joints in the mechanism are captured

by the sharing of the “basic” points, hence no additional constraint equation is required for

them. We propose a modified formulation of natural coordinates in the next section which help

us write constraint equations for other kinds of joints. This formulation requires more “basic”

points.

2.4.3 Joint-Augmented Natural Coordinate Formulation

Our modified natural coordinates formulation, which we call joint-augmented natural coor-

dinate formulation, is shown in Figure 2.5. Note that we have dismantled link-ends to show

more clearly how the points between different links are not shared as before, rather we share

them using extra constraint equations. These extra constraint equations give us the required

joint reactions.

2�

1�

A� B�

�x�� y�)

�x2� y2)

3�
4�

5�

6�

�x3� y3)
�x4� y4)

�x5� y5)

�x6� y6)

�x�� y�) �xb� yb)

Figure 2.5: 4-Bar Modelled with Modified Natural Coordinates

Here, we have defined 2 basic points on each link, none of which is shared. The constraints

equations now required lie in 2 class. These are

1. Rigid Body Constraints. These were required in the previous formulation also.

2. Joint Constraints. These were not required in the previous formulation.

The rigidity constraints are captured by the 3 equations

|~ri − ~ri+1| = li−i+1 ,where i ∈ [1, 3, 5] (2.26)
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The revolute joint constraints are captured by 4 vector equations – each vector equation

consists of 2 scalar equations, hence a total 8 equations – given as

~rA = ~r1, ~r2 = ~r3

~r4 = ~r5, ~r6 = ~rB
(2.27)

The coordinate vector in this formulation is q = (x1, y1, x2, y2, x3, y3, x4, y4, x5, y5, x6, y6),

i.e., we have 12 coordinates. We have 3 rigidity constraints (2.26) and 8 revolute joint con-

straints (2.27) giving rise to 1 DoF for the 4-bar mechanism as expected. We can now calculate

joint reactions using constraint equations (2.27), for they correspond to the four joints in the

mechanism.

2.5 Comparison of Different Coordinate Formulations

We close this chapter with a brief comparison of the different coordinate formulations that we

have discussed so far.

The relative coordinates clearly offer the minimum number of coordinates and constraint

equations and they are also the most intuitive. The number of coordinates in natural coordi-

nates is more than relative coordinates, but is less than the number in absolute coordinates.

When using quaternions, the number of coordinates in absolute coordinates increases further

but it offers further benefits. Finally, the joint-augmented natural coordinates proposed in

Section 2.4.3 have the most number of coordinates.

For our purpose of implementing reaction solvability analysis (RSA), we need formulations

which provide constraint equations for joints. This is clearly not possible using relative coor-

dinates, hence they are ruled out. Absolute coordinates are the most natural choice for RSA

as all the constraints in this formulation deal with joints only. When using natural coordi-

nates, the joint constraints are not always there. Hence, we propose a modified version of the

default natural coordinate formulation – Joint-Augmented Natural Coordinate Formulation.

This formulation has more number of equations than absolute coordinates, but all the equa-

tions are polynomials, and moreover, it allows the possibility of computing all joint reactions.

The Joint-Augmented Natural Coordinate Formulation is worth investigating as a candidate

for RSA.
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Chapter 3

Methodology Development

In this chapter, we first cover some background fundamentals regarding over-constrained mech-

anisms. We, then, discuss how to formulate and solve the constrained dynamics equations.

We also discuss how we can use them to calculate the joint reactions. Finally, we arrive at

the focus of this chapter – developing methodology for Reaction Solvability Analysis (RSA) of

over-constrained mechanisms.

3.1 Over-constrained Mechanisms

Over-constrained mechanisms, as mentioned in Chapter-1 Introduction, are mechanisms having

finite mobility despite the DoF computed using Grübler - Kutzbach is zero or negative. This

is due to the fact that some constraint reactions are dependent, i.e., some constraints are

redundant. Our approach towards finding solvable joint reactions is based on finding this set

of redundant constraints.

For the sake of completeness, the well-known Grübler-Kutzbach criterion is given as

DoF = λ(N − J − 1) + ΣJ
i=1Fi (3.1)

where,

λ = 3 (for planar) or 6 (for spatial)

N = total number of links

J = total number of joints

Fi = degree of freedom at the ith joint

The very first over-constrained mechanism was given by Sarrus in 19th century and probably
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the most famous over-constrained mechanism was given by Bennett in 1903 in a paper titled

“A New Mechanism”. This mechanism is a 4-bar spatial mechanism whose DoF comes out to

be −2 if calculated using Grübler-Kutzbach criterion given above. However, it can be shown

that the Bennett mechanism can have finite motion and this is due to the special geometry and

arrangement of the links which are not taken into account in the Grübler-Kutzbach criterion.

Figure 3.1: Bennett Mechanism

In the following decades, many single-loop spatial over-constrained mechanisms were de-

veloped, many of which were found to be derivatives of Bennett. A few mechanisms worth

mentioning are Goldberg (5R), Myard (5R), Bricard (6R), and Schatz Linkage (6R)[37, 38, 39].

Examples of planar over-constrained mechanisms are the well-known parallelogram mechanism

and the Kempe-Burmester focal mechanism[40].

3.2 Dynamics Equations Formulation

Before discussing the methodology for Reaction Solvability Analysis (RSA), we briefly discuss

the nature and how to solve the equations of motion of an over-constrained mechanism. The

equations of motion for an over-constrained mechanism are a set of differential-algebraic equa-

tions and we need to solve these to simulate the motion and to calculate the joint reactions.
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The complete set of DAEs (Differential Algebraic Equations) can be written as

Mq̈ + Φq
Tλ = Qe : ’n’ equations (3.2)

Φ(q) = 0 : ’m’ equations (3.3)

Equations (3.2) and (3.3) give the complete set of (n+m) DAEs which have to be solved for

the (n + m) variables: qn×1 and λm×1. It maybe mentioned (and easily seen from previous

Chapter) that constraints are holonomic and hence the representation in Equation (3.3).

We can differentiate the algebraic constraint equations (3.3) to obtain acceleration constraint

equations as

Φq̈ = −(Φqq̇)qq̇− 2Φqtq̇− Φtt

= Qd ⇒ describes the terms quadratic in velocities
(3.4)

Instead of using algebraic constraint equations (3.3), we can now use acceleration constraint

equations (3.4) as all our equations are now differential in nature. Combining this set of

equations with (3.2), we get

Mq̈ + Φq
Tλ = Qe

Φq̈ = Qd

(3.5)

where, Qd describes terms like Coriolis and centripetal forces and Qe describes the external

generalized forces (forces and moments). Equations (3.5) can be written in a convenient matrix

form as [
M Φq

T

Φq 0

][
q̈

λ

]
=

[
Qe

Qd

]
(3.6)

and equation (3.6) can be manipulated to obtain explicit expressions for q̈ and λ (see [41]) as[
q̈

λ

]
=

[
M Φq

T

Φq 0

]−1 [
Qe

Qd

]

which gives rise to the two following equations

q̈ = M−1Qe + M−1ΦT
q

(
[ΦqM

−1ΦT
q ]−1(Qd −ΦqM

−1Qe)
)

λ = [ΦqM
−1ΦT

q ]−1
(
Qd −ΦqM

−1Qe

) (3.7a)

(3.7b)
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Equation (3.7) are in a convenient form to solve for q, q̇, q̈ and λ and the joint reactions.

Equation (3.7a) is a differential equation which can be integrated numerically, to solve for q and

q̇. After having solved for these kinematic quantities, we can use these quantities to calculate

λ, which can then be used to calculate joint reactions given by equation (2.10).

3.2.1 Integration of ODE’s

Figure 3.2: Using NDSolve in MathematicaR©

There are several methods available for solving ODEs. One fairly simple and standard

method is Euler’s Method. This method can only be used for first-order differential equa-

tions [42]. However, equation (3.7a) is a second-order differential equation. To use Euler’s

method, the second-order ODEs need to be re-formulated in standard state-space formulation

with q and q̇ as variables. A better and more efficient way would be to use multi-step in-

tegration methods which can directly integrate our second-order equation. Runge-Kutta and

Adams-Bashforth methods are a few such multi-step solvers. However, since the purpose of this

work was not to compare different integration methods or improve upon them, we have directly

used a robust integration method that comes in the MathematicaR© package – NDSolve. This

method deploys the best possible integration method according to the problem and hence it

provides a neat abstraction. This method is depicted in Figure 3.2.
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3.3 Solving Redundantly Constrained Equations

Equations (3.7b) and (2.10) can be written as

[ΦqM
−1ΦT

q ]λ =
(
Qd −ΦqM

−1Qe

)
(3.8)

f = Φq
Tλ (3.9)

As a first step, equation (3.8) is used to obtain the value of λ, and then constraint reaction

vector f is obtained using equation (3.9). It can be proved that for a given rectangular matrix

A and square invertible matrix B, ABAT is invertible only if A has full row rank [43]. From

equation (3.8), it can be seen that [ΦqM
−1ΦT

q ] will be invertible (and hence λ will have a

“unique” solution) only if Φq (i.e., the Jacobian) has full rank. For the singular case, infinite

solutions will exist for λ and the vector f obtained from equation (3.9) will also not be unique.

To solve for such a singular system, two approaches are usually employed:

1. One is to eliminate all the redundant constraints (or dependent rows of the Jacobian).

This is done by segregating the Jacobian matrix into a set of dependent and independent

rows, and then removing the dependent rows. This segregation is not unique since if a

constraint A depends on another constraint B, then B can also be seen as depending

upon A and one can remove either A or B.

2. Another approach is using the pseudo-inverse of a matrix. This has not been used in this

work and will not be discussed here.

When taking the elimination approach, we are essentially setting a few λ′s to be zero. Since,

elimination is not unique, the set of λ′s which are 0 is also not unique. Hence, the reaction

forces are not unique. However, it can be shown [25] that despite the fact that f can not be

found uniquely, some components of f can be found uniquely. This happens when some of the

rows of Φq are absolutely independent, i.e., they can not be written as the linear combination

of any other row in any possible way.

We shall state this fact as a proposition:

Proposition 3.3.1 (Constraint Reactions) If some of the constraints in rigid multi-body

are absolutely independent, then the reactions corresponding to those constraints can be found

out uniquely. [25]

Now, the resultant force on a joint is because of various constraints, and not just one

constraint. Resultant force is something which is of more importance, rather than the individual
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contributions of constraints. Regarding the resultant force on a joint, an interesting observation

can be made, which we state here as another proposition:

Proposition 3.3.2 (Joint Reactions) The resultant reaction on a joint can be found uniquely

in the following cases [25] :

1. if all the constraints acting on the joint are independent, or

2. if the constraints depend only on other constraints which are acting on the same joint

It is important to understand the difference between the 2 propositions. In Proposition

3.3.1, we deal only with individual contributions of constraints. In Proposition 3.3.2, we are

dealing with net contributions of constraints on a particular joint. Clearly, Proposition 3.3.2 is

of more interest to us. These propositions can be made more clear using a simple example.

B

�

C

��

�3
�2

�4

�5

�6
�7

�8

Figure 3.3: Proposition 1 and 2 Explained

In figure 3.3, constraint reactions of same color are dependent. In joint A, f1 is absolutely

independent and f2 and f3 are dependent on only each other (and they both are acting on

same joint). From proposition 3.3.1, f1 can be uniquely determined, while f2 and f3 can not

be. However, from proposition 3.3.2, since all the constraints on joint A are either independent

or dependent only on other constraints on joint A, resultant joint reaction on A is uniquely

determined. Using similar logic, we can see that joint reactions on joints B and C are not

uniquely determined, while the constraint reaction f4 on B can be uniquely determined.
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3.4 Development of RSA Methodology

In this section, we develop 2 methodologies. The first methodology deals with Proposition 3.3.1,

i.e., finding out which constraint reactions can be found out uniquely. Second methodology deals

with Proposition 3.3.2, i.e., finding out which joint reactions can be found out uniquely.

3.4.1 Methodology 1

According to Proposition 3.3.1, finding out which constraint reactions can be found uniquely is

straightforward. We simply need to find the rows of the Jacobian Φq which are independent.

A basic algorithm for this is to compare the rank of the Jacobian matrix Φq with a reduced

matrix Φ
\i
q , whose ith row (corresponding to ith constraint) has been crossed out. If the

rank of both matrices are same, it means removing ith constraint had no effect, hence it was

redundant/dependent.

3.4.2 Methodology 2

From Proposition 3.3.2, to affirm that a joint reaction can be found out uniquely, we need to

make sure that all the constraints acting on it are either independent or dependent only on the

constraints of the same joint. For this, first of all, we can split the Jacobian matrix Φq into

two matrices – one, which contains constraints acting on a particular joint and other which

contains constraints not acting on that particular joint. To analyze the joint i, we can get two

matrices for that joint as

Φi
q : Matrix with all the constraints (rows) acting on joint i

Φ−iq : Matrix with all the constraints (rows) not acting on joint i

We can now find the ranks of the corresponding matrices as

ri : Rank of Matrix Φi
q

r−i : Rank of Matrix Φ−iq

If all of the constraints corresponding to ith joint are either independent or dependent only

among themselves, then the following relation should hold:

r = ri + r−i (3.10)

This can be proved rigorously using the concept of direct sum from Linear Algebra[9]. The
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relation (3.10) is the basis of our methodology for our algorithm to perform RSA, which can

be stated conveniently as:

r = ri + r−i =⇒ Joint Reaction can be found uniquely

r 6= ri + r−i =⇒ Joint Reaction can NOT be found uniquely

3.5 Comparison of RSA Implementation using Natural

and Absolute Coordinates

Now, we will discuss how the methodology can be implemented using Natural Coordinates,

and what benefits it offers over Absolute Coordinates. We have already discussed in Section

2.4.3 how Natural Coordinates in their default form are not suitable for RSA, for they do not

capture the joint reactions in their constraint equations. We then modified the formulation by

adding extra node points to the formulation, which captured the joint reactions. This modified

formulation was termed as “Joint Augmented Natural Coordinates”.

In this section, we will show how the constraint equations turn out to be maximally quadratic

in the case of these modified Natural Coordinates. This in turn leads to very easy to handle

Jacobian matrices, which leads to faster RSA implementation. This is the main contribution

of this thesis.

Let us take the case of the 4-bar mechanism that we took in Section 2.3. The constraint equa-

tions for Absolute Coordinates came out to be transcendental, as depicted in Equations (2.12)

- (2.19). The Jacobian turns out to be:

Φq =



−1 0 −1
2

sin (θ1(t)) 0 0 0 0 0 0

0 0 1
2

cos (θ1(t)) 0 0 0 0 0 0

1 0 −1
2

sin (θ1(t)) −1 0 −1
2

sin (θ2(t)) 0 0 0

0 0 1
2

cos (θ1(t)) 0 0 1
2

cos (θ2(t)) 0 0 0

0 0 0 1 0 −1
2

sin (θ2(t)) −1 0 −1
2

sin (θ3(t))

0 0 0 0 0 1
2

cos (θ2(t)) 0 0 1
2

cos (θ3(t))

0 0 0 0 0 0 1 0 −1
2

sin (θ3(t))

0 0 0 0 0 0 0 0 1
2

cos (θ3(t))


(3.11)

The constraint equations using the Modified Natural Coordinates for the same mechanism

are as given in Equations (2.20) - (2.22) and Equation (2.27). The Jacobian for these set of
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constraints turn out to be:

Φq =



2 (x1 − xa) 2 (y1 − ya) · · · 0 0 0 0 0 0

2 (x1 − xa) 2 (y1 − ya) · · · 0 0 0 0 0 0

2 (x1 − x2) 2 (y1 − y2) · · · 0 0 0 0 0 0 0

0 0 · · · −2 (y2 − y3) 0 0 0 0 0 0

−1 0 · · · 0 0 0 0 0 0 0

0 −1 · · · 0 0 0 0 0 0 0

0 0 · · · 0 0 0 0 0 0 0

0 0 · · · −1 0 0 0 0 0 0

0 0 · · · 0 1 0 −1 0 0 0

0 0 · · · 0 0 1 0 −1 0 0

0 0 · · · 0 0 0 0 0 1 0

0 0 · · · 0 0 0 0 0 0 1



(3.12)

Our RSA methodology as proposed in Section 3.4.2 is based on calculating the ranks of the

Jacobian and its components. Now, the Jacobian matrix using our proposed Natural Coordi-

nates is a very simple one, with only linear components. Hence its rank can be found even

symbolically. While the Jacobian matrix generated using Absolute Coordinates has transcen-

dental components and hence will be difficult to evaluate symbolically.

3.6 Summary

In this chapter, we first explained over-constrained mechanisms with a few examples in Sec-

tion 3.1. Dynamics Equations were then formulated in Section 3.2, and methods of integrating

them discussed. With dynamics equations in hand, we then discuss the strategies to solve

redundantly constrained systems in Section 3.3. Here, we give an important proposition 3.3.2

which tells us when the resultant joint reactions on any joint can be found uniquely. The RSA

methodologies are then developed in Section 3.4 using this proposition. RSA Methodology-2

developed in sub-section 3.4.2 is the primary methodology used in the following chapter.
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Chapter 4

Implementation of Reaction Solvability

Analysis

In this chapter, we model a few over-constrained mechanisms of interest using appropriate

coordinate formulation(s), and write their constraint equations. Then the reaction solvability

analysis is done on them using our defined Methodology-2 in 3.4.2.

4.1 Parallelogram Mechanism

We start with the kinematic modeling of this well-known planar mechanism shown in Figure 4.1.

As shown the mechanism consists of 5 links and 6 joints.

4.1.1 Kinematic Modeling (Absolute Coordinates)

The degrees of freedom using Grübler-Kutzbach criterionis

DoF = 3 (N − J − 1) +
∑

Fi = 3(5− 6− 1) + 6 = 0

and since it can move, it is an over-constrained mechanism. For its kinematic modeling, using

absolute coordinates, the pose of each link is denoted by 3 numbers – [xi, yi, θi] resulting in

coordinates given by

~q =
[
~rT1 θ1~r

T
2 θ2~r

T
3 θ3~r

T
4 θ4

]T
~ri = [~xi~yi]

T

~q = [x1, y1, θ1, x2, y2, θ2, x3, y3, θ3, x4, y4, θ4, ]
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Let ~s
(i)
a , ~s

(i)
b , ~s

(i)
p and ~s

(i)
q be coordinates of a, b, p, and q respectively in local frame i. The

constraint equations based on these absolute coordinates are

Φ1(~q) =

[
φ1(~q)

φ2(~q)

]
=

[
x1

y1

]
= ~0

Φ2(~q) =

[
φ3(~q)

φ4(~q)

]
= ~r1 +R1~s

1
p − ~r4 −R4~s

4
p = ~0

=

[
x1

y1

]
+

[
c1 −s1

s1 c1

][
l/2

0

]
−

[
x4

y4

]
−

[
c4 −s4

s4 c4

][
−l/2

0

]

=

[
x1 − x4

y1 − y4

]
−

[
c1 + c4 −(s1 + s4)

s1 + s4 c1 + c4

][
l/2

0

]
= ~0

Φ3(~q) =

[
φ5(~q)

φ6(~q)

]
= ~r1 +R1~s

1
a − ~r2 −R2~s

4
a = 0

=

[
x1

y1

]
+

[
c1 −s1

s1 c1

][
l

0

]
−

[
x2

y2

]
−

[
c2 −s2

s2 c2

][
−l/2

0

]

=

[
x1 − x4

y1 − y4

]
−

[
2c1 + c2 −(2s1 + s2)

2s1 + s2 2c1 + c2

][
l/2

0

]
= ~0

Φ4(~q) =

[
x3

y3

]
+

[
c3 −s3

s3 c3

][
l

0

]
−

[
x2

y2

]
−

[
c2 −s2

s2 c2

][
l/2

0

]

=

[
x3 − x2

y3 − y2

]
−

[
2c3 + c2 −(2s3 + s2)

2s3 + s2 2c3 + c2

][
l/2

0

]

Φ5(~q) =

[
x3

y3

]
+

[
c3 −s3

s3 c3

][
l/2

0

]
−

[
x4

y4

]
−

[
c4 −s4

s4 c4

][
l/2

0

]

=

[
x3 − x4

y3 − y4

]
−

[
c3 − c4 −(s3 − s4)

s3 − s4 c3 − c4

][
l/2

0

]

Φ6(~q) =

[
φ11(~q)

φ12(~q)

]
=

[
x1

y1

]
=

[
l

0

]

Consider that the mechanism is at the position such that θ1 = θ3 = π/2 and θ2 = θ4 = 0.
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Figure 4.1: Parallelogram Mechanism

The Jacobian at this representative position can be calculated as:

Φq =


Φ1

q

Φ2
q

...

Φ6
q

 =




(φ1)q
(φ2)q

...

(φ12)q



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Φq =



1 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0

1 0 −l/2 0 0 0 0 0 0 −1 0 l/2

0 1 0 0 0 0 0 0 0 0 −1 0

1 0 −l −1 0 l/2 0 0 0 0 0 0

0 0 0 −1 0 −l/2 1 0 −l 0 0 0

1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 −1 0 0 1 0 0 0 0

0 0 0 0 0 0 1 0 −l/2 −1 0 −l/2
0 0 0 0 0 0 0 1 0 0 −1 0

0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0


4.1.2 Apply RSA Methodology-2

Now, let us apply our RSA Methodology-2 developed in 3.4.2, which says that unique reactions

can be found only for joints for which ri + r−i = r.

The rank r of Φq is 10. The ranks ri and r−i of the matrices Φi
q’s and Φ−iq ’s are given in

table 4.1. For all joints, we can see that ri + r−i > r, where r = 10. Hence, for none of the

joints in this over-constrained parallelogram mechanism we can obtain unique reactions.

i ri = rank(Φi
q) r−i = rank(Φ−iq ) ri + r−i

1 2 9 11
2 2 9 11
3 2 9 11
4 2 9 11
5 2 9 11
6 2 9 11

Table 4.1: Methodology-2 Results for Parallelogram Mechanism

4.2 Kempe Burmester Mechanism

The Kempe-Burmester is a well known over-constrained mechanism[40] and we use our RSA

methodology to obtain which joint reactions, if any, can be computed.
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Figure 4.2: Kempe Burmester Mechanism

4.2.1 Kinematic Modeling (Absolute Coordinates)

The Kempe-Burmester mechanism is known to have the following special characteristics.

Points p, q, r, s lie in a circle.

lbp
lap

=
lcq
ldq

lbr
lcr

=
las
lds

Following in the same vein as the Parallelogram Mechanism, we model Kempe-Burmester

using absolute coordinates as depicted in Figure 4.2. The constraint equations for this mecha-
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nism are:

Φ1(~q) =

[
φ1(~q)

φ2(~q)

]
=

[
x1

y1

]
= ~0

Φ2(~q) =

[
φ3(~q)

φ4(~q)

]
= ~r2 +R2~s

2
p − ~r1 −R1~s

1
p = ~0

=

[
x2 − x1

y2 − y1

]
−

[
c1

s1

]
lap

Φ3(~q) =

[
φ5(~q)

φ6(~q)

]
= ~r3 − ~r1 −R1~s

1
b = ~0

=

[
x3 − x1

y3 − y1

]
−

[
c1

s1

]
lab

Φ4(~q) =

[
φ7(~q)

φ8(~q)

]
= ~r3 +R3~s

3
r − ~r4 −R4~s

4
r = ~0

=

[
x3 − x4

y3 − y4

]
−

[
c3

s3

]
lbr −

[
c4

s4

]
ltr = ~0

Φ5(~q) =

[
φ9(~q)

φ10(~q)

]
= ~r3 +R3~s

3
c − ~r7 −R7~s

7
c = ~0

=

[
x3 − x7

y3 − y7

]
−

[
c3

s3

]
lbc −

[
c7

s7

]
ldc = ~0

Φ6(~q) =

[
φ11(~q)

φ12(~q)

]
= ~r5 +R5~s

5
q − ~r7 −R7~s

7
q = ~0

=

[
x5 − x7

y5 − y7

]
−

[
c5

s5

]
ltq −

[
c7

s7

]
lqd = ~0

Φ7(~q) =

[
φ13(~q)

φ14(~q)

]
=

[
x7

y7

]
=

[
lad

0

]

Φ8(~q) =

[
φ15(~q)

φ16(~q)

]
=

[
x6

y6

]
=

[
las

0

]

Φ9(~q) =

[
φ17(~q)

φ18(~q)

]
=

[
x4 − x5

y4 − y5

]
=

[
0

0

]

Φ10(~q) =

[
φ19(~q)

φ20(~q)

]
= ~r5 − ~r6 −R6~s

6
t = ~0
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=

[
x5 − x6

y5 − y6

]
−

[
c6

s6

]
lts = ~0

Φ11(~q) =

[
φ21(~q)

φ22(~q)

]
= ~r4 − ~r2 −R2~s

2
t = ~0

=

[
x4 − x2

y4 − y2

]
−

[
c2

s2

]
lpt

The Jacobian of this mechanism was calculated using MathematicaR© and the results of

the same are provided in Appendix A.1

4.2.2 Applying RSA Methodology-2

The RSA Methodology-2 was applied on this mechanism as can be seen in the MathematicaR©

Notebook of Kempe Burmester in Appendix A.1. We will directly show and discuss those

results.

First of all, rank of Jacobian Matrix is r = rank(Φq) = 21 and the ranks ri and r−i are

shown in the table.

i ri = rank(Φi
q) r−i = rank(Φ−iq ) ri + r−i

1 2 20 22
2 2 20 22
3 2 20 22
4 2 20 22
5 2 20 22
6 2 20 22
7 2 19 21
8 2 20 22
9 6 16 22

Table 4.2: Methodology-2 Results for Kempe-Burmester Mechanism

From these results, we can see that only for joint 7©, ri+r−i = r. Hence, for joint 7©, we can

find the reactions uniquely. For all other joints, unique joint reaction solution is not possible.

4.3 Bennett Mechanism (Absolute Coordinates)

In this section, we model the Bennett Mechanism using absolute coordinates and apply the

developed RSA methodology. Using absolute coordinates, it was not possible to implement this

algorithm symbolically, hence we used a particular configuration of the Bennett Mechanism to

solve it numerically.
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4.3.1 Kinematic Modeling

Figure 4.3: Bennett Mechanism

The position coordinates of various defined points are given as

S
(0)
A =

 a

−l cos θ1

−l sin θ1

 S
(1)
A =

 0

0

−l


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S
(0)
B =

 a

l cos θ1

l sin θ1

 S
(1)
B =

0

0

l



S
(1)
C =

 b

−l cos θ2

−l sin θ2

 S
(2)
C =

 0

0

−l



S
(1)
D =

 a

l cos θ2

l sin θ2

 S
(2)
D =

0

0

l


S

(2)
E =

[
c −l cos θ3 −l sin θ3

]T
S

(3)
E =

[
0 0 −l

]T
S

(2)
F =

[
c l cos θ3 l sin θ3

]T
S

(3)
F =

[
0 0 l

]T
S

(3)
G =

[
d −l cos θ4 −l sin θ4

]T
S

(0)
G =

[
0 0 −l

]T
S

(3)
H =

[
d l cos θ4 l sin θ4

]T
S

(0)
H =

[
0 0 l

]T
The constraint equations are givens as:

~r1 +R1
~S

(1)
A − ~S

(0)
A = ~0

~r1 +R1
~S

(1)
B − ~S

(0)
B = ~0

~r2 +R2
~S

(2)
C − ~r1 −R1

~S
(1)
C = ~0

~r2 +R2
~S

(2)
D − ~r1 −R1

~S
(1)
D = ~0

~r3 +R3
~S

(3)
E − ~r2 −R2

~S
(2)
E = ~0

~r3 +R3
~S

(3)
F − ~r2 −R2

~S
(2)
F = ~0

~S
(0)
G − ~r3 −R3

~S
(3)
G = ~0

~S
(0)
H − ~r3 −R3

~S
(3)
H = ~0

We have used the Z-X-Z Euler Angles (Body-fixed) to construct the rotation matrices and

the following configuration of the Bennett Mechanism was used for computations.

{α1, β1, γ1} =
1

180
π{240, 20, 0};

{α2, β2, γ2} =
1

180
π{148.4, 34.46, 31.57};
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{α3, β3, γ3} =
1

180
π{0, 20, 63.13};

{x1, y1, z1} = {10, 0, 0};

{x2, y2, z2} = {5, 8.138,−2.962};

{x3, y3, z3} = {−4.519, 8.921, 0};

These values were obtained by solving the initial-position problem of Bennett Mechanism,

i.e., by solving the loop-closure equations, and this was done using quaternions as explained in

Appendix B.1.

4.3.2 Applying RSA Methodology-2

The RSA Methodology-2 was applied on this mechanism as can be seen in the MathematicaR©

Notebook of Bennett Mechanism shown in Appendix A.2. The main results are that the rank

of Jacobian matrix is r = rank(Φq) = 18 and the ranks ri and r−i are shown in the table.

i ri = rank(Φi
q) r−i = rank(Φ−iq ) ri + r−i

1 5 17 22
2 6 16 22
3 6 16 22
4 5 15 20

Table 4.3: Methodology-2 Results for Bennett Mechanism

As we can see in the results, for all the joints, ri + r−i > r = 18 and hnce, for none of the

joints the reactions can be found uniquely.

4.4 Bennett Mechanism (Natural Coordinates)

In this section, we implement RSA on the Bennett Mechanism modeled using the natural

coordinates. As we will see, using the natural coordinates, the equations are simpler and

amenable for symbolic computations unlike when using absolute coordinates in the previous

section 4.3.

4.4.1 Kinematic Modeling

To model this spatial mechanism using natural coordinates, we use 8 basic points and 8 unit

vectors. The constraint equations are as follows:
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Figure 4.4: Bennett Mechanism modeled using Natural Coordinates

Revolute Joint Constraints:

R1:
~r2 = ~r3

~u2 = ~u3

}
Revolute Joint 1 (4.1)

R2:
~r4 = ~r5

~u4 = ~u5

}
Revolute Joint 2 (4.2)

R3:
~r6 = ~r7

~u6 = ~u7

}
Revolute Joint 3 (4.3)

R4:
~r8 = ~r1

~u8 = ~u1

}
Revolute Joint 4 (4.4)
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Rigid-body and Fixed (grounding) Constraints:

(~r2 − ~r1). ~u1 = 0 (~r2 − ~r1). ~u2 = 0 |~r2 − ~r1|2 = a2 ~u1. ~u2 = cos(α)

(~r3 − ~r4). ~u4 = 0 (~r3 − ~r4). ~u3 = 0 |~r3 − ~r4|2 = a2 ~u4. ~u3 = cos(α)

(~r6 − ~r5). ~u5 = 0 (~r6 − ~r5). ~u6 = 0 |~r6 − ~r5|2 = a2 ~u5. ~u6 = cos(α)

(~r7 − ~r8). ~u8 = 0 (~r7 − ~r8). ~u7 = 0 |~r7 − ~r8|2 = a2 ~u8. ~u7 = cos(α)

~r1 = ~0 ~r2 = ~p

|~ui|2 = 1, ∀i ∈ [1, 8]

(4.5)

4.4.2 Applying RSA Methodology-2

One can note that the constraint equations here are mostly quadratic, except for the norm

conditions, which can also be implemented as quadratic conditions, by squaring those condi-

tions, as has been done in Equations (4.5). The benefit of having a set of constraints which

are all quadratic is that the elements of the Jacobian becomes linear and we can hope to apply

our RSA algorithm symbolically – linear independence between linear equations is easy to find

symbolically and for the Bennett Mechanism this is indeed the case.

As shown in the MathematicaR© Notebook in Appendix A.3, we did not have to take any spe-

cific numerical value for our RSA algorithm. The RSA algorithm gives the results symbolically

and since they are same as mentioned in Section 4.3, they are not repeated here.

4.5 A Planar Over-Constrained Mechanism

In this section, we will implement our RSA methodology on a planar over-contrained mechanism

using natural coordinates. The mechanism is shown in Figure 4.5.

4.5.1 Modeling using Natural Coordinates

The prismatic (P) joint constraint equations can be written as

P1:
~r1 × ~r3 = 0

(~r3 − ~r10).~r1 = l1l6 cos(φ1)

}
Prismatic Joint 1 (4.6)

P2:
~r7 × ~r8 = 0

(~r9 − ~r7).~r8 = l5l4 cos(φ2)

}
Prismatic Joint 2 (4.7)

P3:
( ~r10 − ~r3)× (~r3 − ~r9) = 0

( ~r10 − ~r3).(~r9 − ~r7) = l5l6

}
Prismatic Joint 3 (4.8)
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Figure 4.5: A Planar over-constrained mechanism

The revolute (R) joint constraint equations are given as

R1: ~r2 = ~r3

}
Revolute Joint 1 (4.9)

R2: ~r4 = ~r5

}
Revolute Joint 2 (4.10)

R3: ~r7 = ~r6

}
Revolute Joint 3 (4.11)

40



The rigid-body and fixed (grounding) constraints are

~r1 = (0, l1)T ~r8 = (l4, 0)T

|~r4 − ~r2| = l2 |~r7 − ~r9| = l5

|~r5 − ~r6| = l3 |~r3 − ~r10| = l6

(4.12)

4.5.2 Applying RSA Methodology-2

The RSA Methodology-2 was applied on this mechanism as can be seen in the MathematicaR©

Notebook in the Appendix A.4. The rank of Jacobian matrix is r = rank(Φq) = 19 and the

ranks ri and r−i are shown in the table 4.4.

i ri = rank(Φi
q) r−i = rank(Φ−iq ) ri + r−i

P1 2 18 20
P2 2 18 20
P3 2 18 20
R1 2 17 19
R2 2 17 19
R3 2 17 19

Table 4.4: Methodology-2 Results for the Planar Mechanism

As we can see in the results, for all the prismatic joints, ri + r−i > r = 19. Hence, for none

of the prismatic joints can the reactions be found uniquely. However, for all revolute joints

ri + r−i = r = 19. Hence, all the revolute joint reactions can be found uniquely.

4.6 Results and Discussion

In this chapter, we perfomed RSA on 4 mechanisms – 3 planar and 1 spatial Bennett mechanism.

The kinematics of these mechanisms were modeled either using absolute coordinate formulation

or joint-augmented natural coordinate formulation. The Bennett Mechanism (spatial) was

modeled using both the formulations so that a comparison could be made between the two

formulations. We discovered that the natural coordinates are a much better choice for doing

RSA. While using the absolute coordinates, we had to resort to specific numerical values for the

configuration of mechanism, using Natural Coordinates we could solve the problem symbolically

for any general configuration.

When using absolute coordinates, the numerical values for the configuration of the mecha-

nism were obtained by solving the initial-position problem of the mechanism, i.e., solving the

loop-closure equations. These loop closure equations were formulated using quaternions and
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vectors, instead of homogeneous transformation matrices and the details and source code of

this exercise are included in Appendices B.1 and C. We expected to gain some computational

advantage with this, however no advantage was observed using quaternions. This could be

attributed to the fact that we were using a very high-level library in Python which has its own

overheads.
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Chapter 5

Implementation : Finding Joint

Reactions

In this chapter, we demonstrate how we can calculate the “solvable” joint reactions in over-

constrained mechanisms. This provides a completion to our problem statement. We demon-

strate this using one of the mechanisms, namely the planar mechanism in section 4.5, which we

analyzed in the previous chapter. Recall that in this mechanism, we could find joint reactions

in all the revolute joints but not in the prismatic joints.

5.1 Kinematic Modeling of the Planar Mechanism

For the purpose of finding joint reactions, we will model the chosen planar mechanism using

absolute coordinates. This is because all the constraints in absolute coordinates formulation are

directly related to joints, hence they are much more convenient to use than other formulations.

This aspect was discussed in Section 2.5.

This mechanism, modelled using absolute coordinates, has been shown in Figure 5.1. There

are 12 constraints in this formulation which can be given as follows.

Prismatic joint constraint equations:

P1:
Φ1 : y1 = 0

Φ2 : θ1 = 0

}
Prismatic Joint 1 (5.1)

P2:
Φ3 : x2 = 0

Φ4 : θ2 = 0

}
Prismatic Joint 2 (5.2)
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Figure 5.1: Absolute Coordinates Formulation of a planar mechanism

P3:
Φ5 : x2 − x1 + y2 − y1 = 0

Φ6 : θ2 − θ1 = 0

}
Prismatic Joint 3 (5.3)

Revolute joint constraint equations:

R1:
Φ7 : x1 − x3 = 0

Φ8 : y1 − y3 = 0

}
Revolute Joint 1 (5.4)

R2:
Φ9 : x2 − x4 = 0

Φ10 : y2 − y4 = 0

}
Revolute Joint 2 (5.5)

R3:
Φ11 : x3 − sin(θ3)− x4 − cos(θ4) = 0

Φ12 : y3 − cos(θ3)− y4 − sin(θ4) = 0

}
Revolute Joint 3 (5.6)
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5.2 Dynamics of the Planar Mechanism

All the analysis in this section was done in MathematicaR©, and the corresponding MathematicaR©

notebook has been included in Appendix A.4.

5.2.1 Step-1 : Finding Jacobian

The Jacobian for this mechanism is first calculated. Being over-constrained, the Jacobian

(12× 12) comes out to be singular.

Φq =



0 1 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0

−1 −1 0 1 1 0 0 0 0 0 0 0

0 0 −1 0 0 1 0 0 0 0 0 0

1 0 0 0 0 0 −1 0 0 0 0 0

0 1 0 0 0 0 0 −1 0 0 0 0

0 0 0 1 0 0 0 0 0 −1 0 0

0 0 0 0 1 0 0 0 0 0 −1 0

0 0 0 0 0 0 1 0 − cos (θ3(t)) −1 0 sin (θ4(t))

0 0 0 0 0 0 0 1 − sin (θ3(t)) 0 −1 − cos (θ4(t))



(5.7)

Performing the analysis in MathematicaR©, the Jacobian is found to be rank-deficient by 1.

We then find the dependent rows, and eliminate one of the dependent rows randomly (in this

case, we eliminated row-2). Now, we have a 11× 12 Jacobian, which is not rank-deficient and

this Jacobian can now be used to do further analysis.

5.2.2 Step-2 : Finding mass matrix

We assume that the mass of Body-1 and Body-2 are concentrated at joints R1 and R2, respec-

tively. Body-3 and Body-4 are assumed to be rods with uniform mass distribution. The mass

matrices of these 4 bodies are given as:

M1 =

 m 0 0

0 m 0

0 0
l21m

12

 (5.8)
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M2 =

 m 0 0

0 m 0

0 0
l22m

12

 (5.9)

M3 =

 m 0 1
2
l3(−m) sin (θ3(t))

0 m 1
2
l3m cos (θ3(t))

1
2
l3(−m) sin (θ3(t)) 1

2
l3m cos (θ3(t))

l23m

3

 (5.10)

M4 =

 m 0 1
2
l4(−m) sin (θ4(t))

0 m 1
2
l4m cos (θ4(t))

1
2
l4(−m) sin (θ4(t)) 1

2
l4m cos (θ4(t))

l24m

3

 (5.11)

The final combined mass matrix is given as:

M =


M1 0 0 0

0 M2 0 0

0 0 M3 0

0 0 0 M4

 (5.12)

5.2.3 Step-3 : Integrating Dynamics Equations

Now, we use the equations (3.7) to solve the dynamics of this mechanism. We integrate the

equations (3.7a) to solve for q, q̇ and q̈. Then, we can use these values to evaluate λ at any

given time or time interval, using equation (3.7b). For doing this, we take the time period to

be from t = 0 to t = 5 seconds. We also apply an external force on the centre of mass (CM) of

Body-1 in positive X-direction. The external force vector Qe thus becomes:

Qe = {1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0} (5.13)

After this, we solve for q, q̇ and q̈ using NDSolve. These values are then used to calculate λ

and subsequently constraint reactions f , using the relation f = Φq
Tλ. The values of constraint

forces thus calculated can now be plotted as shown in figures 5.2 to 5.7. We have only

plotted the reactions corresponding to constraints on joints R1, R2 and R3, because as found in

section 4.5, it’s only for these joints that the reactions can be found uniquely. The constraints

corresponding to these joints are Φ7 - Φ12, and the corresponding calculated forces f7 - f12. As

these joints are rotary joints, the generalized constraint forces are all forces and not moments.

For example, f7 and f8 are forces on joints R1 in X and Y directions, respectively.
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Figure 5.2: Reaction Force vs Time
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Figure 5.3: Reaction Force vs Time

5.3 Summary

In this chapter, we gave the complete step-by-step procedure for finding joint reactions in an

over-constrained mechanism, and demonstrated with a planar mechanism shown in Figure 5.1.

The kinematic modeling of the mechanism was done using absolute coordinates in section 5.1,

and the constraint equations laid out. Then, in section 5.2, we formulate the Jacobian of the

system and find its mass matrix. These are then substituted in the dynamics equations, which

are integrated using NDSolve as mentioned in section 5.2.3. The results of integration are

plotted in Figures 5.2 - 5.7.
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Figure 5.4: Reaction Force vs Time

1 2 3 4 5
Time

- 0.8

- 0.6

- 0.4

- 0.2

Generalized Force

f10

Figure 5.5: Reaction Force vs Time
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Figure 5.6: Reaction Force vs Time
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Figure 5.7: Reaction Force vs Time
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Chapter 6

Conclusions

6.1 Concluding Remarks

In this thesis, we have formulated a methodology for Reaction Solvability Analysis (RSA) of

over-constrained mechanisms in Chapter 3. This methodology is used to analyze several planar

and spatial over-constrained mechanisms in Chapter 4. We also present a procedure to solve

the dynamics of these mechanisms in Section 3.2, which was then used to find the actual joint

reactions of an over-constrained mechanism in Chapter 5.

One major contribution of this thesis lies in investigating various coordinate formulations

for the purpose of doing RSA and finding which are suitable for this purpose. To this end, we

compared various coordinate formulations in Chapter 2, and found that the absolute coordinates

are the only coordinates which capture joint reactions directly, hence the only ones usable for

RSA. The relative coordinates, owing to their minimal nature, hide most of the joint reactions,

and the natural coordinates capture joint reactions of only certain types of joints. However,

we showed that if natural coordinates are modified, they can capture the joint reactions of any

joint type. This modification is named as Joint-Augmented Natural Coordinate Formulation in

Section 2.4.3 and this formulation, while non-minimal, provided several benefits over absolute

coordinates. In Chapter 4, the Bennett mechanism was solved using both absolute and the

joint-augmented natural coordinates. While using the former, we had to resort to numerical

values of its orientation, using the latter we could solve the problem symbolically. This gain

in computational efficiency can be attributed to the fact that constraint equations in natural

coordinates are all quadratic equations, hence resulting in a Jacobian matrix whose elements

are linear and thus easy to investigate.

Finally, in Chapter 5, we provided a completion to our problem statement by solving for the

“solvable” joint reactions in one planar mechanism. This involved bringing dynamics equations
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into the picture, which coupled with the constraint equations, are a set of differential-algebraic

equations (DAEs). For finding joint reactions, we used absolute coordinates, as constraint

reactions corresponding to natural coordinates are hard to interpret physically.

6.2 Future Directions

In our work, we focused only on holonomic constraints. One possible extension would be to

extend the RSA algorithms to systems with non-holonomic constraints. Further, the polyno-

mial nature of constraints using natural coordinates holds great potential for RSA. Since our

problem statement ultimately boils down to checking the (linear or non-linear) independence of

constraints, one can analyze the constraints vector Φ itself for independent constraints, without

going into the Jacobian. Checking for linear independence of polynomials is well established.

However, linear independence would only provide us a weak idea about reaction solvability, for

constraints could depend non-linearly as well. In this case, one can check for algebraic inde-

pendence (a nonlinear generalization of linear independence of polynomials) of polynomials as

some recent developments seem to suggest that this may be possible[44].

The Jacobian method that we have used can have problems of singularity and the uniquely

solvable joint reactions can change when the mechanism is in a singular location, i.e., the joints

which are solvable may become un-solvable in singular locations and vice-versa. This hasn’t

been investigated in this thesis, and can be a good problem to investigate in the future.

Finally, as discussed in the previous section, the thesis recommended natural coordinates

for use in RSA but not in actually solving joint reactions. This was because the physical inter-

pretation of constraint reactions is not easy when using the natural coordinates, as commented

by the originator of this formulation himself [11]. A scope of future work could be to attempt to

physically interpret these joint reactions so that they can also be used to “find” joint reactions

and thus providing a uniform natural-coordinates based formulation.
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Appendix A

MathematicaR© Notebooks

In the following pages, we have attached the MathematicaR© Notebooks for RSA of Kempe

Burmester and Bennett Mechanism, and for Dynamics of a planar mechanism.
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H****************************L
H* Kempe Burmester Problem *L
H****************************L

mat = 881, 2, 3<, 84, 5, 6<, 87, 8, 9<<
881, 2, 3<, 84, 5, 6<, 87, 8, 9<<

f1 = x1; f2 = y1;

f3 = x2 - x1 - Cos@p1D * Lap; f4 = y2 - y1 - Sin@p1D * Lap;

f4

-y1 + y2 - Lap Sin@p1D

jacob = D@8f1, f2, f3, f4<, 88x1, y1, p1, x2, y2, p2<<D
881, 0, 0, 0, 0, 0<, 80, 1, 0, 0, 0, 0<,

8-1, 0, Lap Sin@p1D, 1, 0, 0<, 80, -1, -Lap Cos@p1D, 0, 1, 0<<

881, 0, 0, 0, 0, 0<, 80, 1, 0, 0, 0, 0<,

8-1, 0, Lap Sin@p1D, 1, 0, 0<, 80, -1, -Lap Cos@p1D, 0, 1, 0<<
881, 0, 0, 0, 0, 0<, 80, 1, 0, 0, 0, 0<,

8-1, 0, Lap Sin@p1D, 1, 0, 0<, 80, -1, -Lap Cos@p1D, 0, 1, 0<<

f5 = x3 - x1 - Cos@p1D * Lab; f6 = y2 - y1 - Sin@p1D * Lab;

f7 = x3 - x4 + Cos@p3D * Lbr - Cos@p4D * Ltr;

f8 = y3 - y4 + Sin@p3D * Lbr - Sin@p4D * Ltr;

f9 = x3 - x7 + Cos@p3D * Lbc - Cos@p7D * Ldc;

f10 = y3 - y7 + Sinh@p3D * Lbc - Sin@p7D * Ldc;

f11 = x5 - x7 + Cos@p5D * Ltq - Cos@p7D * Lqd;

f12 = y5 - y7 + Sin@p5D * Ltq - Sin@p7D * Lqd;

f13 = x7 - Lad; f14 = y7;

f15 = x6 - Las; f16 = y6;

f17 = x4 - x5; f18 = y4 - y5;

f19 = x5 - x6 - Cos@p6D * Lts; f20 = y5 - y6 - Sin@p6D * Lts;

f21 = x4 - x2 - Cos@p2D * Lpt; f22 = y4 - y2 - Sin@p2D * Lpt;

A.1 Kempe Burmester
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jacob = D@8f1, f2, f3, f4, f5, f6, f7, f8, f9, f10, f11, f12, f13,

f14, f15, f16, f17, f18, f19, f20, f21, f22<, 88x1, y1, p1, x2, y2,

p2, x3, y3, p3, x4, y4, p4, x5, y5, p5, x6, y6, p6, x7, y7, p7<<D

881, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0<,

80, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0<,

8-1, 0, Lap Sin@p1D, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0<,

80, -1, -Lap Cos@p1D, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0<,

8-1, 0, Lab Sin@p1D, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0<,

80, -1, -Lab Cos@p1D, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0<,

80, 0, 0, 0, 0, 0, 1, 0, -Lbr Sin@p3D, -1, 0, Ltr Sin@p4D, 0, 0, 0, 0, 0, 0, 0, 0, 0<,

80, 0, 0, 0, 0, 0, 0, 1, Lbr Cos@p3D, 0, -1, -Ltr Cos@p4D, 0, 0, 0, 0, 0, 0, 0, 0, 0<,

80, 0, 0, 0, 0, 0, 1, 0, -Lbc Sin@p3D, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, 0, Ldc Sin@p7D<,

80, 0, 0, 0, 0, 0, 0, 1, Lbc Cosh@p3D, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1, -Ldc Cos@p7D<,

80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, -Ltq Sin@p5D, 0, 0, 0, -1, 0, Lqd Sin@p7D<,

80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, Ltq Cos@p5D, 0, 0, 0, 0, -1, -Lqd Cos@p7D<,

80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0<,

80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0<,

80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0<,

80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0<,

80, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0<,

80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0<,

80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, -1, 0, Lts Sin@p6D, 0, 0, 0<,

80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, -1, -Lts Cos@p6D, 0, 0, 0<,

80, 0, 0, -1, 0, Lpt Sin@p2D, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0<,

80, 0, 0, 0, -1, -Lpt Cos@p2D, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0<<

jacob �� MatrixForm

1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0 0 0

-1 0 Lap Sin@p1D 1 0 0 0 0 0 0 0 0 0 0

0 -1 -Lap Cos@p1D 0 1 0 0 0 0 0 0 0 0 0

-1 0 Lab Sin@p1D 0 0 0 1 0 0 0 0 0 0 0

0 -1 -Lab Cos@p1D 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 -Lbr Sin@p3D -1 0 Ltr Sin@p4D 0 0

0 0 0 0 0 0 0 1 Lbr Cos@p3D 0 -1 -Ltr Cos@p4D 0 0

0 0 0 0 0 0 1 0 -Lbc Sin@p3D 0 0 0 0 0

0 0 0 0 0 0 0 1 Lbc Cosh@p3D 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0 -1 0

0 0 0 0 0 0 0 0 0 0 1 0 0 -

0 0 0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 1

0 0 0 -1 0 Lpt Sin@p2D 0 0 0 1 0 0 0 0

0 0 0 0 -1 -Lpt Cos@p2D 0 0 0 0 1 0 0 0

2     KempeBurmester.nb

55



Dimensions@jacobD
822, 21<

MatrixRank@jacobD
21

Lap = 1.0; Lbp = 1.0; Lbr = 0.6614; Lrc = 0.6614;

Clear@Lap, Lbp, Lbr, LrcD

Lap = 1.0; Ltq = 1.0; Lab = 2.0; Lbr = 0.6614;

Ltr = 1.25; Lts = 0.6614; Ldc = 2.0; Lqd = 1.0; Lpt = 1.0;

Dimensions@jacobD
822, 21<

MatrixRank@jacobD
21

H******************************L
H* Here Starts the Method-A+ *L
H******************************L

pq1 = jacob@@81, 2<, AllDD; pqm1 = Drop@jacob, 81, 2<, 0D;

r1 = MatrixRank@pq1D
2

rm1 = MatrixRank@pqm1D
20

H*Used the following bash script to generate formulaes:*L
H*For the 9th constraint, manually wrote the formula*L
H* Hj=1;for i in $Hseq 1 2 22L;do printf'pq'$j'=jacob@@8'$i','$HH$i+1LL'<,AllDD;';

HHj++LL;done;L oclip *L

pq1 = jacob@@81, 2<, AllDD; pq2 = jacob@@83, 4<, AllDD; pq3 = jacob@@85, 6<, AllDD;

pq4 = jacob@@87, 8<, AllDD; pq5 = jacob@@89, 10<, AllDD;

pq6 = jacob@@811, 12<, AllDD; pq7 = jacob@@813, 14<, AllDD;

pq8 = jacob@@815, 16<, AllDD; pq9 = jacob@@817, 18, 19, 20, 21, 22<, AllDD;

pq9 �� MatrixForm

0 0 0 0 0 0 0 0 0 1 0 0 -1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0 0 -1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 -1 0 0.6614 Sin@p6D 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 -1 -0.6614 Cos@p6D 0 0 0

0 0 0 -1 0 1. Sin@p2D 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 -1 -1. Cos@p2D 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

KempeBurmester.nb    3
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H*Again a Bash script for pqm's. And Manual for pqm9*L
H*Hj=1;for i in $Hseq 1 2 22L;do echo'pqm'$j'=Drop@jacob,8'$i','$HH$i+1LL'<,0D;';

HHj++LL;done;L oclip*L

pqm1 = Drop@jacob, 81, 2<, 0D;

pqm2 = Drop@jacob, 83, 4<, 0D;

pqm3 = Drop@jacob, 85, 6<, 0D;

pqm4 = Drop@jacob, 87, 8<, 0D;

pqm5 = Drop@jacob, 89, 10<, 0D;

pqm6 = Drop@jacob, 811, 12<, 0D;

pqm7 = Drop@jacob, 813, 14<, 0D;

pqm8 = Drop@jacob, 815, 16<, 0D;

pqm9 = Drop@jacob, 817, 22<, 0D;

H*Now bash script for printing formulaes for ri's and rmi's *L
H* for i in $Hseq 9L;do echo "r$i"'=MatrixRank@pq'$i'D;

rm'$i'=MatrixRank@pqm'$i'D;'; done; *L

r1 = MatrixRank@pq1D; rm1 = MatrixRank@pqm1D;

r2 = MatrixRank@pq2D; rm2 = MatrixRank@pqm2D; r3 = MatrixRank@pq3D;

rm3 = MatrixRank@pqm3D; r4 = MatrixRank@pq4D; rm4 = MatrixRank@pqm4D;

r5 = MatrixRank@pq5D; rm5 = MatrixRank@pqm5D; r6 = MatrixRank@pq6D;

rm6 = MatrixRank@pqm6D; r7 = MatrixRank@pq7D; rm7 = MatrixRank@pqm7D;

r8 = MatrixRank@pq8D; rm8 = MatrixRank@pqm8D;

r9 = MatrixRank@pq9D; rm9 = MatrixRank@pqm9D;

rm8 = MatrixRank@pqm8D;

pqm8 �� MatrixForm

1 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0 0

-1 0 1. Sin@p1D 1 0 0 0 0 0 0 0 0 0

0 -1 -1. Cos@p1D 0 1 0 0 0 0 0 0 0 0

-1 0 2. Sin@p1D 0 0 0 1 0 0 0 0 0 0

0 -1 -2. Cos@p1D 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 -0.6614 Sin@p3D -1 0 1.25 Sin@p4D 0

0 0 0 0 0 0 0 1 0.6614 Cos@p3D 0 -1 -1.25 Cos@p4D 0

0 0 0 0 0 0 1 0 -Lbc Sin@p3D 0 0 0 0

0 0 0 0 0 0 0 1 Lbc Cosh@p3D 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0 -1

0 0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 -1 0 1. Sin@p2D 0 0 0 1 0 0 0

0 0 0 0 -1 -1. Cos@p2D 0 0 0 0 1 0 0
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MatrixRank@pqm8D
20

8r1, r2, r3, r4, r5, r6, r7, r8, r9<
82, 2, 2, 2, 2, 2, 2, 2, 6<

8rm1, rm2, rm3, rm4, rm5, rm6, rm7, rm8, rm9<
820, 20, 20, 20, 20, 20, 19, 20, 16<
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SetOptions@EvaluationNotebook@D, CellContext ® NotebookD

H***********************************************L
H***********************************************L
H******* Notebook for Bennett Mechanism *******L
H***********************************************L
H***********************************************L

H*Applying Specific Bennnett Conditions*L
a = c = b = d;

Θ1 = Θ3 = Θ; Θ2 = Θ4 = -Θ;

H**********************************************L
H* Absolute Coordinates for each joint axis *L
H**********************************************L

r0 = 80, 0, 0<;

r1 = 8x1, y1, z1<;

r2 = 8x2, y2, z2<;

r3 = 8x3, y3, z3<;

Ψ0 = 8Α0, Β0, Γ0<;

Ψ1 = 8Α1, Β1, Γ1<;

Ψ2 = 8Α2, Β2, Γ2<;

Ψ3 = 8Α3, Β3, Γ3<;

Q = Join@r1, Ψ1, r2, Ψ2, r3, Ψ3D;

H*Complete Vector Containing all the system variables*L

H*****************************************************L
H* Rotational Matrices based on Z-X-Z Euler Angles *L
H*****************************************************L

R0 = 881, 0, 0<, 80, 1, 0<, 80, 0, 1<<;

R1 = 88Cos@Α1D Cos@Γ1D - Sin@Α1D Cos@Β1D Sin@Γ1D,

Sin@Α1D Cos@Β1D H-Cos@Γ1DL + Cos@Α1D H-Sin@Γ1DL, Sin@Α1D Sin@Β1D<,

8Cos@Α1D Cos@Β1D Sin@Γ1D + Sin@Α1D Cos@Γ1D, Cos@Α1D Cos@Β1D Cos@Γ1D - Sin@Α1D Sin@Γ1D,

Cos@Α1D H-Sin@Β1DL<, 8Sin@Β1D Sin@Γ1D, Sin@Β1D Cos@Γ1D, Cos@Β1D<<;

R2 = 88Cos@Α2D Cos@Γ2D - Sin@Α2D Cos@Β2D Sin@Γ2D,

Sin@Α2D Cos@Β2D H-Cos@Γ2DL + Cos@Α2D H-Sin@Γ2DL, Sin@Α2D Sin@Β2D<,

8Cos@Α2D Cos@Β2D Sin@Γ2D + Sin@Α2D Cos@Γ2D, Cos@Α2D Cos@Β2D Cos@Γ2D - Sin@Α2D Sin@Γ2D,

Cos@Α2D H-Sin@Β2DL<, 8Sin@Β2D Sin@Γ2D, Sin@Β2D Cos@Γ2D, Cos@Β2D<<;

R3 = 88Cos@Α3D Cos@Γ3D - Sin@Α3D Cos@Β3D Sin@Γ3D,

Sin@Α3D Cos@Β3D H-Cos@Γ3DL + Cos@Α3D H-Sin@Γ3DL, Sin@Α3D Sin@Β3D<,

8Cos@Α3D Cos@Β3D Sin@Γ3D + Sin@Α3D Cos@Γ3D, Cos@Α3D Cos@Β3D Cos@Γ3D - Sin@Α3D Sin@Γ3D,

Cos@Α3D H-Sin@Β3DL<, 8Sin@Β3D Sin@Γ3D, Sin@Β3D Cos@Γ3D, Cos@Β3D<<;
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H*************************************************************************L
H* Positions of various points from different local coordinate systems *L
H*************************************************************************L

s
A

0
= 8a, -l Cos@Θ1D, -l Cos@Θ1D<;

s
A

1
= 80, 0, -l<;

s
B

0
= 8a, l Cos@Θ1D, l Cos@Θ1D<;

s
B

1
= 80, 0, l<;

s
C

1
= 8b, -l Cos@Θ2D, -l Cos@Θ2D<;

s
C

2
= 80, 0, -l<;

s
D

1
= 8b, l Cos@Θ2D, l Cos@Θ2D<;

s
D

2
= 80, 0, l<;

s
ã

2
= 8c, -l Cos@Θ3D, -l Cos@Θ3D<;

s
ã

3
= 80, 0, -l<;

s
F

2
= 8c, l Cos@Θ3D, l Cos@Θ3D<;

s
F

3
= 80, 0, l<;

s
G

3
= 8d, -l Cos@Θ4D, -l Cos@Θ4D<;

s
G

0
= 80, 0, -l<;

s
H

3
= 8d, l Cos@Θ4D, l Cos@Θ4D<;

s
H

0
= 80, 0, l<;

H*************************L
H* Constraint Equations *L
H*************************L

F
1

= JoinAr1 + R1.s
A

1
- r0 - R0.s

A

0
, r1 + R1.s

B

1
- r0 - R0.s

B

0E;

F
2

= JoinAr2 + R2.s
C

2
- r1 - R1.s

C

1
, r2 + R2.s

D

2
- r1 - R1.s

D

1E;

F
3

= JoinAr3 + R3.s
ã

3
- r2 - R2.s

ã

2
, r3 + R3.s

F

3
- r2 - R2.s

F

2E;

F
4

= JoinAr0 + R0.s
G

0
- r3 - R3.s

G

3
, r0 + R0.s

H

0
- r3 - R3.s

H

3E;

H*********************************L
H* Complete Constraint Equation *L
H*********************************L

phi = JoinAF
1
, F

2
, F

3
, F

4E; MatrixForm@FD

F

H********************L
H* Jacobian Matrix *L
H********************L
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Fq = D@phi, 8Q<D; MatrixForm@FqD H* Jacobian Matrix *L
1 0 0 -l Cos@Α1D Sin@Β1D
0 1 0 -l Sin@Α1D Sin@Β1D
0 0 1 0

1 0 0 l Cos@Α1D Sin@Β1D
0 1 0 l Sin@Α1D Sin@Β1D
0 0 1 0

-1 0 0 l Cos@ΘD Cos@Α1D Sin@Β1D - d H-Cos@Γ1D Sin@Α1D - Cos@Α1D Cos@Β1D Sin@Γ1DL + l Cos

0 -1 0 l Cos@ΘD Sin@Α1D Sin@Β1D + l Cos@ΘD H-Cos@Β1D Cos@Γ1D Sin@Α1D - Cos@Α1D Sin@Γ1D
0 0 -1 0

-1 0 0 -l Cos@ΘD Cos@Α1D Sin@Β1D - d H-Cos@Γ1D Sin@Α1D - Cos@Α1D Cos@Β1D Sin@Γ1DL - l Cos

0 -1 0 -l Cos@ΘD Sin@Α1D Sin@Β1D - l Cos@ΘD H-Cos@Β1D Cos@Γ1D Sin@Α1D - Cos@Α1D Sin@Γ1D
0 0 -1 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

Dimensions@%45D
824, 18<

H******************************L
H* Here Starts the Method-A+ *L
H******************************L

F
q

1
= FqP81, 2, 3, 4, 5, 6<, AllT;

F
q

2
= FqP87, 8, 9, 10, 11, 12<, AllT;

F
q

3
= FqP813, 14, 15, 16, 17, 18<, AllT;

F
q

4
= FqP819, 20, 21, 22, 23, 24<, AllT;

F
q

-1
= Drop@Fq, 81, 6<, 0D;

F
q

-2
= Drop@Fq, 87, 12<, 0D;

F
q

-3
= Drop@Fq, 813, 18<, 0D;

F
q

-4
= Drop@Fq, 819, 24<, 0D;
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MatrixRankAF
q

-1E
MatrixRankAF

q

-2E
MatrixRankAF

q

-3E
H*MatrixRankAF

q

-4E*L

17

16

16

MatrixRankAF
q

1E
MatrixRankAF

q

2E
MatrixRankAF

q

3E
MatrixRankAF

q

4E

5

6

6

5

H*Giving specific numerical values to position coordinates*L
8x1, y1, z1< = 810, 0, 0<;

8x2, y2, z2< = 85, 8.138, -2.962<;

8x3, y3, z3< = 8-4.519, 8.921, 0<;

8Α1, Β1, Γ1< = 8240, 20, 0< * Pi � 180;

8Α2, Β2, Γ2< = 8148.4, 34.46, 31.57< * Pi � 180;

8Α3, Β3, Γ3< = 80, 20, 63.13< * Pi � 180;

MatrixRankAF
q

1E
MatrixRankAF

q

2E
MatrixRankAF

q

3E
MatrixRankAF

q

4E

5

6

6

5
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MatrixRankAF
q

-1E
MatrixRankAF

q

-2E
MatrixRankAF

q

-3E
MatrixRankAF

q

-4E

17

16

16

15

MatrixRank@FqD
18
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H***********************************************************L
H* Bennett Mechanism Reaction Solvability Analysis HRSAL *L
H* Using Natural Coordinates *L
H***********************************************************L
SetOptions@EvaluationNotebook@D, CellContext ® NotebookD

MyNorm@a_D := a@@1DD^2 + a@@2DD^2 + a@@3DD^2

Do@Hrj = 8xj, yj, zj<L, 8j, 8<D
Do@Huj = 8ej, fj, gj<L, 8j, 8<D
Q = Join@r1, r2, r3, r4, r5, r6, r7, r8, u1, u2, u3, u4, u5, u6, u7, u8D;

H*Constraint Equations*L
R1 = Join@r2 - r3, u2 - u3D;

R2 = Join@r4 - r5, u4 - u5D;

R3 = Join@r6 - r7, u6 - u7D;

R4 = Join@r8 - r1, u8 - u1D;

F = Join@R1, R2, R3, R4D;

H*Adding 8 Unit vector constraints*L
Do@HF = Join@F, 8MyNorm@ujD - 1<DL, 8j, 8<D

H*Adding Rigid link constraints*L
Do@HF = Join@F, 8Hrj+1 - rjL.uj<DL, 8j, 1, 7, 2<D
Do@HF = Join@F, 8Hrj+1 - rjL.uj+1<DL, 8j, 1, 7, 2<D
Do@HF = Join@F, 8MyNorm@rj+1 - rjD - a^2<DL, 8j, 1, 7, 2<D
Do@HF = Join@F, 8uj.uj+1 - Cos@ΑjD<DL, 8j, 1, 7, 2<D

H*Adding FixindHGroundL constraints*L
F = Join@F, r1D;

F = Join@F, r2 - 8p, q, t<D;

F �� MatrixForm

x2 - x3

y2 - y3

z2 - z3

e2 - e3

f2 - f3

g2 - g3

x4 - x5

y4 - y5

z4 - z5

e4 - e5

f4 - f5

g4 - g5

x6 - x7

y6 - y7

z6 - z7
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z6 - z7

e6 - e7

f6 - f7

g6 - g7

-x1 + x8

-y1 + y8

-z1 + z8

-e1 + e8

-f1 + f8

-g1 + g8

-1 + e
1

2
+ f

1

2
+ g

1

2

-1 + e
2

2
+ f

2

2
+ g

2

2

-1 + e
3

2
+ f

3

2
+ g

3

2

-1 + e
4

2
+ f

4

2
+ g

4

2

-1 + e
5

2
+ f

5

2
+ g

5

2

-1 + e
6

2
+ f

6

2
+ g

6

2

-1 + e
7

2
+ f

7

2
+ g

7

2

-1 + e
8

2
+ f

8

2
+ g

8

2

e1 H-x1 + x2L + f1 H-y1 + y2L + g1 H-z1 + z2L
e3 H-x3 + x4L + f3 H-y3 + y4L + g3 H-z3 + z4L
e5 H-x5 + x6L + f5 H-y5 + y6L + g5 H-z5 + z6L
e7 H-x7 + x8L + f7 H-y7 + y8L + g7 H-z7 + z8L
e2 H-x1 + x2L + f2 H-y1 + y2L + g2 H-z1 + z2L
e4 H-x3 + x4L + f4 H-y3 + y4L + g4 H-z3 + z4L
e6 H-x5 + x6L + f6 H-y5 + y6L + g6 H-z5 + z6L
e8 H-x7 + x8L + f8 H-y7 + y8L + g8 H-z7 + z8L
-a

2
+ H-x1 + x2L2

+ H-y1 + y2L2
+ H-z1 + z2L2

-a
2

+ H-x3 + x4L2
+ H-y3 + y4L2

+ H-z3 + z4L2

-a
2

+ H-x5 + x6L2
+ H-y5 + y6L2

+ H-z5 + z6L2

-a
2

+ H-x7 + x8L2
+ H-y7 + y8L2

+ H-z7 + z8L2

-Cos@Α1D + e1 e2 + f1 f2 + g1 g2

-Cos@Α3D + e3 e4 + f3 f4 + g3 g4

-Cos@Α5D + e5 e6 + f5 f6 + g5 g6

-Cos@Α7D + e7 e8 + f7 f8 + g7 g8

x1

y1

z1

-p + x2

-q + y2

-t + z2

J = D@F, 8Q<D H* Jacobian Matrix *L
880, 0, 0, 1, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0<,

80, 0, 0, 0, 1, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0<,

80, 0, 0, 0, 0, 1, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0<,

80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 1, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0<,

80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 1, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0<,
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80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 1, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0<,

80, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0<,

80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0<,

80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0<,

80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0<,

80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0<,

80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0<,

80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, -1, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0<,

80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, -1, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0<,

80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, -1, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0<,

80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, -1, 0, 0, 0, 0, 0<,

80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, -1, 0, 0, 0, 0<,

80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, -1, 0, 0, 0<,

8-1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0<,

80, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0<,

80, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0<,

80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -1,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0<,

80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

-1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0<,

80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1<,

80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2 e1,

2 f1, 2 g1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0<,

80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 2 e2, 2 f2, 2 g2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0<,

80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 2 e3, 2 f3, 2 g3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0<,

80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 2 e4, 2 f4, 2 g4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0<,

80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2 e5, 2 f5, 2 g5, 0, 0, 0, 0, 0, 0, 0, 0, 0<,

80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, , , , 0, 0, 0, 0, 0, 0<,
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0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2 e6, 2 f6, 2 g6, 0, 0, 0, 0, 0, 0<,

80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2 e7, 2 f7, 2 g7, 0, 0, 0<,

80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2 e8, 2 f8, 2 g8<,

8-e1, -f1, -g1, e1, f1, g1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

-x1 + x2, -y1 + y2, -z1 + z2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0<,

80, 0, 0, 0, 0, 0, -e3, -f3, -g3, e3, f3, g3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, -x3 + x4, -y3 + y4, -z3 + z4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0<,

80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -e5, -f5, -g5, e5, f5, g5, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -x5 + x6, -y5 + y6, -z5 + z6, 0, 0, 0, 0, 0, 0, 0, 0, 0<,

80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -e7, -f7, -g7, e7, f7, g7, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -x7 + x8, -y7 + y8, -z7 + z8, 0, 0, 0<,

8-e2, -f2, -g2, e2, f2, g2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, -x1 + x2, -y1 + y2, -z1 + z2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0<,

80, 0, 0, 0, 0, 0, -e4, -f4, -g4, e4, f4, g4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, -x3 + x4, -y3 + y4, -z3 + z4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0<,

80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -e6, -f6, -g6, e6, f6, g6, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -x5 + x6, -y5 + y6, -z5 + z6, 0, 0, 0, 0, 0, 0<,

80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -e8, -f8, -g8, e8, f8, g8, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -x7 + x8, -y7 + y8, -z7 + z8<,

8-2 H-x1 + x2L, -2 H-y1 + y2L, -2 H-z1 + z2L, 2 H-x1 + x2L, 2 H-y1 + y2L,

2 H-z1 + z2L, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0<,

80, 0, 0, 0, 0, 0, -2 H-x3 + x4L, -2 H-y3 + y4L, -2 H-z3 + z4L, 2 H-x3 + x4L,

2 H-y3 + y4L, 2 H-z3 + z4L, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0<,

80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2 H-x5 + x6L, -2 H-y5 + y6L, -2 H-z5 + z6L,

2 H-x5 + x6L, 2 H-y5 + y6L, 2 H-z5 + z6L, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0<,

80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -2 H-x7 + x8L,

-2 H-y7 + y8L, -2 H-z7 + z8L, 2 H-x7 + x8L, 2 H-y7 + y8L, 2 H-z7 + z8L,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0<,

80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, e2,

f2, g2, e1, f1, g1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0<,

80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, e4, f4, g4, e3, f3, g3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0<,

80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, e6, f6, g6, e5, f5, g5, 0, 0, 0, 0, 0, 0<,

80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, e8, f8, g8, e7, f7, g7<,

81, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0<,

80, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0<,

80, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0<,

80, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0<,
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80, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0<,

80, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0<<

MatrixRank@JD
48

Dimensions@JD
854, 48<

RSA@cList_D := IJ
i

= JPcList, AllT; J
-i

= ComplementAJ, J
iE;

PrintA"J
i

= ", MatrixRankAJ
iE, " and J

-i
= ", MatrixRankAJ

-iEE;M

RSA@81, 2, 3, 4, 5, 6<D
J

i
= 6 and J

-i
= 47
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H*********************************L
H*Dynamics of A Planar Mechanism*L
H*********************************L
SetOptions@EvaluationNotebook@D, CellContext ® NotebookD

H*Defining Absolute Coordinates*L
Do@Hrj = 8xj@tD, yj@tD<L, 8j, 4<D
q = Join@r1, 8Θ1@tD<, r2, 8Θ2@tD<, r3, 8Θ3@tD<, r4, 8Θ4@tD<D
8x1@tD, y1@tD, Θ1@tD, x2@tD, y2@tD, Θ2@tD, x3@tD, y3@tD, Θ3@tD, x4@tD, y4@tD, Θ4@tD<

H*Defining Constraints*L
F = 8y1@tD, Θ1@tD, x2@tD, Θ2@tD, x2@tD - x1@tD + y2@tD - y1@tD,

Θ2@tD - Θ1@tD, x1@tD - x3@tD, y1@tD - y3@tD, x2@tD - x4@tD, y2@tD - y4@tD,

x3@tD - Sin@Θ3@tDD - x4@tD - Cos@Θ4@tDD, y3@tD + Cos@Θ3@tDD - y4@tD - Sin@Θ4@tDD<
8y1@tD, Θ1@tD, x2@tD, Θ2@tD, -x1@tD + x2@tD - y1@tD + y2@tD,

-Θ1@tD + Θ2@tD, x1@tD - x3@tD, y1@tD - y3@tD, x2@tD - x4@tD, y2@tD - y4@tD,

-Cos@Θ4@tDD - Sin@Θ3@tDD + x3@tD - x4@tD, Cos@Θ3@tDD - Sin@Θ4@tDD + y3@tD - y4@tD<

MatrixForm@%D
y1@tD
Θ1@tD
x2@tD
Θ2@tD

-x1@tD + x2@tD - y1@tD + y2@tD
-Θ1@tD + Θ2@tD
x1@tD - x3@tD
y1@tD - y3@tD
x2@tD - x4@tD
y2@tD - y4@tD

-Cos@Θ4@tDD - Sin@Θ3@tDD + x3@tD - x4@tD
Cos@Θ3@tDD - Sin@Θ4@tDD + y3@tD - y4@tD

J = D@F, 8q<D H* Jacobian Matrix *L
880, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0<, 80, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0<,

80, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0<, 80, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0<,

8-1, -1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0<, 80, 0, -1, 0, 0, 1, 0, 0, 0, 0, 0, 0<,

81, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0<, 80, 1, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0<,

80, 0, 0, 1, 0, 0, 0, 0, 0, -1, 0, 0<, 80, 0, 0, 0, 1, 0, 0, 0, 0, 0, -1, 0<,

80, 0, 0, 0, 0, 0, 1, 0, -Cos@Θ3@tDD, -1, 0, Sin@Θ4@tDD<,

80, 0, 0, 0, 0, 0, 0, 1, -Sin@Θ3@tDD, 0, -1, -Cos@Θ4@tDD<<

q
¢

= D@q, tD
8x1

¢@tD, y1
¢@tD, Θ1

¢@tD, x2
¢@tD, y2

¢@tD, Θ2
¢@tD, x3

¢@tD, y3
¢@tD, Θ3

¢@tD, x4
¢@tD, y4

¢@tD, Θ4
¢@tD<
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l1 = l2 = 1 � 2;

l3 = l4 = 1;

m = 1;

H*Θ3=Θ4=0;*L

M1 = :8m, 0, 0<, 80, m, 0<, :0, 0,

m l
1

2

12

>>

M2 = :8m, 0, 0<, 80, m, 0<, :0, 0,

m l
2

2

12

>>

M3 = ::m, 0,

1

2

H-mL l3 Sin@Θ3@tDD>, :0, m,

1

2

m l3 Cos@Θ3@tDD>,

:
1

2

H-mL l3 Sin@Θ3@tDD,

1

2

m l3 Cos@Θ3@tDD,

m l
3

2

3

>>

M4 = ::m, 0,

1

2

H-mL l4 Sin@Θ4@tDD>, :0, m,

1

2

m l4 Cos@Θ4@tDD>,

:
1

2

H-mL l4 Sin@Θ4@tDD,

1

2

m l4 Cos@Θ4@tDD,

m l
4

2

3

>>

:81, 0, 0<, 80, 1, 0<, :0, 0,

1

48

>>

:81, 0, 0<, 80, 1, 0<, :0, 0,

1

48

>>

::1, 0, -

1

2

Sin@Θ3@tDD>, :0, 1,

1

2

Cos@Θ3@tDD>, :-

1

2

Sin@Θ3@tDD,

1

2

Cos@Θ3@tDD,

1

3

>>

::1, 0, -

1

2

Sin@Θ4@tDD>, :0, 1,

1

2

Cos@Θ4@tDD>, :-

1

2

Sin@Θ4@tDD,

1

2

Cos@Θ4@tDD,

1

3

>>

M = ArrayFlatten@88M1, 0, 0, 0<, 80, M2, 0, 0<, 80, 0, M3, 0<, 80, 0, 0, M4<<D

:81, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0<, 80, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0<,

:0, 0,

1

48

, 0, 0, 0, 0, 0, 0, 0, 0, 0>, 80, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0<,

80, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0<, :0, 0, 0, 0, 0,

1

48

, 0, 0, 0, 0, 0, 0>,

:0, 0, 0, 0, 0, 0, 1, 0, -

1

2

Sin@Θ3@tDD, 0, 0, 0>,

:0, 0, 0, 0, 0, 0, 0, 1,

1

2

Cos@Θ3@tDD, 0, 0, 0>,

:0, 0, 0, 0, 0, 0, -

1

2

Sin@Θ3@tDD,

1

2

Cos@Θ3@tDD,

1

3

, 0, 0, 0>,

:0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, -

1

2

Sin@Θ4@tDD>,

:0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1,

1

2

Cos@Θ4@tDD>,

:0, 0, 0, 0, 0, 0, 0, 0, 0, -

1

2

Sin@Θ4@tDD,

1

2

Cos@Θ4@tDD,

1

3

>>
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MatrixRank@JD
11

H*RowReduce@JD ��MatrixForm*L

J = Drop@J, 82<, 0D H*Eliminating a dependent constraint, arbitrarily*L
880, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0<,

80, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0<, 80, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0<,

8-1, -1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0<, 80, 0, -1, 0, 0, 1, 0, 0, 0, 0, 0, 0<,

81, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0<, 80, 1, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0<,

80, 0, 0, 1, 0, 0, 0, 0, 0, -1, 0, 0<, 80, 0, 0, 0, 1, 0, 0, 0, 0, 0, -1, 0<,

80, 0, 0, 0, 0, 0, 1, 0, -Cos@Θ3@tDD, -1, 0, Sin@Θ4@tDD<,

80, 0, 0, 0, 0, 0, 0, 1, -Sin@Θ3@tDD, 0, -1, -Cos@Θ4@tDD<<

JIn = PseudoInverse@JD

A very large output was generated. Here is a sample of it:

8�1�<

Show Less Show More Show Full Output Set Size Limit...

Qe = 81, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0<
81, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0<

q
¢

= D@q, tD
8x1

¢@tD, y1
¢@tD, Θ1

¢@tD, x2
¢@tD, y2

¢@tD, Θ2
¢@tD, x3

¢@tD, y3
¢@tD, Θ3

¢@tD, x4
¢@tD, y4

¢@tD, Θ4
¢@tD<

Qd = -H¶8q< HJ.q
¢LL.q

¢

90, 0, 0, 0, 0, 0, 0, 0, 0, -Sin@Θ3@tDD Θ3
¢@tD2

- Cos@Θ4@tDD Θ4
¢@tD2

,

Cos@Θ3@tDD Θ3
¢@tD2

- Sin@Θ4@tDD Θ4
¢@tD2=
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MIn = Inverse@MD

:81, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0<, 80, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0<,

80, 0, 48, 0, 0, 0, 0, 0, 0, 0, 0, 0<, 80, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0<,

80, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0<, 80, 0, 0, 0, 0, 48, 0, 0, 0, 0, 0, 0<,

:0, 0, 0, 0, 0, 0,

1

3
-

1

4
Cos@Θ3@tDD2

1

3
-

1

4
Cos@Θ3@tDD2

-

1

4
Sin@Θ3@tDD2

,

-

Cos@Θ3@tDD Sin@Θ3@tDD

4 I 1

3
-

1

4
Cos@Θ3@tDD2

-

1

4
Sin@Θ3@tDD2M

,

Sin@Θ3@tDD

2 I 1

3
-

1

4
Cos@Θ3@tDD2

-

1

4
Sin@Θ3@tDD2M

, 0, 0, 0>,

:0, 0, 0, 0, 0, 0, -

Cos@Θ3@tDD Sin@Θ3@tDD

4 I 1

3
-

1

4
Cos@Θ3@tDD2

-

1

4
Sin@Θ3@tDD2M

,

1

3
-

1

4
Sin@Θ3@tDD2

1

3
-

1

4
Cos@Θ3@tDD2

-

1

4
Sin@Θ3@tDD2

, -

Cos@Θ3@tDD

2 I 1

3
-

1

4
Cos@Θ3@tDD2

-

1

4
Sin@Θ3@tDD2M

, 0, 0, 0>,

:0, 0, 0, 0, 0, 0,

Sin@Θ3@tDD

2 I 1

3
-

1

4
Cos@Θ3@tDD2

-

1

4
Sin@Θ3@tDD2M

,

-

Cos@Θ3@tDD

2 I 1

3
-

1

4
Cos@Θ3@tDD2

-

1

4
Sin@Θ3@tDD2M

,

1

1

3
-

1

4
Cos@Θ3@tDD2

-

1

4
Sin@Θ3@tDD2

, 0, 0, 0>,

:0, 0, 0, 0, 0, 0, 0, 0, 0,

1

3
-

1

4
Cos@Θ4@tDD2

1

3
-

1

4
Cos@Θ4@tDD2

-

1

4
Sin@Θ4@tDD2

,

-

Cos@Θ4@tDD Sin@Θ4@tDD

4 I 1

3
-

1

4
Cos@Θ4@tDD2

-

1

4
Sin@Θ4@tDD2M

,

Sin@Θ4@tDD

2 I 1

3
-

1

4
Cos@Θ4@tDD2

-

1

4
Sin@Θ4@tDD2M

>,

:0, 0, 0, 0, 0, 0, 0, 0, 0, -

Cos@Θ4@tDD Sin@Θ4@tDD

4 I 1

3
-

1

4
Cos@Θ4@tDD2

-

1

4
Sin@Θ4@tDD2M

,

1

3
-

1

4
Sin@Θ4@tDD2

1

3
-

1

4
Cos@Θ4@tDD2

-

1

4
Sin@Θ4@tDD2

, -

Cos@Θ4@tDD

2 I 1

3
-

1

4
Cos@Θ4@tDD2

-

1

4
Sin@Θ4@tDD2M

>,

:0, 0, 0, 0, 0, 0, 0, 0, 0,

Sin@Θ4@tDD

2 I 1

3
-

1

4
Cos@Θ4@tDD2

-

1

4
Sin@Θ4@tDD2M

,

-

Cos@Θ4@tDD

2 I 1

3
-

1

4
Cos@Θ4@tDD2

-

1

4
Sin@Θ4@tDD2M

,

1

1

3
-

1

4
Cos@Θ4@tDD2

-

1

4
Sin@Θ4@tDD2

>>

Jt = Transpose@JD
880, 0, 0, -1, 0, 1, 0, 0, 0, 0, 0<, 81, 0, 0, -1, 0, 0, 1, 0, 0, 0, 0<,

80, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0<, 80, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0<,

80, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0<, 80, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0<,

80, 0, 0, 0, 0, -1, 0, 0, 0, 1, 0<, 80, 0, 0, 0, 0, 0, -1, 0, 0, 0, 1<,

80, 0, 0, 0, 0, 0, 0, 0, 0, -Cos@Θ3@tDD, -Sin@Θ3@tDD<,

80, 0, 0, 0, 0, 0, 0, -1, 0, -1, 0<, 80, 0, 0, 0, 0, 0, 0, 0, -1, 0, -1<,

80, 0, 0, 0, 0, 0, 0, 0, 0, Sin@Θ4@tDD, -Cos@Θ4@tDD<<
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JMinJt = Inverse@J.MIn.JtD

A very large output was generated. Here is a sample of it:

:: 1

�1�

- -

Cos@Θ3@tDD Sin@Θ3@tDD
4 J 1

3
-

1

4
Cos@Θ3@tDD2

-

1

4
Sin@Θ3@tDD2N

-

Sin@Θ3@tDD2

2 J 1

3
-

1

4
Cos@�1�D2

-

1

4
Sin@Θ3@tDD2N

-

Cos@Θ3@tDD -

Cos@Θ3@tDD
2 J 1

3
-�1� �1�-

1

4
�1�

2N
-

Sin@�1�D
1

3
-�1� �1� �1�

-

Cos@Θ4@tDD Sin@Θ4@tDD
4 J 1

3
-

1

4
Cos@Θ4@tDD2

-

1

4
Sin@Θ4@tDD2N

H�1�L + �43� + �1� ,

-

Cos@Θ
4

@tDD Sin@Θ
4

@tDD H�1�L

4

1

3

-

1

4

Cos@�1�D2
-

1

4

Sin@Θ
4

@tDD2

+�24�+ -

Cos@�1�D2

2

1

3

-�1�-

1

4

�1�

+

�1�-�1�

�1�

H�1�L

�1�

,

0,

- -

�1�
2

2 H�1�L +

1

3

-�1�

1

3

-�1� �1� �1�

H�1�L+�23�

�1�

,

0,

�1�

�1�

,

�1�

�1�

,

�1�

�1�

,

�53�+

�1�

�1�

�1�

,

�1�

�1�

,

�1�

�1�

>,

�9�, 9 �1�

�1�

,
�1�

�1�

, �8�,
�1�

�1�

=>

Show Less Show More Show Full Output Set Size Limit...

H*q
¢¢

=MIn.Qe+MIn.Jt.HJMinJt.HQd-J.MIn.QeLL*L
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eqs =

¶t ¶t q - HMIn.Qe + MIn.Jt.HJMinJt.HQd - J.MIn.QeLLL � 80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0<
H*eqns1 = ¶t¶tq - HMIn.Qe+MIn.Jt.HJMinJt.HQd-J.MIn.QeLLL*L

A very large output was generated. Here is a sample of it:

:-1 +

�1�

�1�

-

Cos@Θ
4

@tDD Sin@Θ
4

@tDD -

�1�

24 I�1�M �1�
2

+

�1�

�1�

+�6�

4

1

3

-

1

4

Cos@�1�D2
-

1

4

Sin@Θ
4

@tDD2

+�43�

�1�

-

K-

�1�
2

6 �1�
2

+�17�O K-

�1�
2

2 �1�

+

�1�

�1�

O+�40�

�1�

+

�1�

�1�

+

H�1�L H�1�L
�1�

-

H�1�L H�1�L
�1�

+

H�1�L ICos@Θ3@tDD Θ3
¢@tD2

-Sin@Θ4@tDD �1�
¢@tD2M

�1�

-

Cos@Θ
3

@tDD Cos@Θ
4

@tDD2
Sin@Θ

3
@tDD Sin@Θ

4
@tDD2

64

1

3

-

1

4

Cos@Θ
3

@tDD2
-

1

4

Sin@Θ
3

@tDD2
1

3

-

1

4

Cos@�1�D2
-

1

4

Sin@Θ
4

@tDD2

2

-

Cos@Θ
4

@tDD �1� H�1�L

4

1

3

-�1�-

1

4

�1�
2

+�67�+

Cos@Θ
4

@tDD Sin@Θ
4

@tDD H�1�L

4

1

3

-

1

4

Cos@�1�D2
-

1

4

Sin@Θ
4

@tDD2

H�1�L

�1�

+ x1
¢¢@tD, �19� + �1�, �8�, �1�, �1�> � 8�1�<

Show Less Show More Show Full Output Set Size Limit...

H*Λ = JMinJt.HQd-J.MIn.QeL*L
H*Qc = 8Q1@tD,Q2@tD,Q3@tD,Q4@tD,Q5@tD,Q6@tD,Q7@tD,Q8@tD,Q9@tD,Q10@tD,Q11@tD,Q12@tD<

eqns2 = Qc -Jt.JMInJt.HQd-J.MIn.QeL*L
H*eqns2 = Qc- HQe- M.Inverse@JD.QdL*L

H*eqns=Join@eqns1,eqns2D�80,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0<*L
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s = NDSolve@8eqs, x1@0D � 1, y1@0D � 0, Θ1@0D � 0, x1

¢@0D � 0, y1

¢@0D � 0,

Θ1

¢@0D � 0, x2@0D � 0, y2@0D � 1, Θ2@0D � 0, x2

¢@0D � 0, y2

¢@0D � 0, Θ2

¢@0D � 0,

x3@0D � 1, y3@0D � 0, Θ3@0D � 0, x3

¢@0D � 0, y3

¢@0D � 0, Θ3

¢@0D � 0,

x4@0D � 0, y4@0D � 1, Θ4@0D � 0, x4

¢@0D � 0, y4

¢@0D � 0, Θ4

¢@0D � 0<,

8x1, y1, Θ1, x2, y2, Θ2, x3, y3, Θ3, x4, y4, Θ4, x1

¢
, y1

¢
, Θ1

¢
, x2

¢
, y2

¢
, Θ2

¢
, x3

¢
, y3

¢
,

Θ3

¢
, x4

¢
, y4

¢
, Θ4

¢<, 8t, 0, 5<, Method -> 8"EquationSimplification" -> "Solve"<D
88x1 ® InterpolatingFunction@880., 5.<<, <>D,

y1 ® InterpolatingFunction@880., 5.<<, <>D,

Θ1 ® InterpolatingFunction@880., 5.<<, <>D,

x2 ® InterpolatingFunction@880., 5.<<, <>D,

y2 ® InterpolatingFunction@880., 5.<<, <>D,

Θ2 ® InterpolatingFunction@880., 5.<<, <>D,

x3 ® InterpolatingFunction@880., 5.<<, <>D,

y3 ® InterpolatingFunction@880., 5.<<, <>D,

Θ3 ® InterpolatingFunction@880., 5.<<, <>D,

x4 ® InterpolatingFunction@880., 5.<<, <>D,

y4 ® InterpolatingFunction@880., 5.<<, <>D,

Θ4 ® InterpolatingFunction@880., 5.<<, <>D,

x1
¢

® InterpolatingFunction@880., 5.<<, <>D,

y1
¢

® InterpolatingFunction@880., 5.<<, <>D,

Θ1
¢

® InterpolatingFunction@880., 5.<<, <>D,

x2
¢

® InterpolatingFunction@880., 5.<<, <>D,

y2
¢

® InterpolatingFunction@880., 5.<<, <>D,

Θ2
¢

® InterpolatingFunction@880., 5.<<, <>D,

x3
¢

® InterpolatingFunction@880., 5.<<, <>D,

y3
¢

® InterpolatingFunction@880., 5.<<, <>D,

Θ3
¢

® InterpolatingFunction@880., 5.<<, <>D,

x4
¢

® InterpolatingFunction@880., 5.<<, <>D,

y4
¢

® InterpolatingFunction@880., 5.<<, <>D,

Θ4
¢

® InterpolatingFunction@880., 5.<<, <>D<<

Plot@Evaluate@8x3@tD, x3

¢@tD , y2@tD, Θ1@tD< �. sD, 8t, 0, 5<, PlotStyle ® AutomaticD

1 2 3 4 5

0.5

1.0
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Θ3@2D �. s

J �. t ® 2 �. s

Λ = JMinJt.HQd - J.MIn.QeL
80.886271<

8880, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0<,

80, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0<, 80, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0<,

8-1, -1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0<, 80, 0, -1, 0, 0, 1, 0, 0, 0, 0, 0, 0<,

81, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0<, 80, 1, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0<,

80, 0, 0, 1, 0, 0, 0, 0, 0, -1, 0, 0<, 80, 0, 0, 0, 1, 0, 0, 0, 0, 0, -1, 0<,

80, 0, 0, 0, 0, 0, 1, 0, -0.632306, -1, 0, -0.774719<,

80, 0, 0, 0, 0, 0, 0, 1, -0.774719, 0, -1, -0.632306<<<

A very large output was generated. Here is a sample of it:

: 1

�1�

- -

Cos@Θ4@tDD2

2 J 1

3
-

1

4
Cos@Θ4@tDD2

-

1

4
Sin@Θ4@tDD2N

+

1

3
-

1

4
Sin@Θ4@tDD2

1

3
-

1

4
Cos@Θ4@tDD2

-

1

4
Sin@Θ4@tDD2

Cos@Θ4@tDD Sin@Θ4@tDD J�32�+

�1�

�1�

N

4 J 1

3
-

1

4
Cos@Θ4@tDD2

-

1

4
Sin@Θ4@tDD2N

-

J Cos@�1�D2

9 H�1�L3
-

�1�

6 �1�

+ �41� +

�1�
2

�1�
2

16 H�1�L H�1�L N H�1�L + �23� -

-H�1�L -

1

9 H�1�L2

+

�1�

�1�

+

�1�

�1�

+

Cos@Θ
3

@tDD �2� Sin@Θ
4

@tDD

16 H�1�L
1

3

-

1

4

�1�
2

-

1

4

�1�
2

+�60�

�1�

+

H�1�L I-Sin@Θ3@tDD �1�
¢@tD2

-Cos@�1�@tDD �1�M
�1�

+

J�43�+

�1�

�1�

N ICos@Θ3@tDD Θ3
¢@tD2

-Sin@Θ4@tDD Θ4
¢@tD2M

�1�

,

�1�, 0, �6�, �1�,

�1�

�1�

-

�1�

�1�

+

�1�

�1�

+

H�1�L H�1� �1�-�1�L
�1�

>

Show Less Show More Show Full Output Set Size Limit...

Λ �. t ® 1 �. s

880.539284, -0.528874, 0, 0.352806, 0, -0.377552,

-0.186478, 0.176067, -0.0831644, -0.141989, 0.0421465<<

Dimensions@ΛD
H*This should come out to be 11, and not 12*L
811<
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Table@Plot@Evaluate@Λ@@jDD �. sD, 8t, 0, 5<, PlotStyle ® AutomaticD, 8j, 1, 11<D

: 1 2 3 4 5

-0.8
-0.6
-0.4
-0.2

0.2
0.4

,

1 2 3 4 5

-1.0
-0.9
-0.8
-0.7
-0.6
-0.5

,

1 2 3 4 5

-1.0

-0.5

0.5

1.0

,

1 2 3 4 5

0.35

0.40

0.45

0.50

0.55

,

1 2 3 4 5

-1.0

-0.5

0.5

1.0

,

0 1 2 3 4 5

-0.9
-0.8
-0.7
-0.6
-0.5
-0.4

,

1 2 3 4 5
-0.2

0.2
0.4
0.6
0.8
1.0
1.2

,

1 2 3 4 5

0.2

0.4

0.6

0.8

,

1 2 3 4 5

-0.8

-0.6

-0.4

-0.2

,

1 2 3 4 5

-1.0

-0.8

-0.6

-0.4

-0.2

,

1 2 3 4 5

0.2

0.4

0.6

0.8

1.0

>
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Appendix B

Tools Developed

B.1 Quaternion Based Loop-closure

Usually loop-closure equations are written using transformation matrices. These loop closure

equations are of the form:

0T 1
1 T

2
2 T3...

n−1T n
n T0 = [I] (B.1)

In such equations as Equation (B.1), we have 16 parameters, while only 6 are independent.

Hence, a redundancy of 10. We suggest using Quaternions instead of rotation/transformation

matrices, as they have a redundancy of only 1. They can offer a much better computational

performance.

The set of equations when using quaternions would be:

0Q1
1Q

2
2Q3...

n−1Qn
nQ0 = 1 + 0̂i+ 0ĵ + 0k̂

~r0
0 = ~r0

n + [0Rn]~sn0 = [ooo]T
(B.2)

In equation (B.2), for rotation part of loop-closure, we have used quaternions, while trans-

lation part of loop-closure is captured by vectors. The total parameters are 7 (4 for quaternions

and 3 for vectors); hence a redundancy of 1.

A SymPy based Symbolic library for quaternions was developed which has been included

in Appendix C. Here, we demonstrate the usage of that library to solve the forward kinematics

of Bennet Mechanism:

1 from sympy . abc import alpha , beta , a , b , c , d

2 from sympy import ∗
3 from sympy quaternions import ∗
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4 from sympy . vec to r import ∗
5

6 #Bennet Setup

7 n = 4 #Number o f l i n k s / j o i n t s in the mechanism

8 a = 1

9 alpha = pi /8

10 #Inputt ing DH−parameters f o r t h i s mechanism in the format ( alpha , a , d ) . Theta

i s the va r i ab l e and hence i s not provided

11 dhp = ( ( alpha , a , 0) , (−alpha , a , 0) , ( alpha , a , 0) , (−alpha , a , 0) )

12 ALPHA = ( alpha , −alpha , alpha , −alpha )
13 A = (a , a , a , a )

14 THETA = l i s t ( symbols ( ’ theta0 : ’ + s t r (n) ) )

15 X, Y, Z = symbols ( ’X0 : ’ + s t r (n) ) , symbols ( ’Y0 : ’ + s t r (n) ) , symbols ( ’Z0 : ’ + s t r (

n) )

16

17 #I n i t i a l Condit ion f o r FWD Kinematics

18 THETA[ 0 ] = pi /2

19

20 #Quaternion Composition f o r Rotation Loop−c l o s u r e Equations

21 ang le = pi /2

22 Q = [ ] #l i s t o f quate rn ions

23 f o r i in range (n) :

24 Q. append ( quat around ax i s (ALPHA[ i ] , (1 , 0 , 0) ) )

25 Q. append ( quat around ax i s (THETA[ i ] , (0 , 0 , 1) ) )

26

27 q = qmult many (Q) #Body−f i x e d r o t a t i on compos i t ion

28 equat ions = qoperate (q , ( 1 , 0 , 0 , 0 ) , ”−” )
29

30 #Axes Transformation f o r Vector Loop−c l o s u r e Equations

31 O = CoordSys3D ( ’O’ )

32 B = O. o r i e n t n ew ax i s ( ’B ’ , 0 , O. k ) #I n i t i a t e body−frame ’B ’ by r e p l i c a t i n g space

−frame ’O’

33 f o r i in range (n) :

34 body or i en t e r = BodyOrienter (ALPHA[ i ] , THETA[ i ] , 0 , ’XZX’ )

35 B = B. or i ent new ( ’B ’ , ( body or i ente r , ) , l o c a t i o n=A[ i ]∗B. i )

36

37 #expre s s (B. po s i t i on wr t (O) , O)

38 v = B. o r i g i n . e xp r e s s c o o rd i n a t e s (O)

39 equat ions = equat ions + v #Fina l s e t o f equat ions i s Ready

40
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41 s o l v e ( equat ions , THETA[ 1 : ] )

Code Sample B.1: Bennett Forward Kinematics using Quaternions

B.2 Automatic Constraint Equations Generation

In this section, we demonstrate how constraint equations in Natural Coordinates can be gen-

erated automatically using SymPy, for Bennett Mechanism:

1 from sympy . vec to r import CoordSys3D

2 from sympy . vec to r import Vector

3 N = CoordSys3D ( ’N ’ ) #For natura l c on s t r a i n t s , we only t h i s one g l oba l coo rd inate

system

4

5 n = 4

6 R = [ ] #L i s t o f p o s i t i o n ve c to r s o f po in t s

7 U = [ ] #L i s t o f un i t d i r e c t i o n vec t o r s

8 f o r i in range (n) :

9 r = symbols ( ’ r ’+s t r ( i )+’ x : z ’ )

10 u = symbols ( ’ u ’+s t r ( i )+’ x : z ’ )

11 R. append ( r [ 0 ] ∗N. i + r [ 1 ] ∗N. j + r [ 2 ] ∗N. k )

12 U. append (u [ 0 ] ∗N. i + u [ 1 ] ∗N. j + u [ 2 ] ∗N. k )

13

14 A = (1 , 1 , 1 , 1)

15 ALPHA = ( pi /8 , −pi /8 , p i /8 , −pi /8)
16

17

18 de f components ( v ) :

19 ’ ’ ’ Returns components o f a g iven vec to r as l i s t ’ ’ ’

20 re turn l i s t ( v . components . va lue s ( ) )

21

22

23 de f e qua t i o n s l i n k ( r1 , r2 , u1 , u2 , a , alpha ) :

24 ’ ’ ’ This gene ra t e s c on s t r a i n t equat ions f o r a r i g i d l ink ,

25 with 2 ba s i c po in t s and 2 un i t d i r e c t i o n ve c t o r s ’ ’ ’

26 r12 = r1 − r2

27 re turn ( r12 & u1 ) − 0 , ( r12 & u2 ) − 0 , ( r12 & r12 ) − a ∗∗2 , ( u1 & u2 ) − cos (

alpha )

28

29

30 de f equat i ons un i t no rma l (u) :

31 ’ ’ ’ This gene ra t e s c on s t r a i n t equat ions based on the cond i t i on that a

d i r e c t i o n vec to r i s un i t ’ ’ ’
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32 re turn (u & u) − 1

33

34 EQUATIONS = [ ]

35

36 #Appending equat ions apply ing r i g i d l i n k and unit−normal c on s t r a i n t s

37 f o r i in range (n) :

38 j = i + 1

39 i f j == n : j = 0 #Cyc l i c

40 eq = l i s t ( e qua t i o n s l i n k (R[ i ] , R[ j ] , U[ i ] , U[ j ] , A[ i ] , ALPHA[ i ] ) )

41 EQUATIONS += eq

42 EQUATIONS. append ( equat i ons un i t no rma l (U[ i ] ) )

43

44 #Appending equat ions apply ing f i x ed po s i t i o n c on s t r a i n t on r0 and r1

45 p1 = A[ 0 ] ∗N. i #Pos i t i on o f r1

46 EQUATIONS += l i s t ( (R[ 0 ] ) . components . va lue s ( ) )

47 EQUATIONS += l i s t ( (R[ 1 ] − p1 ) . components . va lue s ( ) )

48

49 #len (EQUATIONS)

50 f o r e in EQUATIONS:

51 e

Code Sample B.2: Generating Constraint Equations using SymPy for Bennett Mechanism

B.3 Generating CAD Models

FreeCAD is an open-source CAD tool, which exposes its API using Python programming lan-

guage. CADQuery is a higher level tool built on top of it, which can be used to programmatically

create CAD models. A sample Myard Mechanism’s link can be created using CADQuery, by

giving the DH Parameters of the mechanism. The sample code is shown in:

1 # This example i s meant to be used from with in the CadQuery module o f FreeCAD .

2 import cadquery as cq

3 from Helpers import show

4

5 #DH Parameters

6 a = 10 .0

7 alpha = 30 #Angle in Degrees

8 d = 2 .0 #0 f o r Bennett mechanism

9

10 j o i n t r a d i u s = a /50 .0

11 j o i n t l e n g t h = a /10 .0

12 l i n k r a d i u s = a /100 .0

13
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14 i f d > 0 :

15 r e s u l t = cq . Workplane ( ” f r on t ” ) . workplane ( ) \
16 . c i r c l e ( j o i n t r a d i u s ) \
17 . extrude ( j o i n t l e n g t h ) \
18 . workplane ( ) \
19 . t ransformed ( r o t a t e =(0 , 90 , 0) ) \
20 . c i r c l e ( l i n k r a d i u s ) \
21 . extrude ( a ) \
22 . f a c e s ( ”>X” ) \
23 . workplane ( ) \
24 . t ransformed ( r o t a t e =(0 , 90 , 0) ) \
25 . t ransformed ( r o t a t e=(alpha , 0 , 0) ) \
26 . c i r c l e ( l i n k r a d i u s ) \
27 . extrude (d) \
28 . f a c e s ( ”>X” ) \
29 . workplane ( ) \
30 . t ransformed ( o f f s e t =(0 , 0 , −d) ) \
31 . c i r c l e ( j o i n t r a d i u s ) \
32 . extrude ( j o i n t l e n g t h /2 , both=True )

33

34 e l s e :

35 r e s u l t = cq . Workplane ( ” f r on t ” ) . workplane ( ) \
36 . c i r c l e ( j o i n t r a d i u s ) \
37 . extrude ( j o i n t l e n g t h ) \
38 . workplane ( ) \
39 . t ransformed ( r o t a t e =(0 , 90 , 0) ) \
40 . c i r c l e ( l i n k r a d i u s ) \
41 . extrude ( a ) \
42 . f a c e s ( ”>X” ) \
43 . workplane ( ) \
44 . t ransformed ( r o t a t e =(0 , 90 , 0) ) \
45 . t ransformed ( r o t a t e=(alpha , 0 , 0) ) \
46 . c i r c l e ( j o i n t r a d i u s ) \
47 . extrude ( j o i n t l e n g t h /2 , both=True )

48

49 # Render the s o l i d

50 show ( r e s u l t )

Code Sample B.3: Automatic CAD Model Generation

The code shown in Sample Code B.3 generates only one link of the whole mechanism. It

can be used to iteratively generate all the links. A complete assembly is not yet possible, and

is currently a work in progress.
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A sample assembly of Bennett Mechnism was made in SolidWorks, after the generation of

links using the above code:

Figure B.1: Automatically generated Bennett Mechanism, rendered in SolidWorks
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Appendix C

SymPy based Quaternion Library

SymPy is a Python framework for Symbolic Algebra. We developed a Quaternion Module,

implementing some basic algebras of Quaternions (but not all, only what was relevant for us).

The code has been derived from another Quaternion library in NumPy (a Python framework

for numerical computations), and modified for use in SymPy.

1 ’ ’ ’ Symbolic formulae f o r quate rn ions ’ ’ ’

2

3 from sympy import ∗
4 from sympy . matr i ce s import Matrix

5

6

7 de f qoperate ( q1 , q2 , operator ) :

8 ’ ’ ’ Apply the g iven operator on the 2 quatern ions

9 operator : ”+” or ”−” are supported cu r r en t l y

10 ’ ’ ’

11 w1 , x1 , y1 , z1 = q1

12 w2 , x2 , y2 , z2 = q2

13 i f operator == ”+” :

14 q = w1+w2 , x1+x2 , y1+y2 , z1+z2

15 i f operator == ”−” :
16 q = w1−w2 , x1−x2 , y1−y2 , z1−z2
17

18 re turn q

19

20

21 #Send the quate rn ions in r e v e r s e order , t h i s i s what I not i c ed .

22 #I mean the f i r s t quatern ion should be the second ro t a t i on app l i ed in su c c e s s i on
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23 #Okay , I got i t . They are doing body−f i x e d r o t a t i on by de f au l t . So , i t ’ s c o r r en t

.

24 de f qmult ( q1 , q2 ) :

25 ’ ’ ’ Mult ip ly two quatern ions

26

27 Parameters

28 −−−−−−−−−−
29 q1 : 4 element sequence

30 q2 : 4 element sequence

31

32 Returns

33 −−−−−−−
34 q12 : shape ( 4 , ) array

35

36 Notes

37 −−−−−
38 See : http :// en . w ik iped ia . org /wik i /Quaternions#Hamilton product

39 ’ ’ ’

40 w1 , x1 , y1 , z1 = q1

41 w2 , x2 , y2 , z2 = q2

42 w = w1∗w2 − x1∗x2 − y1∗y2 − z1∗ z2
43 x = w1∗x2 + x1∗w2 + y1∗ z2 − z1∗y2
44 y = w1∗y2 + y1∗w2 + z1∗x2 − x1∗ z2
45 z = w1∗ z2 + z1∗w2 + x1∗y2 − y1∗x2
46 re turn w, x , y , z

47

48

49 de f qmult many ( q l i s t ) :

50 ””” Mu l t i p l i e s mu l t ip l e quatern ions in one go .

51

52 : q l i s t : L i s t / tup l e o f quatern ions , in the normal order in which you wanna

mult ip ly them

53 : r e tu rn s : Resultant quatern ion

54

55 ”””

56 q = q l i s t [ 0 ]

57 f o r i in range ( l en ( q l i s t )−1) :
58 q = qmult (q , q l i s t [ i +1])

59 re turn q

60

61

62 de f quat around ax i s ( theta , ax i s ) :
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63 ’ ’ ’ Quaternion f o r r o t a t i on o f ang le ‘ theta ‘ around ax i s ‘ ax i s ‘

64

65 Parameters

66 −−−−−−−−−−
67 theta : symbol

68 ang le o f r o t a t i on

69 ax i s : 3 element sequence

70 vec to r ( assumed normal ized ) s p e c i f y i n g ax i s f o r r o t a t i on

71

72 Returns

73 −−−−−−−
74 quat : 4 element sequence o f symbols

75 quatern ion g iv ing s p e c i f i e d r o t a t i on

76

77 Notes

78 −−−−−
79 Formula from http :// mathworld . wolfram . com/EulerParameters . html

80 ’ ’ ’

81 # ax i s vec to r assumed normal ized

82 t2 = theta / 2 .0

83 s t2 = s i n ( t2 )

84 re turn ( cos ( t2 ) ,

85 s t2 ∗ ax i s [ 0 ] ,

86 s t2 ∗ ax i s [ 1 ] ,

87 s t2 ∗ ax i s [ 2 ] )

88

89

90 #I ’m not us ing t h i s as I can ’ t f i g u r e out how yaw−pitch−r o l l r e l a t e d to X−Y−Z
axes

91 #TODO: Modify t h i s func t i on so that i t uses X−Y−Z and such

92 de f qua t f r om eu l e r s ( e u l e r s ) :

93 ””” Creates a quatern ion from a s e t o f Euler ang l e s .

94 Eulers are an array o f l ength 3 in the f o l l ow i ng order : :

95 [ yaw , pitch , r o l l ]

96 ”””

97 pitch , yaw , r o l l = eu l e r s

98

99 ha l fP i t ch = pi t ch ∗ 0 .5

100 sP = s in ( ha l fP i t ch )

101 cP = cos ( ha l fP i t ch )

102

103 ha l fRo l l = r o l l ∗ 0 .5
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104 sR = s in ( h a l fRo l l )

105 cR = cos ( h a l fRo l l )

106

107 halfYaw = yaw ∗ 0 .5

108 sY = s in ( halfYaw )

109 cY = cos ( halfYaw )

110

111 re turn (−cY ∗ sP ∗ cR) − ( sY ∗ cP ∗ sR) ,\
112 (cY ∗ sP ∗ sR) − ( sY ∗ cP ∗ cR) ,\
113 ( sY ∗ sP ∗ cR) − (cY ∗ cP ∗ sR) ,\
114 (cY ∗ cP ∗ cR) + (sY ∗ sP ∗ sR)

115

116

117 de f quat2ax i s ( quat ) :

118 ’ ’ ’ Angle−ax i s from Quaternion

119

120 Parameters

121 −−−−−−−−−−
122 theta : symbol

123 ang le o f r o t a t i on

124 ax i s : 3 element sequence

125 vec to r ( assumed normal ized ) s p e c i f y i n g ax i s f o r r o t a t i on

126

127 Returns

128 −−−−−−−
129 quat : 4 element sequence o f symbols

130 quatern ion g iv ing s p e c i f i e d r o t a t i on

131

132 Notes

133 −−−−−
134 Formula from http :// mathworld . wolfram . com/EulerParameters . html

135 ’ ’ ’

136 qw , qx , qy , qz = quat

137 ang le = s imp l i f y (2 ∗ acos (qw) )

138 x = s imp l i f y ( qx / sq r t (1−qw∗qw) )

139 y = s imp l i f y ( qy / sq r t (1−qw∗qw) )

140 z = s imp l i f y ( qz / sq r t (1−qw∗qw) )

141 re turn ( angle , x , y , z )

142

143

144 de f quat2mat ( quat ) :

145 ’ ’ ’ Symbolic conver s i on from quatern ion to r o t a t i on matrix

87



146

147 For a un i t quatern ion

148

149 From : http :// en . w ik iped ia . org /wik i /Rotat ion matr ix#Quaternion

150 ’ ’ ’

151 w, x , y , z = quat

152 re turn Matrix ( [

153 [ 1 − 2∗y∗y−2∗z∗z , 2∗x∗y − 2∗ z∗w, 2∗x∗z+2∗y∗w] ,

154 [ 2∗ x∗y+2∗z∗w, 1−2∗x∗x−2∗z∗z , 2∗y∗z−2∗x∗w] ,

155 [ 2∗ x∗z−2∗y∗w, 2∗y∗z+2∗x∗w, 1−2∗x∗x−2∗y∗y ] ] ) . applyfunc ( lambda i :

t r i g s imp ( i ) )

Code Sample C.1: Quaternion Module for Sympy
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