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Abstract

This thesis deals with the study of two problems in the area of nonlinear dynamics using

the method of multiple scales. Accordingly, it consists of two parts.

In the first part of the thesis, we explore the asymptotic stability of a planar two-degree-

of-freedom robot with two rotary (R) joints following a desired trajectory under feedback

control. Although such robots have been extensively studied and there exists stability

and other results for position control, there are no analytical results for asymptotic stabil-

ity when the end of the robot or its joints are made to follow a time dependent trajectory.

The nonlinear dynamics of a 2R planar robot, under a proportional plus derivative (PD)

and a model based computed torque control, is studied. The method of multiple scales is

applied to the two nonlinear second-order ordinary differential equations which describes

the dynamics of the feedback controlled 2R robot. Amplitude modulation equations,

as a set of four first-order equations, are derived. At a fixed point, the Routh-Hurwitz

criterion is used to obtain positive values of proportional and derivative gains at which

the controller is asymptotically stable or indeterminate. For the model based control, a

parameter representing model mismatch is incorporated and again controller gains are

obtained, for a chosen mismatch parameter value, where the controller results in asymp-

totic stability or is indeterminate. From numerical simulations with gain values in the

indeterminate region, it is shown that for some values and ranges of the gains, the non-

linear dynamical equations are chaotic and hence the 2R robot cannot follow the desired

trajectory and be asymptotically stable.

The second part of the thesis deals with the study of the nonlinear dynamics of a rotating

flexible link, modeled as a one dimensional beam, undergoing large deformation and with

geometric nonlinearities. The partial differential equation of motion is discretized using

a finite element approach to yield four nonlinear, non-autonomous and coupled ordinary

iv
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differential equations. The equations are non-dimensionalized using two characteristic

velocities – the speed of sound in the material and a speed associated with the trans-

verse bending vibration of the beam. The method of multiple scales is used to perform

a detailed study of the system. A set of four autonomous equations of the first-order are

derived considering primary resonance of the external excitation with one of the natural

frequencies of the model and one-to-one internal resonance between two different natural

frequencies of the model. Numerical simulations show that for certain ranges of values of

these characteristic velocities, the slow flow equations can exhibit chaotic motions. The

numerical simulations and the results are related to a rotating wind turbine blade and

the approach can be used for the study of the nonlinear dynamics of a single link flexible

manipulator.

The second part of the thesis also deals with the synchronization of chaos in the equa-

tions of motion of the flexible beam. A nonlinear control scheme via active nonlinear

control and Lyapunov stability theory is proposed to synchronize the chaotic system.

The proposed controller ensures that the error between the controlled and the original

system asymptotically go to zero. A numerical example using parameters of a rotating

power generating wind turbine blade is used to illustrate the theoretical approach.
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Chapter 1

Introduction

Calling the subject ”nonlinear dynamics” is like calling zoology nonelephant studies –

Stanislaus Ulam

This thesis deals with the study of two problems in the area of nonlinear dynamics. The

common theme in both the problems is that they involve equations of motion, which for

particular values of parameters of the physical system lead to chaos. In the first problem,

we deal with a planar two-degree-of-freedom robot, moving on a horizontal plane under

feedback control and modeled by nonlinear ordinary differential equations (ODEs). We

identify regions and values of controller gains where the motion is not asymptotically

stable and the robot equations can exhibit chaos. For such gains the robot is not asymp-

totically stable for trajectory following task and these results gives us more insight into

unsolved problem of trajectory following and robustness of feedback control of nonlinear

robots. In the second problem, a rotating flexible link, modeled as a beam undergoing

large deformation and with geometric nonlinearities is studied. The partial differential

equation of the rotating beam is discretized using a finite element method and parameter

values are identified for which the nonlinear ordinary equations exhibit chaos. In the last

part of the thesis, a control method to synchronize the chaotic oscillations of the rotating

flexible link is presented.

The two problems mentioned above are studied using the method of multiple scales

(MMS). There exists significant amount of literature on use of MMS for two- and three-

dimensional nonlinear dynamical systems. The literature on nonlinear systems modeled

with four ODEs are less and in this work, we present use of MMS on such systems.

1



Chapter 1. Introduction 2

Extensive numerical simulations have been performed to illustrate the theory developed

and some of the analytical conditions developed in this thesis.

As this thesis deals with chaotic systems, we begin this Chapter with a brief intro-

duction to chaotic systems and the tools that are used to identify chaos. Then we present

in brief the classical method of multiple scales and give a brief description of both the

problems with a review of existing literature on these problems. We end this Chapter

with the contributions of this work and an outline of the thesis.

1.1 Chaotic Systems

Chaos is described as complex behavior of seemingly simple deterministic systems where

the time evolution of such system are sensitive to small changes in the initial conditions

and parameter values. Initially nearby trajectories deviate considerably with time and

this makes future prediction of the system impossible. A key element in all chaotic sys-

tems is nonlinearity and chaos is exhibited only by nonlinear systems.

Almost all natural systems are nonlinear and chaos has been observed in systems

ranging from chemical, biological, mechanical, electrical, communication and is thought

to exist even in economic and financial systems [1–7]. Mathematical models of non-

linear systems in the form of ordinary, partial differential equations or iterative maps

contain nonlinear terms and many of them exhibit chaos. In mechanical systems, among

others, the nonlinearities arise from Coriolis, centripetal and gravity terms in equations

of motion of a multi-body system, nonlinear constitutive stress-strain relationships in

deformable objects, various kinds of friction between contacting bodies and large defor-

mations in flexible objects modeled as beams, plates and shells [8–15]. In this thesis,

we look at two kinds of nonlinearities. The planar two-degree-of-freedom robot contains

nonlinear Coriolis and centripetal term in its equation of motion and, in addition, it

contains nonlinear terms arising out of the use of model-based control for trajectory fol-

lowing. In the second problem of the rotating flexible link, the nonlinearity comes from

large deformation which leads to a nonlinear stiffness term in the ordinary differential

equations used to model the system.
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Perhaps the most well-known nonlinear system which exhibits chaos is the second-

order Duffing’s equation [16] with a cubic stiffness term. The Duffing’s equation is given

by

ẍ+ γẋ+ k0x+ k1x
3 = f sin(Ωt) (1.1)

where t denotes time and is the independent variable, x is the dependent variable, γ

is the damping co-efficient, k0x + k1x
3 represents the cubic stiffness, and f , Ω are the

amplitude and frequency of the external forcing, respectively.

The above equation is a second-order nonlinear ordinary differential equation which

is known to exhibit chaos for certain range of γ and for certain values of Ω and f . To

analyze the system, the second-order equation is written as two first-order ODE’s and

numerically simulated. For chosen values, k0 = −0.5, k1 = 0.5, γ = 0.1, f = 0.24

and Ω = 1, the equation (1.1) was simulated in Matlab R2012b [17] and x(t) as a

function of t was obtained. Figure 1.1 shows the plot of x(t) with respect to time

for two initial conditions. The blue (solid) line represents the plot of x(t) for initial

condition (0, 0), while the green (dotted) line represents the plot of x(t) for the initial

condition (0, 0.01). As it can be seen that the two trajectories, although very close

initially, diverge significantly with time. This sensitivity to initial conditions is the well

known characteristic of chaos.

Figure 1.1: Time response of the Duffing’s equation when simulated with two initial
conditions (0, 0) and (0, 0.01)

There exists several other examples of two first-order ODEs which exhibit chaos –
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some of the well-known ones are the Brusselator [18], Van-der pol’s equation [19] and the

Morse oscillator [20]. Chaos was also shown in a two-dimensional system, obtained after

reduction of variables from a three-dimensional system [21]. There are also examples of

chaos found in three dimensional systems, the most well known of which are – the Rossler

system [22], the Chua circuit [23] and the three dimensional Volterra equations [24].

Another very well-known system of equations which exhibits chaos is the set of three

first-order ODEs known as the Lorenz system [25]. The system is given by

ẋ = σ(y − x)

ẏ = x(r − z)− y (1.2)

ż = xy − bz

where x, y, z are the state variables of the system and σ, r, b are constant system

parameters. The above system given by equations (1.2) are dissipative in nature and can

be verified geometrically, i.e., the rate of change of the volume enclosed by the system

(x, y, z) is related to the divergence of the vector field of the flow (see for example,

reference [26], page 216). We can observe this by considering the divergence of the

vector field V given by equation (1.2) as

div(V ) =
∂

∂x
(ẋ) +

∂

∂y
(ẏ) +

∂

∂z
(ż) = −(σ + b+ 1) (1.3)

If σ+ b+1 > 0, then div (V ) < 0 and the system is dissipative. In a dissipative system,

the trajectories settles down to a region in state space known as an attractor. This type

of attractor is known as a strange attractor. It maybe mentioned that the size and loca-

tion of the attractor is sensitive to initial conditions. In the case of the Lorenz system,

for particular values of system parameters, σ = 10, b = 8/3, r = 28, the equations show

chaotic behavior. A detailed examination of the Lorenz system is given in reference [27].

Chaos exists in two- and three-dimensional systems and many studies exist in lit-

erature, as indicated above, that demonstrate the phenomenon. There are, however,

very few studies which deal with four or more first-order ODEs. One well known study

is that of strange attractors in the four-dimensional Volterra equations for more than

three competing species [28]. The Hopf bifurcations in the Volterra equations were also
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shown to undergo successive period-doubling cascades [29]. In another study, dynamical

properties of orbits of a four-dimensional nonlinear circuit were observed on an oscillo-

scope [30]. Numerical analysis of the system also showed chaos. A system consisting of

a second-order lag element and two first-order lag elements with piecewise linear static

feedback were shown to exhibit chaotic behavior [31].

Tests for Chaos

The core features of a chaotic systems are

• Boundedness in state space,

• Aperiodicity, and

• Determinism, but sensitive dependence on initial conditions.

To determine if a system is chaotic or not is based on the above mentioned features.

The tools that are used are the well-known time series data, phase plots, bifurcation

plots, Poincaré maps and Lyapunov exponents. The algorithms for computing all the

tools mentioned for analyzing chaos are well-known and are available in standard refer-

ences (see, for example, [32]).

We can numerically verify that the system is bounded in state space by examining

whether the output of the system is enclosed within finite limits. This can be done

by considering the phase plots which are plots of the various state variables with re-

spect to one another. For example, in the Duffing’s system given by equation (1.1), the

phase plot of ẋ versus x, for the values used to obtain the time series plots in figure 1.1,

is shown in figure 1.2. It can be seen that both the state variables, ẋ and x, are bounded.

The periodic (or aperiodic) nature of a system can be ascertained in two ways. One

well-known way is to compute what is known as a Poincaré map [32]. For the flow of any

system1 x(t), the first step is to construct a surface S (also known as Poincaré surface)

as shown schematically in figure 1.3. Next, the points at which the flow of the system

intersects the surface are computed (points P0, P1... in figure 1.3). Periodicity requires

that the flow intersects the Poincaré surface S repeatedly at the same point. If the flow

1The flow of a system is defined as as the time evolution of the state x with respect to time.
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Figure 1.2: Phase plots for the Duffing’s system – (a) f = 0.5 – non-chaotic, (b) f = 0.24
– chaotic

intersects the surface S at the same point, i.e., there will be only one point P0 on the

Poincaré map at which the flow intersects repeatedly, then the system is periodic with

period one. If it intersects the surface S at two points, it is periodic with period two and

so on. If the flow intersects the surface S at altogether different points, then it implies

that it is aperiodic. Thus, the Poincaré map converts a continuous time system into a

discrete map Pn+1 = fp(Pn), explaining the periodic (or aperiodic) nature of the flow.

It also reduces the state space dimension of the flow by one. The Poincaré map for the

Duffing’s system is shown in figure 1.4.

Figure 1.3: Poincaré surface cutting the state space orbits giving a discrete map Pn+1 =
fp(Pn)

Another way of computing the aperiodic nature of any nonlinear system is to compute

what are known as bifurcation plots. For particular values of any system parameter, the

system shows periodic behavior, i.e., it oscillates around n points in state space (period

n). For some particular value of system parameter, the system may begin to oscillate

around a greater number of points, i.e., it’s period increases. If the increase in the period

of the system happens continuously, the system will eventually have a period of infinity
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Figure 1.4: Poincaré map for the Duffing’s equation at k0 = −0.5, k1 = 0.5, γ = 0.1,
f = 0.24 and Ω = 1

- it becomes aperiodic. The bifurcation plot shows an increase in the period by period-

doubling cascades, until the system becomes aperiodic, implying chaos. A method for

computing bifurcation values is given by Tsumoto et al. [33]. The bifurcation plot of the

Duffing’s equation is shown in figure 1.5.

Figure 1.5: Bifurcation plot for the Duffing’s equation at k0 = −0.5, k1 = 0.5, γ = 0.1
and Ω = 1

The most definitive way of verifying chaos is to determine it’s sensitivity to initial

conditions. A measure of sensitivity to initial conditions lies in measuring the divergence

of trajectories for two initial conditions a small distance apart. For this end, plots of

time series data are used. As shown in figure 1.1, the same Duffing’s system when simu-

lated with two different initial conditions very close to each other, the behaviors diverge
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radically. The divergence of trajectories is quantified by computing the well-known Lya-

punov exponents [34]. The concept of Lyapunov exponent is described by figure 1.6.

Figure 1.6: A measure of the average rate of divergence of neighboring trajectories

Consider two trajectories starting at two initial conditions xi and yi inside of an n

dimensional sphere (n equals the dimensions in state space of the system). After a period

of time the trajectories end up as xf and yf . The distance between the two trajectories

can be measured by the alteration of the sphere along n dimensions in state space. The

rate of divergence along the ith dimension is given by λi (as shown in figure 1.6), where

λi is called the Lyapunov exponent. For chaos to occur, there must be divergence along

at least one dimension in state space, and hence there must be at least one positive Lya-

punov exponent. For the Duffing’s system, the spectra of Lyapunov exponents is shown

in figure 1.7. As one of the exponents is positive at f = 0.24, the Duffing’s system is

chaotic at f = 0.24.

Figure 1.7: Spectra of Lyapunov exponents for the Duffing’s system at f = 0.24
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In this thesis, we use Lyapunov exponents, phase plots and Poincaré maps for ana-

lyzing chaos. The algorithms for computing the above mentioned tools are available in

reference [32]. We use MATLAB R2012b [17] for numerical simulation of the Lyapunov

exponents and other diagnostic tools for chaos.

1.2 Method of Multiple Scales

The method of multiple scales (MMS) is a singular perturbation method used to study

systems involving distinct phenomena at different time scales [35,36]. We again use the

Duffing’s system described above to illustrate MMS, it’s relevance for this work and our

motivation for using it – details about MMS is available in several textbooks (see, for

example, [38]).

We start by re-writing the Duffing’s equation in the form

ẍ+ ϵγẋ+ k0x+ ϵk1x
3 = ϵf sin(Ωt) (1.4)

where the description of all the terms in equation (1.4) are given in section 1.1 below

equation (1.1). In the above equation, there are two phenomena operating at different

time scales. The inertial effect given by ẍ operates at a faster time scale, while the

damping effect given by γẋ operates at a slower time scale. To study both phenomena

at different time scales, we order the equation (1.4) at different orders of time scale ϵ (as

shown), where the time scales are defined as T0 = t, T1 = ϵt. The inertial effects operate

at faster time scale T0, whereas the damping and forcing effects operate at slower time

scale T1. The derivatives are treated as

d

dt
= D0 + ϵD1 + ....,

d2

dt2
= D2

0 + ϵ(2D0D1 +D2
1) + ... (1.5)

where D0 and D1 are derivatives with respect to time scales T0 and T1 respectively. The

solution to the equation (1.4) is expanded in a power series of ϵ as

X(T0, T1) = X0(T0, T1) + ϵX1(T0, T1) + .... (1.6)

where X0 and X1 are first-order or O(1) quantities.
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Now we substitute equations (1.5, 1.6) into equation (1.4) and compute the solution

X(T0, T1) by equating the terms in equation (1.4) at different orders of ϵ.

Order ϵ0

D2
0X0 + k0X0 = 0 (1.7)

where the dependencies of X0 on the independent variables is suppressed.

The solution to equation (1.7) is given by

X0(T0, T1) = A(T1)e
iωT0 + Ā(T1)e

−iωT0 (1.8)

where A is the amplitude and ω is the natural frequency of oscillations, respectively. At

the first-order of ϵ, using equation (1.8), we have

Order ϵ

D2
0X1 + k0X1 = −2D0D1X0 − γD0X0 − k1X

3
0 + f

(eiΩT0 − e−iΩT0)

2i
(1.9)

=
(
−2A′(iω)− γA(iω)− 3k1A

2Ā
)
eiωT0 − if

eiΩT0 − e−iΩT0

2
+ c.c.+N.S.T.

where c.c. and N.S.T. stand for complex conjugate and non-secular terms, respectively.

It can be observed from equation (1.9), that the homogeneous part has a solution

proportional to eiωT0 . If the non-homogeneous part of equation (1.9) also has a term pro-

portional to eiωT0 , then it gives rise to terms in the solution X1 which make it unbounded.

Boundedness, in this context, implies that the solution of equation (1.4) is within finite

limits. These terms (proportional to eiωT0) are called secular terms. In order to keep the

solution bounded, and hence stable, these terms have to be eliminated.

In equation (1.9), it can be observed that the non-homogeneous part does have terms

proportional to eiωT0 and hence, they must be eliminated by equating these terms to

zero. Further it can also be observed that if the forcing frequency Ω = ω, then resonance
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occurs and even the forcing terms on the right-hand side become proportional to eiωT0 ,

and again it gives rise to secular terms in the solution. To address the issue of resonance,

we introduce what is known as a detuning parameter

Ω = ω + ϵσ (1.10)

Substituting equation (1.10) into equation (1.9), we get

D2
0X1+ k0X1 =

(
−2A′(iω)− γA(iω)− 3k1A

2Ā− i
f

2
eiσT1

)
eiωT0 + c.c.+N.S.T. (1.11)

Equating the terms in the above equation (1.11) which are proportional to eiωT0 to zero,

we have

− 2A′(iω)− γA(iω)− 3k1A
2Ā− i

f

2
eiσT1 = 0 (1.12)

If equation (1.12) is not satisfied, then the solution X1 is not bounded. Rewriting in

polar co-ordinates A = aeib, we have

a′ = −1

2
γa− F

4ω
cos(γ), b′ =

3k1
2ω

a2 − 1

a

F

4ω
sin(γ), γ = σT1 − b (1.13)

Transforming the above equation using Cartesian co-ordinates x = A cos(γ), y = A sin(γ),

we have

x′ = −1

2
γx− y

(
σ − 3k1

2ω
(x2 + y2)

)
− F

4ω

y′ = −1

2
γy + x

(
σ − 3k1

2ω
(x2 + y2)

)
(1.14)

Equations (1.14) are known as the slow flow equations (also known as solvability con-

ditions). The significance of these equations is that in the absence of their satisfaction,

the solution to the Duffing’s system cannot be bounded. The central idea in the appli-

cation of the MMS is the computation of slow flow equations to ensure boundedness of

solutions. An analysis of the slow flow equations reveal how different system parameters

(in this case k0, k1, γ ,σ, f) affect the nature of the final solution X0(T0, T1) of the

original equation (1.4). In this thesis, we use the MMS to study two systems, namely

the 2R planar robot and a flexible rotating beam and derive slow flow equations for
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each. We then analyze the slow equations to study how given system parameters affect

the original system of equations of the 2R planar robot and the flexible beam respectively.

A vast amount of literature exists on the application of MMS. In the book by Nayfeh

and Mook [38], the authors use MMS to address several problems related to the topic

of vibrations, which include free, forced, parametrically excited vibrations of single and

multi-degree-of-freedom systems as well as continuous systems. In a review article, Cart-

mell et al. [39] discuss the applicability of MMS to weakly nonlinear dynamical systems.

The authors discuss the aspects of MMS such as non-dimensionalization, time scaling,

inclusion and exclusion of higher-order nonlinearities, and problems in handling secular

terms.

El-Bassiouny [40] uses MMS to show that when a nonlinear system (with cubic, quartic

and quintic nonlinearities) is subject to excitation centered at a frequency higher than

its own natural frequency, the system averages the excitation. Cao et al. [41] describe

how MMS can be used to transform a parametrically and externally excited string-beam

coupled system into a averaged equation to study it’s global bifurcations and chaotic

dynamics. Jinchen et al. [42] study the nonlinear response of a two-degree-of-freedom

nonlinear oscillating system to parametric excitation, by using MMS to derive four first-

order autonomous ODEs describing the modulation of the amplitudes and phases. Apart

from the above mentioned works, there are several review articles on the applications

of MMS in the areas of machining dynamics [43], rotordynamics [44, 45], delayed sys-

tems [46,47], strong nonlinear oscillations [48,49] and fractional-order systems [50].

Most of the above mentioned works deal with two and three first-order ODEs. There

are very few works dealing four or more first-order ODEs. Some of the well-known

studies involving four ODEs are Nayfeh et al. [51] where the motions near the Hopf

bifurcations of a non-conservative four dimensional autonomous system were studied.

Using the method of multiple scales [35], the Hopf bifurcation problem was reduced to

two differential equations for the amplitude and phase of the bifurcating cyclic solutions,

and the stability of constant solutions to those equations determined the nature of bi-

furcation. In the work by Kumawat et al. [52], a parametric study of reduced order

model of boiling water reactors, modeled by four first-order differential equations, has

been performed by using the multiple scales method, and the authors report sub-critical
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bifurcations at a particular value of fuel temperature. However, with a decrease in the

fuel temperature coefficient of reactivity the bifurcation turns to supercritical implying

global stability of the steady state operation in the linear stability regime.

One of the reasons why systems involving four ODEs may not have been studied is

because of multiple ways in which resonance (internal or external) would happen. In

the Duffing’s system, with a single second-order ODE (equation (1.4)), the application

of MMS lead to equation (1.9) in which we have only one natural frequency and one

external forcing frequency. Hence, there is only one possible resonance between the sin-

gle natural frequency and the single forcing frequency (as shown in equation (1.10)) and

we get two first-order ODEs (slow flow equations given by equation (1.14)). However, if

the original system had two or more second-order ODEs (the 2R planar robot described

in section 1.3 being one such example), with more than one forcing frequency, then we

could have multiple natural frequencies with multiple forcing frequencies. In such cases,

one can get multiple possible resonance conditions leading to four or more first-order

ODEs. Analysing four and more ODEs is significantly more difficult than simple system

of two ODEs.

In this thesis both the 2R planar robot and the flexible rotating beam yield slow flow

equations as four first-order ODEs.

1.3 Problems Studied in the Thesis

In this thesis, we have used the method of multiple scales to study two problems. In this

section, we state and discuss the two problems studied.

1.3.1 Asymptotic Stability of a Feedback Controlled 2R Planar

Robot

Figure 1.8 shows the schematic of a two-degree-of-freedom planar robot. It consists of

two rotary (R) joints actuated by two DC servo motors which can generate torques Γ1

and Γ2 respectively. The tip of the robot, point (x, y), traces a trajectory as the R joints

are rotated and this trajectory is a function of time. The equations of motion of the 2R
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planar robot are available in standard textbooks on robotics (see, for example, [53]).

They are a set of two nonlinear ODEs of the form

[I1 + I2 +m2l
2
1 +m1r

2
1 + 2m2l1r2 cos(θ2)]θ̈1 + [m2r

2
2 + I2 +m2l1r2 cos(θ2)]θ̈2

−m2l1r2 sin(θ2)[2θ̇1 + θ̇2]θ̇2 = Γ1 (1.15)

[m2r
2
2 + I2 +m2l1r2 cos(θ2)]θ̈1 + [m2r

2
2 + I2]θ̈2 +m2l1r2 sin(θ2)θ̇

2
1 = Γ2 (1.16)

which is often written in a compact form (using matrices) as

[M(Θ)]Θ̈ + [C(Θ, Θ̇)] = Γ

In the above equations, mj, lj, Ij, rj (j = 1, 2) are the masses, lengths, inertia and

position of center of mass of link j respectively. The matrix [M ] is the well-known mass

matrix (in this case of dimension 2 × 2) and [C] is the 2 × 1 vector of centripetal and

Coriolis terms. The symbol Θ denotes the vector of joint angles (θ1, θ2) and Γ is the 2×1

vector of joint torques (Γ1,Γ2). To trace a desired trajectory, feedback control is used. A

typical robot controller implementing a proportional plus derivative (PD) control scheme

is given by

Γ1 = θ̈d1 +Kv1 ė1 +Kp1e1

Γ2 = θ̈d2 +Kv2 ė2 +Kp2e2 (1.17)

where Kpi and Kvi are the controller gains, ei = θdi - θi is the servo error, ėi is the

derivative of the servo error and θdi is the desired trajectory to be traced.

Asymptotic stability, in this context, implies that the state trajectory of the robot

given by solving equation (1.15) tracks the desired trajectory, i.e. ei as defined above

tends to zero. The PD control scheme has been proven to be asymptotically stable for any

positive derivative gain (Kvi > 0) when the first and the second derivative of the desired

trajectory are equal to zero [54], i.e., for set point control (θ̇d = θ̈d = 0). For the case

of trajectory following with θ̇d ̸= θ̈d ̸= 0, there exist numerical studies where the ranges

of proportional and derivative gains for which the system is chaotic [55, 56] has been

obtained, and for these values of gains, the planar 2R robot does not track the desired

trajectory and is thus asymptotically stable. To the best of our knowledge, there are no

theoretical development related to asymptotic stability during trajectory following. In
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Figure 1.8: A 2R planar robot

Chapter 2, we propose an analytical approach to derive the ranges of proportional and

derivative gains for which the PD controlled 2R planar robot is asymptotically stable.

Since the equations of motion of the PD controlled 2R planar robot are non-autonomous

(due to the time dependent forcing terms on the right-hand side of the equations for

trajectory tracking), there will be no fixed point to the entire system. Hence, we use the

method of multiple scales (MMS) to convert these equations into autonomous equations

(slow flow equations), to evaluate fixed points and find the stability around those fixed

points.

After non-dimensionalizing equation (1.15), a procedure described in Chapter 3, we

apply the method of multiple scales, and derive the slow flow equations, as a set of four

first-order equations. These equations are known as the solvability conditions, i.e., the

conditions needed to be satisfied for the equation to have a bounded solution. We then

compute the fixed points of those equations. At one particular fixed point, we use the

Routh-Hurwitz criterion [57,58] to obtain the values of proportional and derivative gains

at which the controller is asymptotically stable or indeterminate. We show that for cer-

tain values of gains, some of the indeterminate points in the (Kp, Kv) space are chaotic

and hence the planar 2R robot is not asymptotically stable at these gain values.

Apart from the PD control scheme, a well-known robot control scheme uses the

dynamic model of a robot [55]. This scheme is called the model-based or computed

torque control scheme. In its realistic form, the knowledge of model parameters of the
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robot are uncertain. We characterize the uncertainty in the model of the robot by a

mismatch parameter e. The estimated mass matrix M̂(Θ) and the estimated Coriolis

and centripetal torques vector Ĉ(Θ, Θ̇) are computed by perturbing the robot parameters

as

m̂i = (1 + e)mi, r̂i = (1 + e)ri, Îi = (1 + e)Ii, l̂i = (1 + e)li (1.18)

where e > 0 implies an overestimated model and e < 0 implies an underestimated model.

Since the mass cannot be negative −1 < e < ∞. The computed joint torque, also called

feedback linearization, control scheme is given

Γ = [M̂(Θ)]Γp + [Ĉ(Θ, Θ̇)] (1.19)

where Γp is the servo portion of the control scheme as given by equation (1.17).

In this thesis, as with the PD control scheme, we study the effects of mismatch

parameter e in the model-based control scheme at certain ranges of Kp and Kv on the

asymptotic stability of the 2R planar robot. After applying MMS to derive the slow flow

equations, we use the Routh-Hurwitz criterion to compute the values of proportional

and derivative gains in (Kp, Kv) space at which the planar 2R robot is asymptotically

stable. Chapter 2 deals with the study of asymptotic stability of planar 2R robot under

feedback control.

1.3.2 Chaotic Dynamics of a Rotating Flexible Link

Figure 1.9 shows the schematic of a rotating flexible link undergoing large deformation.

The flexible link is modeled as a beam with four generalized co-ordinates, one rigid

and three flexible. The vector of flexible variables is given by Qf = (u2i, v2i, ϕ2i)
T and

the vector of rigid and flexible variables is given by Q = (θ1, u2i, v2i, ϕ2i)
T . The partial

differential equation of motion can be discretized using a finite element approach to yield

four nonlinear, non-autonomous and coupled ordinary differential equations [59]. The

equations can be non-dimensionalized using two characteristic velocities – the speed of

sound in the material and a speed associated with the transverse bending vibration of
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the beam [60]. The equations are given by

[M(Qf )] {Q
′′}+

(
K +∆K(Qf ,

Ua

Ug

)

)
{Q}+ C{Q′}

+ {H(Q,Q
′
)} =

{τ}
ρALU2

g

(1.20)

where (·)′ , (·)′′ represent the first and the second derivative with respect to non-dimensional

time T , M is the 4 × 4 non-dimensional mass matrix, K and ∆K are the 4 × 4 non-

dimensional conventional and geometric stiffness matrices respectively, H is the 4 × 1

vector of non-dimensional centripetal and Coriolis terms, {τ} = [F sin(
ΩL

Ug

T ), 0, 0, 0]T

with F and Ω denoting the amplitude and the frequency of forcing term respectively.

In the above equation, C{Q′} represents an added Rayleigh damping term of the form

α[M] + β[K], Ua is the speed of sound and Ug is a characteristic speed associated with

bending vibration.

0
iP

B

ϕi

ϕ2i−2

Y

O

X

Xi

Yi

A

θ1 Flexible link

(a) Flexible rotating beam

v2i−1 ith element

l

Xi

Yi
ϕ2i−1

ϕ2i

u2i−1
v2i

u2i

(b) Planar beam element

Figure 1.9: Schematic of a rotating flexible beam and an ith element

The method of multiple scales is used to perform a detailed study of the above system.

A set of four autonomous equations of the first-order are derived considering primary
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resonances of the external excitation with one of the natural frequencies and one-to-

one internal resonances between the natural frequencies of the equations. Numerical

simulations show that for certain ranges of values of these characteristic velocities, the

slow flow equations can exhibit chaos. The numerical simulations and the results are

related to a rotating wind turbine blade and the approach can also be used for the

study of the nonlinear dynamics of a single link flexible manipulator. The study of this

problem of nonlinear dynamics of rotating flexible beam undergoing large deformation

is the content of Chapter 3.

1.3.3 Synchronization of Chaos in a Rotating Flexible Link

Many natural systems are nonlinear and often exhibit chaos. Controlling chaos systems

has thus received a significant amount of attention and many approaches [61–68] have

been proposed. An approach of chaos control, called chaos synchronization, has received

increased attention recently after the work of Pecora et al. [69, 70]. In chaos synchro-

nization, a drive-response system is considered. A chaotic system with one given set

of initial conditions is known as the drive system and another identical system with a

different set of initial conditions is known as the response system. In the absence of a

controller, the drive and response systems will diverge due to the property of sensitivity

to initial conditions. The central idea of synchronization is to design a controller such

that the response system asymptotically tracks the drive system.

A number of approaches have been proposed for synchronizing chaotic systems such

as back-stepping design [71], adaptive control [72], and sliding mode control [73]. In

this thesis, we use active nonlinear control and Lyapunov stability theory to design a

controller for chaos synchronization. The example of a power generating wind turbine

blade described in Chapter 3 is used to illustrate the theoretical development.

At the end of the studies of these problems, we present some conclusions and scope

for extending this work in Chapter 5.
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1.4 Contributions of the Thesis

This thesis deals with the study two problems in nonlinear dynamics using MMS. The

main contributions of this thesis are as follows.

• In the study of the 2R planar robot, the lack of analytical criteria for asymptotic

stability in trajectory tracking is highlighted. Two well-known controllers, namely

a PD and a model-based controllers, are studied. A first and a partially successful

attempt in developing an analytical procedure to derive the ranges of proportional

and derivative gains (Kp and Kv), for both types of controllers, at which the 2R

robot is asymptotically stable is presented.

• The chaotic motions in the equations of a damped and undamped flexible rotating

beam, undergoing large deformation, are studied. The method of multiple scales

is used to derive the slow flow equations of the rotating beam and nature of chaos

is determined for the undamped and damped equations. Numerical simulation of

the original nonlinear equations are presented which are consistent with the results

obtained from the slow flow equations.

• The problem of negating the sensitivity to initial conditions in chaotic systems is

addressed using the concept of chaos synchronization. A active nonlinear controller

developed, using Lyapunov stability theory to synchronize the chaotic slow flow

equations, is obtained for both the damped and the undamped rotating beam

systems. Numerical results demonstrate the control of chaos for the rotating beam

system.



Chapter 2

Asymptotic Stability of a Feedback

Controlled 2R Planar Robot

The stability of dynamical systems is an important area of study in nonlinear dynamics.

Stability is generally verified via the Lyapunov stability theory [74], where it is consid-

ered about an equilibrium point. There are generally two concepts of stability which are

largely used when studying dynamical systems, namely simple/marginal stability and

asymptotic stability. A stable equilibrium point is one where a trajectory of the system

beginning in a small neighbourhood of that point stay in a larger bounded neighborhood

of the equilibrium point. An equilibrium point is said to be asymptotically stable if in

addition to being stable, the trajectories approach the equilibrium point as time tends to

infinity. Asymptotic stability is a much stronger condition than simple stability. These

concepts of stability are used in autonomous systems.

In addition to the above, in robotics typical tasks involve the robot tracking a de-

sired trajectory which is generally dependent on time. In such cases, the system is no

longer autonomous as it has a time dependent forcing input. In such cases, stability is

measured with respect to the error between the desired trajectory and the system/state

trajectory. If the error is bounded, yet doesn’t go to zero, then the controller is said to

be simply stable. However if the error, apart from being bounded, asymptotically goes

to zero, then the controller is said to be asymptotically stable and the robot tracks the

20
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desired trajectory. For a robot, controllers cannot simply stable, but must be asymptot-

ically stable1 and extensive research has been done to design and implement controllers

and asymptotic stability of controllers has been demonstrated by numerical simulation.

References [75, 76] demonstrate asymptotic stability of robot manipulators using PID

control, whereas Jose and Wen [77] demonstrates asymptotic stability for a robot ma-

nipulator based on PD control. Asymptotic stability has also been shown for planar

multi-link flexible manipulators [78] and for a robot manipulator using adaptive fuzzy

control [79]. Asymptotic stability has also been demonstrated experimentally for PID

control of robot manipulators [80,81], PD control of closed chain mechanical systems [82]

and Lyapunov-based control of robot and mass-spring system undergoing an impact col-

lision [83]. It has also been shown theoretically, using Lyapunov stability, that a robot

is asymptotically stable when the desired velocity is zero (or set point control) [54] and

for a trajectory with non-zero velocity and acceleration [84] when the controller gains

are greater than zero.

In nonlinear dynamical systems, a phenomena called chaos exists (see Chapter 1).

In chaos, the states and trajectories of the system are bounded. However, due to the

sensitive dependence on initial conditions and for particular values of the parameters

of the system, the trajectory of the nonlinear dynamical system diverge and becomes

unpredictable in time. Chaos can also exist in a nonlinear robotic systems and there

exist literature on chaos in robots [85–92]. In the presence of chaos, the state trajectory

does not track the desired trajectory and the error between the state and the desired

trajectory, although bounded, does not asymptotically go to zero. In such a case, the

robot controller cannot be said to be asymptotically stable. In this Chapter, we study

a simple 2R planar robot, under feedback control following a desired trajectory, and

obtain values of controller gains for which the robot equations show chaos and asymptotic

stability. Two well-known controllers, namely a proportional plus derivative and a model

based computed torque controller are studied. Before studying the 2R planar robot, we

give a brief and formal introduction to the concepts of stability. More details on the

various definitions of stability are available in various textbooks (see, for example, [74]).

1The formal definitions of stability and asymptotic stability with respect to an equilibrium point as
well as tracking are given in section 2.1.
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2.1 Concepts of Stability

For linear systems, clear theoretical concepts and techniques to determine stability and

instability exist. However, in a nonlinear system, the concept of stability is more com-

plex. In the following, we define various concepts of stability for a nonlinear system of

the form ẋ = f(x), where x(t) ⊂ ℜn. We have used the notations and definitions as

given in Slotine and Li [74].

Definition 1: Equilibrium Point – A state Xe is said to be an equilibrium state (point)

of a nonlinear system, ẋ = f(x), if f(Xe) = 0.

Figure 2.1 schematically shows an equilibrium point Xe. Now consider two spheres

of radius R and r around Xe.

Figure 2.1: Concepts of stability and asymptotic stability

Definition 2: Simple/Marginal Stability – The equilibrium point Xe is said to be sim-

ply stable in the sense of Lyapunov if for any R > 0, there exists r > 0 such that if

||x(0)|| < r, then ||x(t)|| < R for t > 0. Otherwise Xe is unstable.

Simple stability implies that if we perturb the initial conditions of the system in a

small region around equilibrium point Xe given by the sphere of radius r, then the final

state of the system will be bounded and will lie inside the sphere of radius R. However,



Chapter 2. Asymptotic Stability of a Feedback Controlled 2R Planar Robot23

the system which is stable may not return to it’s equilibrium point. If the trajectories

return to its equilibrium point, then the system is said to be asymptotically stable. For-

mally,

Definition 3: The equilibrium point Xe is said to be asymptotically stable if it is stable,

and if, in addition, there exists some r > 0 such that ||x(0)|| < r implies that x(t) −→ Xe

as t −→ ∞.

In a stable system, the trajectories can wander in bounded state space between the

larger and the smaller spheres in figure 2.1. The curve C, in figure 2.1, is an illustration

of a stable trajectory. The curve D illustrates asymptotically stability as it approaches

the equilibrium point Xe with increasing time. Asymptotic stability is much stronger

condition and often stability is sufficient. The trajectories of a nonlinear systems, as

illustrated by the forced Duffing’s equation in Chapter 1, can be bounded and stable but

need not be asymptotically stable and can demonstrate chaos.

In control systems dealing with trajectory tracking, the concept of stability is defined

slightly differently [93]. Consider a system given by ẋ = f(x, u), where u(t) is the control

law.

Definition 4: Tracking stability – A controller is said to be stable if we design u(t), such

that the the error e(t) between the desired trajectory (xd(t)) and the state trajectory

(x(t)) remains bounded.

For a stable tracking controller, the error e(t) = xd(t) − x(t) must remain bounded,

although it may not go to zero. In such a situation, the state trajectory does not track

the desired trajectory, although the error between them is within reasonable bounds, and

under certain conditions, the phenomena of chaos could exist. Now considering asymp-

totic stability, we have

Definition 5: Asymptotic tracking stability – A controller is said to be asymptotically

stable if we design u(t), such that the the error e(t) between the desired trajectory (xd(t))

and the state trajectory (x(t)) goes to zero as t −→ ∞.
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For an asymptotically stable controller, the state trajectory tracks the desired tra-

jectory and, in this case, chaos cannot exist. In trajectory tracking problems, it is

asymptotic stability that is sought to be achieved.

In this chapter, we study the dynamics of a planar 2R robot under feedback control

and following a desired trajectory. It has been shown in literature [55,56], using numer-

ical simulations, that for some values of the controller gains, the system of equations

modeling the feedback control of a planar 2R robot can exhibit chaos and hence is not

asymptotically stable. In this work, we apply the method of multiple scales (MMS) to

the 2R robot equations, derive the slow flow equations and finally obtain conditions for

chaos and asymptotic stability as defined above.

2.2 Modeling of the 2R Planar Robot

The schematic of a two-degree-of-freedom planar 2R robot, shown in Chapter 1, is repro-

duced in figure 2.2 below for convenience. The motion of the robot is in the horizontal

plane and there is no effect of gravity. The robot has two links of length l1 and l2, re-

spectively. The robot is driven by two motors, one each at the joints, providing a torque

of Γ1 and Γ2 and the rotation caused at both the rotary joints are denoted by θ1 and θ2.

Figure 2.2: A 2R planar robot

The dynamic equations of motion of the 2R planar robot can be derived using the

Lagrangian formulation and are given in equation (1.15). They can be rewritten in a
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more compact form as

[A+B + 2C cos(θ2)]θ̈1 + [B + C cos(θ2)]θ̈2 − C sin(θ2)[2θ̇1 + θ̇2]θ̇2 = Γ1

[B + C cos(θ2)]θ̈1 +Bθ̈2 + C sin(θ2)θ̇1
2
= Γ2 (2.1)

where

A = m1r
2
1 + I1 +m2l

2
1, B = m2r

2
2 + I2, C = m2l1r2 (2.2)

and mj, lj, Ij, rj (j = 1, 2) are the masses, lengths, inertia and position of center of mass

of link j, respectively. For trajectory tracking, we assume that the robot has to trace a

desired periodic trajectory

θdi = Afi sin(Ωt), for i = 1, 2 (2.3)

where θdi is the desired trajectory, Afi is the amplitude of forcing and Ω is the forcing

frequency.

The number of parameters in the above equations can be reduced by non-dimensionalization

as follows:

• We define the non-dimensional time τ as Ωt. In terms of τ , we can write

dθj
dt

=
dθj
dτ

.
dτ

dt
= Ω

dθj
dτ

= Ωθ′j

d2θj
dt2

= Ω2dθj
dτ

= Ω2θ′′j (2.4)

where ”′” represents derivative with respect to τ .

• Next we introduce the following non-dimensional variables [56]

P1 =
m1r

2
1 + I1

m2r22 + I2
, P2 =

m1l
2
1

m2r22 + I2
, P3 =

r2
l1

(2.5)

Using equations (2.4) and (2.5) in equation (2.1) and dividing both sides of equation (2.1)

by (m2r
2
2 + I2), the non-dimensionalized equations of motion of a 2R planar robot can
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be written as

[P1 + 1 + P2 + 2P2P3 cos(θ2)]θ
′′
1 + [1 + P2P3 cos(θ2)]θ

′′
1 − P2P3 sin(θ2)[2θ

′
1 + θ′2]θ

′
2 = Γ1n

[1 + P2P3 cos(θ2)]θ
′′
1 + θ′′2 + P2P3 sin(θ2)θ

′2
1 = Γ2n (2.6)

where Γ1n, Γ2n are the non-dimensional torques whose expressions depend on the con-

troller used. We have considered two well-known controllers, namely the PD and model

based controllers, and these are described next.

2.2.1 PD Control of a 2R Planar Robot

In order to trace a desired trajectory, we consider a PD control scheme, where the joint

torques in equation (2.1) are computed as

Γ1 = θ̈d1 +Kvė1 +Kpe1

Γ2 = θ̈d2 +Kvė2 +Kpe2 (2.7)

where ei = θdi - θi is the servo error, ėi is the derivative of the servo error, θdi is the

desired trajectory to be traced, and Kp and Kv are the proportional and derivative gains,

respectively. It may be noted that we have assumed Kp and Kv are same for both the

motors for simplicity and, in an actual robot they need not be same.

In non-dimensional form, using equation (2.4), the above equations can be written as

Γ1n = Snθd1
′′ +Kvne

′
1 +Kpne1

Γ2n = Snθd2
′′ +Kvne

′
1 +Kpne2 (2.8)

where Sn =
1

(m2r22 + I2)
, Kpn =

Kp

Ω2(m2r22 + I2)
and Kvn =

Kv

Ω(m2r22 + I2)
.

For the desired trajectory of the joints, θdi = Afi sin(Ωt), i = 1, 2, the non-dimensional

form is given by θdi = Afi sin(τ). Using this non-dimensional form of the desired tra-

jectory in equation (2.8) and substituting the resulting equation into equation (2.6), the

non-dimensional equations of motion of the planar 2R robot with a PD controller are
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given by[
P1 + 1 + P2 + 2P2P3 cos(θ2) 1 + P2P3 cos(θ2)

1 + P2P3 cos(θ2) 1

][
θ′′1

θ′′2

]
+

[
−P2P3 sin(θ2)[2θ

′
1 + θ′2]θ

′
2

P2P3 sin(θ2)θ
′2
1

]

=

[
−Af1Sn sin τ +Kpn(Af1 sin τ − θ1) +Kvn(Af1 cos τ − θ′1)

−Af2Sn sin τ +Kpn(Af2 sin τ − θ2) +Kvn(Af2 cos τ − θ′2)

]
(2.9)

The nonlinear system given by equations (2.9) is known to be asymptotically stable

for all Kp, Kv > 0, when θ′di = θ′′di = 0. The proof of asymptotic stability (using the

dimensional form of the equations) is available in several textbooks (see, for example,

Ghosal [53]) and we present a brief discussion for the sake of completeness. In the absence

of gravity, the non-dimensional equations are given as[
Mn(Θ)

]
Θ′′ +

[
Cn(Θ,Θ′)

]
= Γn (2.10)

where [Mn(Θ)] represents the positive definite mass matrix, [Cn(Θ,Θ′)] represents the

Coriolis terms and Θ is a 2 × 1 matrix of the joint variables (θ1, θ2). For the set point

problem, Θd = 0, Θ′
d = 0, Θ′′

d = 0, and the PD control in equation (2.8) reduces to

Γn = −
[
Kpn

]
Θ−

[
Kvn

]
Θ̇ (2.11)

where the matrices
[
Kpn

]
and

[
Kvn

]
are diagonal 2 × 2 matrices and Kpn, Kvn denote

non-dimensional gains. The Lyapunov second method [74] can be used to determine

asymptotic stability and we consider a candidate Lyapunov function

V (Θ,Θ′) =
1

2
Θ′T

[
Mn(Θ)

]
Θ′ +

1

2
ΘT

[
Kpn

]
Θ (2.12)

It can be seen from equation (2.12), that V (Θ,Θ′) is positive definite. Evaluating

V ′(Θ,Θ′), we have

V ′(Θ,Θ′) = Θ′T
[
Mn(Θ)

]
Θ′′ +

1

2
Θ′T

[
M ′

n(Θ)
]
Θ′ +Θ′T

[
Kpn

]
Θ

= −Θ′T
[
Kvn

]
Θ′ +

1

2
Θ′T{

[
M ′

n(Θ)
]
− 2

[
Cn(Θ,Θ′)

]
}Θ′ (2.13)
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where
[
M ′

n

]
denotes the derivative of the mass matrix

[
Mn

]
with respect to non-

dimensional time. Since (
[
M ′

n(Θ)
]
-2

[
Cn(Θ,Θ′)

]
) is skew symmetric (see reference

[53]), the second quadratic form is zero, and we get

V ′(Θ,Θ′) = −Θ′T
[
Kvn

]
Θ′ (2.14)

From equation (2.14), as we can see that V ′(Θ,Θ′) can be zero even for a nonzero Θ,

V ′(Θ,Θ′) is negative semi-definite and we cannot conclude asymptotic stability. Asymp-

totic stability can be shown however, by LaSalle’s invariance principle [94], where the

largest invariant set is a single point and hence the equilibrium point (Θ,Θ′) = 0 is

asymptotically stable.

In the above, we assumed that Θ′
d = Θ′′

d = 0 and hence for the set point problem

the planar 2R robot driven by a PD controller is asymptotically stable. However, when

we consider a tracking problem Θ′
d ̸= 0, Θ′′

d ̸= 0, asymptotic stability is not proven. We

attempt to investigate the asymptotic stability of PD control for trajectory tracking in

this Chapter and derive a partial analytical approach for obtaining values of gains for

which the PD controller is asymptotically stable.

2.2.2 Model Based Control of a 2R Planar Robot

Another control scheme used in trajectory following in robots is the well-known model

based computed torque control scheme where the dynamic model is used. We consider the

case when the parameters of the dynamic model are not known exactly. We characterize

the uncertainty in the dynamic model of the robot by a mismatch parameter e and the

robot parameters are computed as

m̂i = (1 + e)mi, r̂i = (1 + e)ri, Îi = (1 + e)Ii, l̂i = (1 + e)li (2.15)

where the (̂·) quantities are the estimates. If e > 0 then it implies an overestimated model

and e < 0 implies an underestimated model. From the above equation we can compute

the estimated mass matrix M̂(Θ) and the estimated vector of Coriolis and centripetal

terms Ĉ(Θ, Θ̇) from equation (2.1). The computed torque using the estimates are given
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by

Γ =
[
M̂(Θ)

]
Γp +

[
Ĉ(Θ, Θ̇)

]
(2.16)

where Γp is given by equation (2.7), with Sn = 1, Kpn =
Kp

Ω2
and Kvn =

Kv

Ω
.

To non-dimensionalize the equations of motion with the model based controller, we

use three non-dimensional parameters in addition to those defined in equation (2.5) as

α1 =
m̂1r̂

2
1 + Î1 + m̂2r̂

2
2 + Î2 + m̂2l̂

2
1

m2r22 + I2
, α2 =

m̂2l̂1r̂2
m2r22 + I2

, α3 =
m̂2r̂

2
2 + Î2

m2r22 + I2
(2.17)

Substituting the computed torque given by equation (2.16) into equation (2.1) and using

the non-dimensional parameters given by equations (2.5, 2.17) and also using equa-

tion (2.4), the non-dimensional equations of motion of the 2R robot driven by a model

based computed torque controller are given by[
P1 + 1 + P2 + 2P2P3 cos(θ2) 1 + P2P3 cos(θ2)

1 + P2P3 cos(θ2) 1

][
θ′′1

θ′′2

]
+

[
−P2P3 sin(θ2)[2θ

′
1 + θ′2]θ

′
2

P2P3 sin(θ2)θ
′2
1

]

=



α1(θ
′′
d1
+Kpn(θd1 − θ1) +Kvn(θ

′
d1
− θ′1)) + α2(− sin(θ2)[2θ

′
1 + θ′2]θ

′
2

+cos(θ2)(2θ
′′
d1
+ θ′′d2 +Kpn(2θd1 − 2θ1 + θd2 − θ2)

+Kvn(2θ
′
d1
− 2θ′1 + θ′d2 − θ′2)))

+α3(θ
′′
d2
+Kpn(θd2 − θ2) +Kvn(θ

′
d2
− θ′2))

α2(cos(θ2)(θ
′′
d1
+Kpn(θd1 − θ1) +Kvn(θ

′
d1
− θ′1) + θ2θ

′2
1 )

+α3(θ
′′
d1
+ θ′′d2 +Kpn(θd1 − θ1 + θd2 − θ2) +Kvn(θ

′
d1
− θ′1 + θ′d2 − θ′2))


(2.18)

The model based control, given by equation (2.18), was studied in literature [55, 56]

for the effects of the mismatch parameter e on the ranges of controller gains Kp and Kv

for which the 2R robot traces a desired trajectory (trajectory tracking problem). It was

found by numerical studies that when the robot parameters are heavily underestimated

(e < −0.5), for particular values of controller gains Kp and Kv, the robot equations

demonstrated chaos. This implies that for the said values of Kp and Kv, the robot

does not track the desired trajectory and is not asymptotically stable. The ranges were

determined, by brute force numerical search based method, by computing the Lyapunov
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exponents of the system for different values of Kp and Kv with mismatch parameter e. In

reference [55,56], chaos was also reported for low values ofKv (0 < Kv < 3 for PD control

for a particular value of forcing frequency Ω = 2rad/s and 0 < Kv < 8 for model based

control for a particular value of mismatch parameter e = −0.9) and mid-range or higher

values of Kp (34 < Kp < 95 for PD control for Ω = 2rad/s and 20 < Kp < 100 for model

based control for e = −0.9). Again as in the case of the PD controller, no analytical

criteria for such results exists. In this Chapter, we present an analytical approach to

obtain the ranges of Kp, Kv and e for which the trajectory following planar 2R robot

exhibits chaos.

2.3 The Method of Multiple Scales

In this section, we apply the method of multiple scales to the equations of a 2R robot

driven by PD and model based controllers. The method of multiple scales and it’s

application was discussed in Chapter 1 for the Duffing’s system, where the slow flow

equations were computed. We apply the same procedure to derive the slow flow equations

for the 2R robot driven by both PD and model based controllers. The uniform expansion

for the solutions to the equations (2.9, 2.18) is of the form

θ1(τ ; ϵ) = ϵθ10(T0, T1, T2) + ϵ2θ11(T0, T1, T2) + ϵ3θ12(T0, T1, T2)

θ2(τ ; ϵ) = ϵθ20(T0, T1, T2) + ϵ2θ21(T0, T1, T2) + ϵ3θ22(T0, T1, T2) (2.19)

where, ϵ is a small dimensionless measure of the variables θ1, θ2. T0 (same as τ) is

the fast scale associated with changes occurring at the forcing frequencies Ω and the

natural frequencies ωn, and T1 = ϵτ and T2 = ϵ2τ are the slow scales associated with

the modulations of the amplitudes and phases due to nonlinearities. The derivatives are

treated as

d

dt
= D0 + ϵD1 + ϵ2D2 + ....,

d2

dt2
= D2

0 + ϵ(2D0D1) + ϵ2(2D0D2 +D2
1) + .... (2.20)

First we apply MMS to the PD controller and then to the model based computed

torque controller.
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Application of MMS to PD control

The equation of motion of a 2R planar robot driven by PD control is given by equa-

tion (2.9). Before we apply MMS, we must resolve two problems. First, an examination

of equation (2.9) reveals the presence of trigonometric functions in the form of cos(θ2)

and sin(θ2). We observe that it is not possible to apply MMS to sine and cosine terms.

To resolve this, we rewrite these trigonometric terms by using Taylor’s theorem as

cos(θ2) = 1− θ22
2!
, sin(θ2) = θ2 −

θ32
3!

≈ θ2 (2.21)

The reason why we neglect the cubic term for the expansion of sin(θ2) is because the

highest order of expansion according to equation (2.19) is three. An examination of

sin(θ2) in equation (2.9) reveals that it is coupled with a quadratic term. When the ex-

pansion given by equation (2.19) is performed, sin(θ2) coupled with the quadratic term

gives a cubic term (order three). If the cubic term in equation (2.21) had been consid-

ered, then coupled with the quadratic term would have given a fifth-order term – higher

than highest order of expansion we consider in equation (2.19).

Secondly, we need to decide how the terms have to be ordered according to various

time scales, as described in Chapter 1 for the Duffing’s equation. We order the inertial

terms (constant terms in the mass matrix as shown in equation (2.9)), stiffness terms

(Kp) and the forcing terms (Afi sin(τ)) at time scale T0 = τ , i.e., the faster time scale.

We order the dissipative terms (Kv) at time scale T2 = ϵ2τ , which is the slower time

scale. The nonlinearities due to the cubic terms in the equations automatically appear

at time scale T2. Lastly, equation (2.9) also has the terms sin(τ) and cos(τ). We rewrite

them as sin(τ) =
eiτ − e−iτ

2i
and cos(τ) =

eiτ + e−iτ

2
.

The equations of motion of the 2R planar robot driven by PD control with the

ordering and other modifications described above can be written as

[P1 + 1 + P2 + 2P2P3

(
1− θ22

2

)
]θ′′1 + [1 + P2P3

(
1− θ22

2

)
]θ′′1 − P2P3θ2[2θ

′
1 + θ′2]θ

′
2

= −Kpnθ1 − ϵ2Kvnθ
′
1 + ϵAf1((iE1 + E2)e

iτ + (−iE1 + E2)e
−iτ ) (2.22)

[1 + P2P3

(
1− θ22

2

)
]θ′′1 + θ′′2 + P2P3θ2θ

′2
1 = −Kpnθ2 − ϵ2Kvnθ

′
2



Chapter 2. Asymptotic Stability of a Feedback Controlled 2R Planar Robot32

+ ϵAf2((iE1 + E2)e
iτ + (−iE1 + E2)e

−iτ )

where E1 = (Sn −Kpn)/2 and E2 = (Kvn/2).

Equating coefficients of like powers of ϵ, we obtain

Order ϵ

(P1 + 1 + P2 + 2P2P3)D
2
0θ10 + (1 + P2P3)D

2
0θ20 +Kpnθ10 =

Af1((iE1 + E2)e
iτ + (−iE1 + E2)e

−iτ ) (2.23)

(1 + P2P3)D
2
0θ10 +D2

0θ20 +Kpnθ20 = Af2((iE1 + E2)e
iτ + (−iE1 + E2)e

−iτ )

where D2
n = (∂2/∂T 2

n). The solution of equations (2.23) is of the form

θ10 = A1e
iω1T0 + A2e

iω2T0 + F1(iE1 + E2)e
iT0 + F1(−iE1 + E2)e−iT0 + c.c. (2.24)

θ20 = c21A1e
iω1T0 + c22A2e

iω2T0 + F2(iE1 + E2)e
iT0 + F2(−iE1 + E2)e−iT0 + c.c.

where ω1 and ω2 are the natural frequencies of the system, c.c stands for complex con-

jugate and the derivation of all terms in equation (2.24) is given in Appendix A. The

above equation is used in computing terms at order ϵ2 shown next.

Order ϵ2

(P1 + 1 + P2 + 2P2P3)D
2
0θ11 + (1 + P2P3)D

2
0θ21 +Kpnθ11 =

− 2(P1 + 1 + P2 + 2P2P3)D0D1θ10 − 2(1 + P2P3)D0D1θ20 (2.25)

(1 + P2P3)D
2
0θ11 +D2

0θ21 +Kpnθ21 = −2(1 + P2P3)D0D1θ10 − 2D0D1θ20

In the above equation on the right-hand side, the non-secular terms are zero. Equating

the secular terms on the right-hand side to zero would give A1(T1) and A2(T1). Hence,

substituting equation (2.24) into the right-hand side of equation (2.25) and equating the

secular terms to zero, we get

− 2(P1 + 1 + P2 + 2P2P3)
∂A1

∂T1

− 2(1 + P2P3)
∂A2

∂T1

= 0

− 2(1 + P2P3)
∂A1

∂T1

− 2
∂A2

∂T1

= 0 (2.26)
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Solving equation (2.26), we get

∂A1

∂T1

= 0,
∂A2

∂T1

= 0 (2.27)

From equation (2.27), we have A1=A1(T0, T2) and A2=A2(T0, T2). Now at order ϵ3, we

have

Order ϵ3

(P1 + 1 + P2 + 2P2P3)D
2
0θ12 + (1 + P2P3)D

2
0θ22 +Kpnθ12 =

P2P3(D
2
0θ10θ

2
20 +D2

0θ20
θ220
2

+ θ20(2D0θ10 +D0θ20)D0θ20))−KvnD0θ10

(1 + P2P3)D
2
0θ12 +D2

0θ22 +Kpnθ22 = (2.28)

P2P3(D
2
0θ10

θ220
2

− θ20(D0θ10)
2)−KvnD0θ20

Equation (2.28) represents the third-order approximation for the 2R planar robot

system. Now, we must separate the secular terms (as defined in Chapter 1 for the

Duffing’s system) in equation (2.28), to determine the solvability conditions (or the slow

flow equations). We do this by introducing a detuning parameter, as described for the

Duffing’s system in Chapter 1, and we can write

Ω = ω2 + ϵσ1 (2.29)

We rewrite equation (2.29) as follows:

3Ω = ω1 + 3ϵσ1, Ω =

(
ω1 − ω2

2

)
+ ϵσ1 (2.30)

To determine the solvability conditions, we seek a particular solution free of secular terms

corresponding to the terms proportional to eiωnT0 , in the form

θ12 =
2∑

i=1

Si(T1)e
iωiT0

θ22 =
2∑

i=1

Qi(T1)e
iωiT0 (2.31)
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Substituting equation (2.24) and equation (2.30) into the right-hand side of equation (2.28)

and substituting equation (2.31) into the left-hand side of equation (2.28), and equat-

ing the coefficients of the powers of eiω1T0 and eiω2T0 , we can determine the solvability

conditions, thus eliminating the secular terms. Considering, after the above mentioned

substitution into the equation (2.28) at powers eiω1T0 and eiω2T0 , we get

At eiω1T0[
Kpn − (P1 + 1 + P2 + 2P2P3)ω

2
1 −(1 + P2P3)ω

2
1

−(1 + P2P3)ω
2
1 Kpn − ω2

1

][
S1

Q1

]
=

[
Z1

Z2

]
(2.32)

At eiω2T0[
Kpn − (P1 + 1 + P2 + 2P2P3)ω

2
2 −(1 + P2P3)ω

2
2

−(1 + P2P3)ω
2
2 Kpn − ω2

2

][
S2

Q2

]
=

[
W1

W2

]
(2.33)

where Z1, Z2, W1 and W2 are of the form

Z1 = A
′

1(iω1)R11 + A1(R121i+R122 +R123A
2
1 +R124A

2
2)

+ A2R13(iE1 + E2)e2iσ1T1 +R14(iE1 + E2)3e3iσ1T1

Z2 = A
′

1(iω1)R21 + A1(R221i+R222 +R223A
2
1 +R224A

2
2)

+ A2R23(iE1 + E2)e2iσ1T1 +R24(iE1 + E2)3e3iσ1T1 (2.34)

W1 = A
′

2(iω2)S11 + A2(S121i+ S122 + S123A
2
1 + S124A

2
2) + A1S13(iE1 + E2)e−2iσ1T1

W2 = A
′

2(iω2)S21 + A2(S221i+ S222 + S223A
2
1 + S224A

2
2) + A1S23(iE1 + E2)e−2iσ1T1

The terms R11, S11..... are given in Appendix A.

Equations (2.32) and (2.33) are a system of two non-homogeneous equations for Sn,

Qn. The homogeneous parts have a non-trivial solution since the determinant of both

the co-efficient matrices in equations (2.32-2.33) is equal to zero. Hence, the solvability

conditions can be determined by

At eiω1T0 ∣∣∣∣∣ Z1 −(1 + P2P3)ω
2
1

Z2 Kpn − ω2
1

∣∣∣∣∣ = 0 (2.35)
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which gives

Z1(Kpn − ω2
1) + Z2(1 + P2P3)ω

2
1 = 0 (2.36)

At eiω2T0 ∣∣∣∣∣ W1 −(1 + P2P3)ω
2
2

W2 Kpn − ω2
2

∣∣∣∣∣ = 0 (2.37)

which gives

W1(Kpn − ω2
2) +W2(1 + P2P3)ω

2
2 = 0 (2.38)

Substituting the terms in equation (2.34) into equations (2.36, 2.38) respectively, we

determine the solvability conditions as:

At eiω1T0

A
′

1(iω1)L11 + A1(L121i+ L122 + L123A
2
1 + L124A

2
2)

+ A2(L131i+ L132)e
2iσ1T1 + L14(iE1 + E2)3e3iσ1T1 = 0 (2.39)

=⇒ A
′

1 = A1(−J121 + i(J122 + J123A
2
1 + J124A

2
2))

+ A2(−J131 + iJ132)e
2iσ1T1 + iJ14(iE1 + E2)3e3iσ1T1 = 0

At eiω2T0

A
′

2(iω2)L21 + A2(L221i+ L222 + L223A
2
1 + L224A

2
2) + A1(L231i+ L232)e

−2iσ1T1 = 0

(2.40)

=⇒ A
′

2 = A2(−J221 + i(J222 + J223A
2
1 + J224A

2
2)) + A1(−J231 + iJ232)e

−2iσ1T1 = 0

where the terms L11, J121, L21, J221, ... are derived from equations (2.36, 2.38), respectively

and are given in Appendix A. Introducing the polar notation An = ane
ibn and using in

equations (2.39-2.40), we get

a
′

1 = −J121a1 + a2(−J131 cos γ − J132 sin γ)− J151 cos δ − J152 sin δ

b
′

1 = J122 + J123a
2
1 + J124a

2
2 +

a2(−J131 sin γ + J132 cos γ)

a1
+

−J151 sin δ + J152 cos δ

a1

a
′

2 = −J221a1 + a1(−J231 cos γ + J232 sin γ)
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b
′

2 = J222 + J223a
2
1 + J224a

2
2 +

a1(J231 sin γ + J332 cos γ)

a2
(2.41)

where δ = 3σ1T1− b1 and γ = 2σ1T1+ b2− b1. Modifying coordinates, using x = a1 cos δ,

y = a1 sin δ, z = a2 cos(δ − γ) and w = a2 sin(δ − γ), we have the final set of four slow

flow equations given by

ẋ = −J121x− (3σ1 − J122)y + y(J123(x
2 + y2) + J124(z

2 + w2))

+ J13(−2E1E2z + (E2
2 − E2

1)w)− J14E1(3E
2
2 − E2

1)

ẏ = −J121y + (3σ1 − J122)x− x(J123(x
2 + y2) + J124(z

2 + w2))

+ J13(−2E1E2w − (E2
2 − E2

1)z)− J14E2(E
2
2 − 3E2

1) (2.42)

ż = −J221z − (σ1 − J222)w + w(J223(x
2 + y2) + J224(z

2 + w2))

+ J23(2E1E2x+ (E2
2 − E2

1)y)

ẇ = −J221w + (σ1 − J222)z − z(J223(x
2 + y2) + J224(z

2 + w2))

+ J23(2E1E2y − (E2
2 − E2

1)x)

The equations (2.42) represent the slow flow equations and are the solvability conditions

for the original equation (2.9) to have a bounded solution.

Application of MMS to model based control

We now apply MMS to the equations of the 2R robot driven by model based control.

The equations of motion are given by equation (2.18). For the application of MMS, after

ordering as done in the case for PD control, we have

[P1 + 1 + P2 + 2P2P3

(
1− θ22

2

)
]θ′′1 + [1 + P2P3

(
1− θ22

2

)
]θ′′1 − P2P3θ2[2θ

′
1 + θ′2]θ

′
2

= −(α1 + 2α2)Kpnθ1 − (α3 + α2)Kpnθ2 − ϵ2[(α1 + 2α2)Kvnθ
′
1 + (α3 + α2)Kvnθ

′
2]

+ ϵ[(α1 + 2α2)Af1 + (α3 + α2)Af2 ]((iE1 + E2)e
iτ + (−iE1 + E2)e

−iτ )

+ α2

(
θ22
Kpn

2
(2θ1 + θ2)− θ2θ

′
2[2θ

′
1 + θ′2]

)
+ i

α

2
(2Af1 + Af2)(e

iτ − e−iτ )θ22

(2.43)

[1 + P2P3

(
1− θ22

2

)
]θ′′1 + θ′′2 + P2P3θ2θ

′2
1 = −(α3 + α2)Kpnθ1 − α3Kpnθ2

+ ϵ[(α3 + α2)Af1 + α3Af2 ]((iE1 + E2)e
iτ + (−iE1 + E2)e

−iτ )
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− ϵ2[(α3 + α2)Kvnθ
′
1 + α3Kvnθ

′
2] + α2

(
Kpn

2
θ1θ

2
2 + θ2θ

′2
1 + i

Af1

2
(eiτ − e−iτ )

)
We follow the same procedure as was done in the case of PD control (from equa-

tion (2.23) onwards) and obtain the slow flow equations as

ẋ = −J121x− (3σ1 − J122)y + y(J123(x
2 + y2) + J124(z

2 + w2))− Ja1z + Ja2w − Ja3

ẏ = −J121y + (3σ1 − J122)x− x(J123(x
2 + y2) + J124(z

2 + w2))− Ja1w − Ja2z − Ja4

ż = −J221z − (σ1 − J222)w + w(J223(x
2 + y2) + J224(z

2 + w2))− Ja5x+ Ja6y (2.44)

ẇ = −J221w + (σ1 − J222)z − z(J223(x
2 + y2) + J224(z

2 + w2))− Ja5y − Ja6x

where σ1 is the detuning parameter of the same form (although numerically different)

as given by equation (2.30) for PD control. The terms J121, J122, .... are different from

those in the slow flow equations (2.42) for PD control and are given in Appendix A.

2.4 Asymptotic Stability Analysis

In this section, we derive the analytical conditions for the asymptotic stability for the

system given by equations (2.42), (2.44) for the PD and model-based controllers respec-

tively, at the fixed point of the both the systems. Equations (2.42), (2.44) are autonomous

systems having nine fixed points. Although these fixed points cannot be explicitly given,

we can compute them numerically. We discuss the stability of these systems at one of

those fixed points, say fs = (xs, ys, zs, ws) – f is different for equations (2.42) and (2.44).

To analyze the asymptotic stability of equation (2.42), (2.44), we use the Routh-Hurwitz

criterion [57,58], the central idea of which is that in order for any system of equations to

be asymptotically stable, all eigenvalues of it’s Jacobian must have negative real parts.

We apply the Routh-Hurwitz criterion by following the sequence of steps:
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STEP 1 - Compute the Jacobian of equations (2.42, 2.44) at fixed point fs

Jf =



∂f1
∂x

∂f1
∂y

∂f1
∂z

∂f1
∂w

∂f2
∂x

∂f2
∂y

∂f2
∂z

∂f2
∂w

∂f3
∂x

∂f3
∂y

∂f3
∂z

∂f3
∂w

∂f4
∂x

∂f4
∂y

∂f4
∂z

∂f4
∂w


(x,y,z,w)=(xs,ys,zs,ws)

(2.45)

STEP 2 - Compute the characteristic equation of the Jacobian Jf as

Fc = |Jf − λI| = 0 (2.46)

where I is 4× 4 identity matrix. The characteristic equation of (2.46) is of the form

Fc = a4λ
4 + a3λ

3 + a2λ
2 + a1λ+ a0 (2.47)

To apply the Routh-Hurwitz criterion, we write the Hurwitz matrix [57] which for the

above fourth-order system is given by
a3 a4 0 0

a1 a2 a3 a4

0 a0 a1 a2

0 0 0 a0

 (2.48)

The principal diagonal minors ∆i, i = 1, .., 4 of the Hurwitz matrix are

∆1 = a3,∆2 =

[
a3 a4

a1 a2

]
,∆3 =


a3 a4 0

a1 a2 a3

0 a0 a1

 ,∆4 = a0∆3 (2.49)

From the Routh-Hurwitz criterion, the conditions for asymptotic stability require that

all of the principal diagonal minors ∆i, i = 1, .., 4 to be positive provided a4 > 0 [57,58],

i.e., we need

a4 > 0, ∆1 = a3 > 0, ∆2 = a2a3 − a4a1 > 0
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∆3 = a1a2a3 − a4a
2
1 − a23a0 > 0, ∆4 = a0 > 0 (2.50)

Simplifying the inequalities, the local asymptotic stability of the system at the fixed

point fs is guaranteed iff

h1 = ai > 0 ∀i = 0, .., 4, h2 = a2a3 − a4a1 > 0,

h3 = a1a2a3 − a4a
2
1 − a23a0 > 0 (2.51)

We can make the following comments from (2.51):

• If all of h1, h2, h3 > 0, then the system is asymptotically stable – all roots of the

characteristic polynomial in equation (2.47) lie in the left half plane.

• If any of h1, h2, h3 < 0, then the system is unstable and at least one root of the

polynomial in (2.47) lies in the right half plane. This case is not considered as the

feedback controlled planar 2R robot is known to have simple stability for trajectory

following [54].

• If ∆1, ∆2, ∆3 are positive, but ∆4 = 0, then the system is at the boundary of

stability. Since ∆4 = a0∆3, then either a0 = 0 or ∆3 = 0. If a0 = 0, then one of

the roots of the characteristic equation is zero and the system is on the boundary

of aperiodic stability. If ∆3 = 0, then the system has two complex conjugate

imaginary roots and the system is on the boundary of oscillatory stability [95].

The condition of ∆4 = 0 is termed as marginal stability or indeterminacy,

and we cannot conclude on asymptotic stability.

In the next section, we compute numerically the values of controller gains Kp and Kv

where the slow flow equations of the 2R robot driven by PD and model based controllers

are asymptotically stable, i.e., the conditions in equation (2.51) are satisfied. The values

and ranges of controller gains where equation (2.51) results in indeterminacy are com-

puted and, in the next section, we discuss the approach to resolve the indeterminacy.

2.5 Numerical Simulation Results

In this section, we present the numerical simulation results for the asymptotic stability

analysis described in the previous section. To perform the numerical study, we choose
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the physical parameters of an existing robot used in reference [55]. These are as given

in Table 1.

Table 2.1: Parameters of the 2R planar robot

Parameter Link 1 Link 2

Mass (kg) 20.15 8.25
Length (m) 0.5 0.4
C.G. (m) 0.18 0.26

Inertia (kg −m2) 6.3 1.64

For purposes of numerical simulation, we use Af1 = (π/2) rad, Af2 = (π/4) rad.

The simulations were performed in MATLAB 2012Rb using in-built ode45 solver. The

relative and absolute tolerances were kept at 10−6 and 10−9, respectively. The results

were checked for convergence using for lower values of tolerances. We briefly describe

the procedure for computing the results shown in this section as follows

• Following STEP 1 and 2 in the previous section we compute the ranges of controller

gains Kp and Kv at which the slow flow equations given by equation (2.42) for the

PD controller and equation (2.44) for the model based controller are asymptotically

stable. This is done by checking for the satisfaction of the conditions given by

equation (2.51). The values of (Kp, Kv) at which we get asymptotic stability or

indeterminacy are plotted in the (Kp, Kv) space.

• In the event that the Routh-Hurwitz condition given by equation (2.51) are not sat-

isfied, we get indeterminacy. To resolve indeterminacy, we compute the Lyapunov

exponents [32] on the slow flow equations of the PD and model based controller.

Thus, amongst the indeterminate regions, we get chaotic and non-chaotic regions.

The non-chaotic regions are asymptotically stable. The values for asymptotic sta-

bility derived from equation (2.51), and the chaotic and non-chaotic (and hence

asymptotically stable) values are plotted using different markers in the same plots.

• To verify whether the controller gains in the chaotic and non-chaotic regions do in-

deed demonstrate chaos and asymptotic stability respectively, we pick some values

of Kp and Kv in the chaos map in both chaotic and asymptotically stable regions.
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We then use these (Kp, Kv) values in the original differential equations (2.9) and

(2.18) for the PD and model based controller and compute the Lyapunov exponents

for the said (Kp, Kv) values. A positive Lyapunov exponent would indicate chaos

and the lack of one would indicate asymptotic stability.

We first present the results and observations for the simulation of the slow flow equations

of the PD controller given in equation (2.42) and then present the same for the slow flow

equations of the model based computed torque controller given in equation (2.44).

Simulation results for PD control

Figure 2.3 represent the plots of controller gains (Kp, Kv) at various values of forcing

frequency (Ω). In the figures, the small light blue dots represent asymptotic stability

as determined by the Routh-Hurwitz criterion given by equation (2.51). The red dots

represent asymptotically stable regions derived by computing the spectra of Lyapunov

exponents at these (Kp, Kv) values in the slow flow equations – at these points the largest

Lyapunov exponent is negative. The black dots in the plots represent chaotic regions

characterized by a largest positive Lyapunov exponent. We can conclude from the plots

that the ranges of controller gains (Kp, Kv) for which the 2R robot driven by PD control

is asymptotically stable are those in the non-black regions.

To verify whether the results presented above are accurate, we pick two points in

(Kp, Kv) space – one in the black (chaotic) region and one in the non-black (asymptoti-

cally stable) region (as shown in figure 2.3 (b)) and substitute these values of controller

gains (Kp, Kv) in the original equations of the 2R robot driven by PD control (equa-

tion (2.9)). We compute the Lyapunov exponents for these (Kp, Kv) values. Figure 2.5

shows that the largest Lyapunov exponent corresponding to (Kp, Kv) = (54, 1) (black

region in the chaos map) is positive indicating chaos (absence of asymptotic stability),

whereas the largest Lyapunov exponent corresponding to (Kp, Kv) = (54, 4) (non-black

region in the chaos map) is negative indicating asymptotic stability. We have performed

similar tests for other points in the black and non-black regions.
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(a) Ω = 1 (b) Ω = 2

(c) Ω = 2.5 (d) Ω = 5

Figure 2.3: Chaos maps in (Kp, Kv) space for PD control for various values of forcing
frequency Ω

Observations

From the extensive numerical simulation results performed, we can make the following

observations on the asymptotic stability of 2R planar robot driven by PD control.

• For high values of Kp and Kv, the 2R robot is asymptotically stable, irrespective

of the forcing frequency.

• For low values of Kp and Kv, the 2R robot is asymptotically stable for higher

values of forcing frequency Ω, but is chaotic for lower values of Ω.

• For low values of Kp and high values of Kv, the 2R robot is asymptotically stable,

irrespective of the forcing frequency

• For low values of Kv and high values of Kp, it’s asymptotic stability depends on Ω.

• For lower values of Ω, for mid-range Kp (30 < Kp < 75) and low Kv, the motion

of the 2R robot is chaotic. But for extremely high values of Kp (Kp > 100), the
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Figure 2.4: Chaos maps in (Kp, Kv) space for PD control – Ω = 8

(a) (b)

Figure 2.5: Spectra of Lyapunov exponents of the 2R robot equations (2.9) – (a)
(Kp, Kv) = (54, 1) – chaotic (b) (Kp, Kv) = (54, 4) – asymptotically stable

PD controller is stable even for lower values of Kv

• For higher values of Ω, i.e. for Ω >= 8, the PD controller of the 2R robot is

asymptotically stable for all values of Kp and Kv.

• It must also be pointed out that range of all Kp, Kv values in the plot is kept less

than the values for critical damping. The critical damping of a 2R planar robot is

given by Kv = 2
√

Kp. Hence, if we consider Kp values from 0 to 100, then critical

damping is given by Kv = 20 and we consider Kv values from 0 to 20. The values

for outside this range was not obtained as it is intuitively well known that over

damped systems (Kv > 2
√
Kp) are not chaotic.

Simulation results for model based control

For the simulation of the slow flow equations of the model based controller, we assume

a forcing frequency Ω = 2 (rad/sec).
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(a) e = −0.8 (b) e = −0.85

Figure 2.6: Chaos maps in (Kp, Kv) space for model based control

Figure 2.7: Chaos maps in (Kp, Kv) space for model based control – e = −0.9

Figures (2.6-2.7) represent the plots of controller gains (Kp, Kv) at various values of

mismatch parameter e. As in the case of PD control, the small light blue dots repre-

sent asymptotic stability as determined by the Routh-Hurwitz criterion given by equa-

tion (2.51). The red dots represent asymptotic stability and the black dots represent

chaos as determined by the computation of Lyapunov exponents in the slow flow equa-

tions of the model based controller. Thus, the black regions represent chaos whereas the

non-black regions (blue or red) represent asymptotic stability.

To verify the above results, we again pick two points in (Kp, Kv) space– one in the

black (chaotic) region and one in the non-black (asymptotically stable) region (as shown

in figure 2.7) and substitute these values of controller gains (Kp, Kv) in the original

equations of the 2R robot driven by model based control (equation (2.18)). Figure 2.8

shows that the largest Lyapunov exponent corresponding to (Kp, Kv) = (46, 1) (black

region in the chaos map) is positive indicating chaos, whereas the largest Lyapunov
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exponent corresponding to (Kp, Kv) = (46, 8) (non-black region in the chaos map) is

negative indicating asymptotic stability.

(a) (b)

Figure 2.8: Spectra of Lyapunov exponents of the 2R robot equations (2.18) – (a)
(Kp, Kv) = (46, 1) – chaotic (b) (Kp, Kv) = (46, 8) – asymptotically stable

Observations

From the extensive numerical simulation results performed, we make the following obser-

vations on the asymptotic stability of 2R planar robot driven by model based computed

torque control scheme.

• Chaos exists for greater underestimation (e < −0.6) of the model of the 2R robot.

• The controller is asymptotically stable for e > −0.6.

• Ranges of Kp and Kv for asymptotic stability vary with the degree of underesti-

mation in the model. For larger underestimation, the ranges of Kp and Kv for

asymptotic stability are smaller. For smaller underestimation, the ranges of Kp

and Kv for asymptotic stability are larger.

• Chaos exists for mid-range to higher values of Kp (depending upon mismatch pa-

rameter e) and lower values of Kv. But unlike PD control, chaos exists even for

very high values of Kp.

• The range of all Kp, Kv values in the plot is kept within the range of critical

damping.
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2.6 Concluding Remarks

In this chapter, the nonlinear dynamical equations of a 2R planar robot driven by PD

control and model-based computed torque control following a desired trajectory was

analyzed. An semi-analytical method is proposed and the range of controller gains

for which the 2R robot is chaotic or asymptotically stable was obtained. The non-

dimensional nonlinear ordinary differential equations were analyzed at different time

scales by using the method of multiple scales and four slow flow equations were derived.

The Routh-Hurwitz criterion was used on the slow flow equations, at a fixed point,

to derive analytical conditions for asymptotic stability. The conditions for asymptotic

stability were used to compute the ranges of controller gains at which the 2R robot is

asymptotically stable or indeterminate. As the use of Routh-Hurwitz criterion can also

result in indeterminacy for certain controller gain values, the slow flow equations were

further analyzed for the possibility of chaos using Lyapunov exponents. The values of

gains, in the indeterminate regions, for which one of the Lyapunov exponent is positive

results in chaotic motion and hence for such gain values, the planar 2R robot cannot

follow a desired trajectory and be asymptotically stable. The results obtained in this

work imply that results related to asymptotic stability of robots following a desired

trajectory, available in literature, needs to be re-looked.

The approach of using the method of multiple scales and Routh-Hurwitz criterion is

not limited to a planar 2R robot. The number of slow flow equations and the dimension of

the Jacobian matrix in n degree-of-freedom robot manipulators would be 2n and 2n×2n

respectively. This increase in the number of equations and the dimension of the Jacobian

matrix would however make the task of obtaining controller gains for asymptotic stability

or chaos more difficult.



Chapter 3

Chaotic Dynamics of a Rotating

Flexible Link

The study of the dynamics of flexible manipulators has been an important subject in

the field of robotics for the past two decades. Most of the work done on flexible manip-

ulators assume small deformation and use a linear strain-displacement relationship via

the linear beam theory [96–98]. However, it has been shown that a linear beam theory

approximation is inadequate for fast moving flexible structures [99]. Moreover, it has

also been shown that the linear approximation results in the loss of stiffness due to the

partial transfer of centrifugal force to the bending equation [100]. Accurate mathemat-

ical modeling of flexible manipulators therefore must consider large deformations and

thus can only be developed by considering nonlinear elastic deformation in the flexible

manipulators. Nonlinearities arising out of large deformations are called geometric non-

linearities [101,102].

There is very little literature on the dynamics of flexible beams with geometric nonlin-

earities involving chaotic motion [103–105]. Moreover, the application of the method of

multiple scales, as presented in Chapter 1, was done mostly to two or three dimensional

systems. In Chapter 1, we pointed out the very little literature that was available for the

application of MMS to the study of four-dimensional systems. The simplest model of the

dynamics of a flexible beam, subjected to large deformation and geometric nonlinearity,

leads to a four-dimensional system [60]. In this Chapter, we study the dynamics of this

four-dimensional system using MMS.

47
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In an earlier work [60], a flexible link manipulator with geometric nonlinearities was

modeled using a finite element technique to yield four governing ODEs. The four ODEs

were written in a non-dimensionalized form using two characteristic velocities, namely

the speed of sound and a velocity associated with the transverse bending vibrations of the

beam. In this Chapter, we analyze these four ODEs and show that for certain ranges of

values of these characteristic velocities the system of equations representing the rotating

beam can exhibit chaotic motions. We further show that these values of characteristic

velocities are possible to obtain in a rotating blade of a wind turbine (modeled as a

beam) or in a flexible link manipulator. Further, we analyze the effect of the presence of

damping (Rayleigh damping) on the equations of the flexible manipulator and demon-

strate that chaotic motion observed is of a very different nature in damped system as

opposed to the undamped system.

This Chapter is organized as follows: In section 3.1, we briefly describe the rotating

flexible beam and present the nonlinear ODEs used to model the undamped and damped

rotating beam undergoing large deformation and present the non-dimensional form of

the equations derived using the two characteristic velocities. In section 3.2, we present a

multiple scales analysis of the system of four ODEs to derive the slow flow equations and

analyze the system of equations for the undamped and damped case. In section 3.3, we

analyze the nature of the system and compute the fixed points of the system. In section

3.4, we examine the results obtained from numerical simulations to obtain better insight

as to the range of characteristic velocities for which the system can exhibit chaos. In

section 3.5, we present conclusions of this chapter.

3.1 Description of the Rotating Flexible Beam

The modeling of a rotating flexible beam, undergoing large deformation and the deriva-

tion of equations of motion in a non-dimensional form is presented in reference [60].

These are presented in brief in this section.

The rotating link was schematically shown in Chapter 1 and the figure is reproduced

in figure 3.1 below for convenience. The link is discretized into a finite number of beam

elements, with all its nodal variables as described in figure 3.2, defined in the body-fixed
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Figure 3.1: Flexible rotating beam

v2i−1 ith element

l

Xi
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ϕ2i−1
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u2i−1
v2i

u2i

Figure 3.2: A planar beam element

co-ordinate system OiXiYi with OiXi along the tangent at the (2i − 2)th node of the

system. The co-ordinate system OXY is the global co-ordinate system as shown in

figure 3.1 and an arbitrary point on the flexible link, in the global coordinate system, is

denoted by 0Pi. The rotating flexible link is assumed to have constant cross-sectional

area and uniform material properties and is assumed to undergo axial elongation in

addition to transverse bending. From the figures (3.1, 3.2), it can be observed that θ1 is

the global variable and (u2i−1, v2i−1, ϕ2i−1, ...., u2i, v2i, ϕ2i) are the nodal variables of the

system. The index i refers to the ith discretized element (in figure 3.1, OA is the first

element, OB is the second element and so on) of the beam, whereas the total number

of such elements of the beam is given by N . In our work, we consider only one element,

hence N = 1. The beam is assumed to undergo large deformations hence a nonlinear
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strain-displacement relationship needs to be used to describe the relation between the

strain and the displacements. Following the development in reference [60], we can write

ϵxx =
∂ux

∂x
− y

∂2uy

∂x2
+

1

2

(
∂uy

∂x

)2

(3.1)

where ϵxx denotes the normal strain, and uy and ux denote the longitudinal and transverse

displacement at axis y = 0 (see figure 3.2) respectively. The above strain-displacement

equation can be used to obtain the strain energy of the system as

U =
EA

2

l∫
0

(
∂ux

∂x

)2

dx+
EI

2

l∫
0

(
∂2uy

∂x2

)2

dx+

EA

2

l∫
0

(
∂ux

∂x

)(
∂uy

∂x

)2

dx (3.2)

where E, A, I, l denote the Young’s modulus, cross-sectional area, moment of inertia

of cross-section and length of the beam, respectively. It can be observed from equa-

tion (3.2), that the nonlinearity is quadratic and represents the geometric nonlinearity

associated with transverse bending and axial deformation.

Following the development in reference [60], the total kinetic energy of the beam

can be obtained from the time derivative of the vector 0Pi and integration. It can be

expressed as

T =
1

2
Q̇T [M ]Q̇ (3.3)

where [M ] is the mass matrix and Q is the vector of generalized coordinates given by

(θ1, S)
T with S denoting the vector of nodal variables given by (u1, v1, ϕ1, ....., u2N , v2N , ϕ2N)

(see figure 3.2).

The total potential energy of the beam can be obtained from equation (3.2), and can

be written as

V =
1

2
ST ([K] + [∆K(S)])S (3.4)
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where [K] is the conventional stiffness matrix and [∆K(S)] is the geometric stiffness

matrix. From the potential and kinetic energy given by equations (3.3) and (3.4), the

equations of motion can be derived using a Lagrangian formulation. The nonlinear

differential equations can be schematically written as

[M(Q)]{Q̈}+ ([K] + [∆K(Qf )]){Qf}+ h(Q, Q̇) = {τ} (3.5)

where h(Q, Q̇) is the vector of Coriolis and centripetal terms, {τ} = [Γ, 0, 0, 0]T is a

vector of input torques and Qf = (0, u2, v2, ϕ2)
T is a vector of flexible variables. Equa-

tion (3.5) represents a set of four second-order ordinary differential equations.

The equations of motion (3.5) can be non-dimensionalized [60] using two character-

istic velocities

Ug =
1

L

√
EI

ρA
, Ua =

√
E

ρ
, T = t/(L/Ug) (3.6)

where Ua is the speed of sound and Ug is a characteristic speed associated with bending

vibration and T is a non-dimensional time. The quantity Ug is dependent on geometric

and material properties of the beam whereas Ua is purely a material property. For a

circular cross-section beam of radius R and length L, we can relate Ug and Ua as

Ug =
1

L
·

√
EI

ρA
=

1

L
·

√
E

ρ
·
√

πR4/2

πR2
=

UaR

L
√
2

(3.7)

The above equation indicate that Ug decreases with larger L and smaller R, i.e., Ug is

small for thinner and longer beams.

The equations of motion in the non-dimensional form can be written as

[M(Qf )] {Q
′′}+

(
K +∆K(Qf ,

Ua

Ug

)

)
{Q}+ C{Q′}+ {H(Q,Q

′
)} =

{τ}
ρALU2

g

(3.8)

where (·)′ , (·)′′ represent the first and the second derivative with respect to non-dimensional

time T , M is the 4 × 4 non-dimensional mass matrix, K and ∆K are the 4 × 4 non-

dimensional conventional and geometric stiffness matrices respectively, H is the 4 × 1
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vector of non-dimensional centripetal and Coriolis terms, {τ} = [F sin(
ΩL

Ug

T ), 0, 0, 0]T

with F and Ω denoting the amplitude and the frequency of forcing term (see Appendix

B for details of the terms in equation (3.8)) and C{Q′} represents an added Rayleigh

damping term of the form α[M] + β[K].

In this work we focus on Ug and show that for certain ranges of Ug, the system of

four ODEs in equation (3.8) can exhibit chaos. For numerical simulations in section 3.4,

we will use the values given in Table 3.1 and we assume the value of amplitude of forcing

F = π/2 and the values of the Rayleigh damping coefficients as α = 0.02 and β = 0.02.

The reason for choosing the particular values of damping co-efficients α and β is that

high damping increases stability and hence there is no chance of chaotic motion. Hence,

we choose low values of α and β as given above to enable the possibility of exploring

chaotic motion. It may be noted that the ρ and E values given in Table 3.1 are of E-glass

which is used to make wind turbine blades and the value of L is for a 50 kW wind turbine

made by Endurance Wind Power Ltd. [106]. The value of Ω is the operating angular

speed of the wind turbine blade.

It maybe noted that the blade cross-section in not uniform in a wind turbine and the

Table 3.1: Parameters of the rotating flexible beam

Parameter Numerical Value

Material E-Glass
ρ 2550 kg/m3

E 80 (GPa)

Ua

√
E

ρ
= 5601 m/s

L 9 (m)
Ω 42 (rpm)

Ug value is not known. In section 3.4, we show that if the blade is assumed to have a

uniform circular cross-section, then for certain values of Ug (and resulting value of the

circular cross-section), the system of equations modeling the rotating blade can exhibit

chaos.
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3.2 The Method of Multiple Scales

In this section, we apply MMS to the equation (3.8) with and without damping. To

apply MMS, we use the same procedure described in Chapter 1. We seek a uniform

expansion for the solution of equations (3.8) in the form

x(t; ϵ) = ϵx10(T0, T1) + ϵ2x11(T0, T1) (3.9)

where, ϵ is a small dimensionless measure of x which can be any of the variables (θ1,

U2, V2, ϕ2), T0 = t is the fast scale associated with changes occurring at the forcing

frequencies Ω and the natural frequencies ωn, and T1 = ϵt is the slow scale associated

with the modulations of the amplitudes and phases due to nonlinearities and resonances.

Equation (3.9) ensures that the nonlinear effects in equations (3.8) appear at the second-

order. Ordering the damping and excitation effects so as to appear at the second-order,

we can rewrite the set of equations as:

[M(Qf )] {Q
′′}+

(
K +∆K(Qf ,

Ua

Ug

)

)
{Q}+ ϵ

(
C{Q′}

)
+ {H(Q,Q

′
)} = ϵ

(
{τ}

ρALU2
g

)
(3.10)

We perform a multiple scales analysis on equation (3.10) – the results for the undamped

case can be obtained by setting the damping to zero. Substituting equations (3.9) into

equation (3.10) and equating coefficients of like powers of ϵ, we obtain

Order ϵ

1

3
D2

0θ10 +
7

20
D2

0V20 −
1

20
D2

0ϕ20 = 0

1

3
D2

0U20 +
U2
a

U2
g

U20 = 0 (3.11)

7

20
D2

0θ10 + 12V20 +
13

35
D2

0V20 − 6ϕ20 −
11

210
D2

0ϕ20 = 0

− 1

20
D2

0θ10 − 6V20 −
11

210
D2

0V20 + 4ϕ20 +
1

105
D2

0ϕ20 = 0

where D2
n = (∂2/∂T 2

n). The solution of equations (3.11) is of the form

θ10 = A3e
iω3T0 + A4e

iω4T0 + c.c.
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U20 = A2e
iω2T0 + c.c. (3.12)

V20 = C33(A3e
iω3T0) + C34(A4e

iω4T0) + c.c.

ϕ20 = C43(A3e
iω3T0) + C44(A4e

iω4T0) + c.c.

where c.c stands for complex conjugate and the derivation of equation (3.12) is given in

Appendix B. The above equations are used for obtaining Order ϵ2 equations next.

Order ϵ2

1

3
D2

0θ11 +
7

20
D2

0V21 −
1

20
D2

0ϕ21 = −2

3
D0D1θ10 + α

(
−1

3
D0θ10 −

7

20
D0V20 +

1

20
D0ϕ20

)
− 2

3
U20D

2
0θ10 +

(
7

20
V20 −

ϕ20

20

)
D2

0U20 −
7

10
D0D1V20 +

1

10
D0D1ϕ20

+ U20

(
D2

0ϕ20

20
− 7D2

0V20

20

)
− 2

3
D0U20D0θ10

1

3
D2

0U21 +
U2
a

U2
g

U21 = −α

3
D0U20 −

2

3
D0D1U20 +

(
7D0V20

10
+

D0θ10
3

)
D0θ10

− U2
a

U2
g

(
3

5
V 2
20 +

ϕ2
20

15
− V20ϕ20

10

)
+

(
7V20

20
− ϕ20

20

)
D2

0θ10 (3.13)

7

20
D2

0θ11 + 12V21 +
13

35
D2

0V21 − 6ϕ21 −
11

210
D2

0ϕ21 = −7α

20
D0θ10 −

(
13α

35
+ 12β

)
D0V20

− 26

35
D0D1V20 +

(
11α

210
+ 6β

)
D0ϕ20 +

11

105
D0D1ϕ20 −

7

10
D0U20D0θ10 −

7

20
U20D

2
0θ10

− U2
a

U2
g

(
6

5
V20 +

ϕ20

10

)
U20 −

7

10
D0D1θ10

− 1

20
D2

0θ11 − 6V21 −
11

210
D2

0V21 + 4ϕ21 +
1

105
D2

0ϕ21 =
α

20
D0θ10 +

11

105
D0D1V20

−
(
11α

210
+ 6β

)
D0V20 −

( α

105
+ 4β

)
D0ϕ20 −

2

105
D0D1ϕ20 +

1

10
D0U20D0θ10

− 1

20
U20D

2
0θ10 −

U2
a

U2
g

(
−V20

10
+

2ϕ20

15

)
U20 +

1

10
D0D1θ10

It is important to note that there are infinite number of eigenvalues and modes for
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a continuum. For nonlinear systems, the linearized mode that is directly excited by

an external excitation or indirectly excited by an internal resonance with one of the

natural frequencies will survive and all other modes would decay in time. In this case,

we consider an internal resonance between the second and third mode and a combination

external resonance with third mode. In order to separate the secular terms, we introduce

a detuning parameter as follows:

ω2 = 2ω3 + ϵσ1, Ω = ω3 + ϵσ2 (3.14)

To determine the solvability conditions, we seek a particular solution free of secular terms

corresponding to the terms proportional to eiωnT0 , in the form

θ11 =
4∑

i=1

Pi(T1)e
iωiT0 , U21 =

4∑
i=1

Qi(T1)e
iωiT0 (3.15)

V21 =
4∑

i=1

Ri(T1)e
iωiT0 , ϕ21 =

4∑
i=1

Si(T1)e
iωiT0

Substituting equation (3.15) on the left-hand side of equation (3.13) and equations (3.12),

(3.14) on the right hand side of equation (3.13), and equating the coefficients of the pow-

ers of eiω2T0 and eiω3T0 , we can determine the solvability conditions, thus eliminating the

secular terms. Since we have considered resonance between the second and the third

modes, we shall consider only the second and third modes in (3.13) at powers eiω2T0 and

eiω3T0 .

At eiω2T0

− 1

3
ω2
2P2 −

7

20
ω2
2R2 +

1

20
ω2
2S2 = 0(

U2
a

U2
g

− ω2
2

3

)
Q2 = Y2 (3.16)

− 7

20
ω2
2P2 + (12− 13

35
ω2
2)R2 + (

11

210
ω2
2 − 6)S2 = 0

1

20
ω2
2P2 + (

11

210
ω2
2 − 6)R2 + (4− 1

105
ω2
2)S2 = 0
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At eiω3T0

− 1

3
ω2
3P3 −

7

20
ω2
3R3 +

1

20
ω2
3S3 = Z1(

U2
a

U2
g

− ω2
3

3

)
Q3 = Z2 (3.17)

− 7

20
ω2
3P3 + (12− 13

35
ω2
3)R3 + (

11

210
ω2
3 − 6)S3 = Z3

1

20
ω2
3P3 + (

11

210
ω2
3 − 6)R3 + (4− 1

105
ω2
3)S3 = Z4

where

Y2 = −2

3
A

′

2(iω2) + J22A
2
3e

−iσ1T1 − A2(iω2)
α

3

Z1 = A
′

3(iω3)Z11 + A3(iω3)Zd1 + A2A3e
iσ1T1Z12 −

Fi

2
eiσ2T1

Z2 = 0 (3.18)

Z3 = A
′

3(iω3)Z31 + A3(iω3)Zd3 + A2A3e
iσ1T1Z32

Z4 = A
′

3(iω3)Z41 + A3(iω3)Zd4 + A2A3e
iσ1T1Z42

The terms used in the above equation such as J2, Z11, Z12, ... are given in Appendix B.

Equations (3.16) and (3.17) are a system of four inhomogeneous equations for Pn, Qn, Rn, Sn.

Considering equation (3.16), the homogeneous parts have a non-trivial solution because

the determinant of the co-efficient matrix is∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−1

3
ω2
2 0 − 7

20
ω2
2

1

20
ω2
2

0
U2
a

U2
g

− ω2
2

3
0 0

− 7

20
ω2
2 0

(
12− 13

35
ω2
2

) (
11

210
ω2
2 − 6

)
1

20
ω2
2 0

(
11

210
ω2
2 − 6

) (
4− 1

105
ω2
2

)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0 (3.19)

Equation (3.19) represents the determinant matrix of equation (3.16). Hence the non-

trivial solution or the solvability conditions can be determined [35] by replacing the first

column in equation (3.19) by the column on the right-hand side of equation (3.16). This
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gives ∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 0 − 7

20
ω2
2

1

20
ω2
2

Y2
U2
a

U2
g

− ω2
2

3
0 0

0 0

(
12− 13

35
ω2
2

) (
11

210
ω2
2 − 6

)
0 0

(
11

210
ω2
2 − 6

) (
4− 1

105
ω2
2

)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0 (3.20)

The above condition yields,

Y2 = −2

3
A

′

2(iω2) + J22A
2
3e

−iσ1T1 − A2(iω2)
α

3
= 0

=⇒ iA
′

2 = −A2
α

2
+

3J22

2ω2

A2
3e

−iσ1T1 (3.21)

=⇒ iA
′

2 = −A2
α

2
+ J2A

2
3e

−iσ1T1

The above equations represent amplitude modulation equations at eiω2T0 . We consider

the same analysis as above for equation (3.17). The determinant of the coefficient matrix

of equation (3.17) is set to zero and we can write∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−1

3
ω2
3 0 − 7

20
ω2
3

1

20
ω2
3

0
U2
a

U2
g

− ω2
3

3
0 0

− 7

20
ω2
3 0

(
12− 13

35
ω2
3

) (
11

210
ω2
3 − 6

)
1

20
ω2
3 0

(
11

210
ω2
3 − 6

) (
4− 1

105
ω2
3

)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0 (3.22)

Hence, by the same logic used to derive solvability matrix at eiω2T0 given by equa-

tion (3.20), we derive the solvability matrix at eiω3T0 from equation (3.22) as∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Z1 0 − 7

20
ω2
3

1

20
ω2
3

Z2
U2
a

U2
g

− ω2
3

3
0 0

Z3 0

(
12− 13

35
ω2
3

) (
11

210
ω2
3 − 6

)
Z4 0

(
11

210
ω2
3 − 6

) (
4− 1

105
ω2
3

)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0 (3.23)
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Substituting the values of Z1, Z2, Z3 and Z4 from equation (3.18) in the above equa-

tion (3.23), we derive the solvability conditions as

A
′

3(iω3){Z11Zw1 + Z31Zw3 + Z41Zw4}

+ A3(iω3)(Zd1Zw1 + Zd3Zw3 + Zd4Zw4)

+ A2A3e
iσ1T1{Z12Zw1 + Z32Zw3 + Z42Zw4} −

Fi

2
eiσ2T1Zw1 = 0

=⇒ A
′

3(iω3)L1 + A3(iω3)Zd1 + A2A3e
iσ1T1L2 −

Fi

2
eiσ2T1Zw1 = 0

=⇒ A
′

3 = −A3J3d + J31e
iσ2T1 + J32iA2A3e

iσ1T1 (3.24)

where J3d = (L3d/L1), J31 = (FZw1/2ω3L1),J32 = (L2/ω3L1) and the values of Z11, Z31, ...

are given in Appendix B. The final amplitude modulation equations are given by (3.21,

3.24). We club them together as

iA
′

2 = −A2
α

2
+ J2A

2
3e

−iσ1T1 (3.25)

A
′

3 = −A3J3d + J31e
iσ2T1 + J32iA2A3e

iσ1T1

Introducing the polar notationAn = ane
ibn and inserting it into the above equation (3.25),

we get

a
′

2 = −α

2
a2 − J2a

2
3 sin γ

b
′

2 = −J2
a23
a2

cos γ (3.26)

a
′

3 = −J3da3 + J31 cos δ − J32a2a3 sin γ

b
′

3 =
1

a3
J31 sin δ + J32a2 cos γ

where δ = σ2T1 − b3, γ = σ1T1 + b2 − 2b3 and a2, b2, a3, b3 represent the polar co-

ordinates (amplitude and phase) of A2 and A3 respectively. Modifying coordinates using

x = a2 cos γ, y = a2 sin γ, z = a3 cos δ and w = a3 sin δ, we have the final set of four slow

flow equations given by

ẋ = −α

2
x− σ1y + 2J32xy + 2J31

yw

z2 + w2

ẏ = −α

2
y + σ1x− J2(z

2 + w2)− 2J32x
2 − 2J31

xw

z2 + w2
(3.27)
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ż = −J3dz − σ2w + J31 + J32(xw − yz)

ẇ = −J3dw + σ2z − J32(yw + xz)

In the above equations representing the damped slow flow equations of the beam, J3d

is dependent on the Rayleigh damping parameters α and β. For the undamped slow flow

equations, we set α = 0 and β = 0 in the above equations, and, as a result, the terms

α and J3d will vanish. For the purpose of this Chapter, we call equation (3.27) with

non-zero (α, β) as the damped slow flow equations. If α = β = 0, we call equation (3.27)

as the undamped slow flow equations.

3.3 Analysis of the Slow Flow Equations

Before numerically simulating the equations (3.27), we try to understand the nature of

these equations. We can observe that

• The first two equations contain a factor
w

z2 + w2
. This factor arises from using

z = a3 cos δ and w = a3 sin δ in equation (3.26) and, as shown in simulation results,

the behavior of x(t) and y(t) is very different than the behavior of z(t) and w(t).

It can be seen that x, y depend upon γ, whereas z, w depend upon δ. Additionally

from equation (3.26), γ is a function of b2, b3, whereas δ is only a function of b3.

• The relationship between x, y, z, w to the original variables, θ10, U20, V20 and ϕ20

of the flexible beam is given by equation (3.12) and one can infer the behavior of

the original rotating flexible link from the behavior of x, y, z and w. As will be

shown in Chapter 4 (section 4.2), z, w go to zero and this implies that V2 and ϕ2

(see figure 3.2) also go to zero.

To check if the system given by equation (3.27) is dissipative or not, we calculate the

gradient of the volume enclosed by the system. As discussed in Chapter 1, this is given

by

div V =
∂f1
∂x

+
∂f2
∂y

+
∂f3
∂z

+
∂f4
∂w

(3.28)
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where f1, f2, f3, f4 respectively, denote the four equations in (3.27). Substituting equa-

tion (3.27) into equation (3.28), we have

div V = 2J32y − α + 0− J32y − J32y − 2J3d = −(α + 2J3d) (3.29)

From equation (3.29), we can observe that the divergence is nonzero iff α+2J3d > 0,

i.e., the system is dissipative and the volume enclosed by the system is not preserved for

all values of parameter Ug. Hence, the system of equations can have chaotic attractors

or repellors. For an undamped system, α and J3d are zero, and hence the gradient for

an undamped system, as given by equation (3.29), can be seen to be zero. This implies

that the undamped system is conservative and the volume enclosed by such a system is

preserved for all Ug. Such a system cannot have chaotic attractors and repellors.

Fixed points

The fixed points of the slow flow equations given by equations (3.27) are obtained by

setting ẋ = ẏ = ż = ẇ = 0. We first consider the undamped slow flow equations obtained

by setting α and J3d as zero in equation (3.27). After simplification, the fixed point of

the system are obtained as (xe1 , 0, 0, we1) where (xe1 , we1) are given by

xe1 =
N1/3

6J32(σ1 − 2σ2)
+

2σ2
2(σ1 − 2σ2)

3J32N1/3
+

2σ2

3J32

we1 =
J31

σ2 − J32xe1
(3.30)

where

N = (σ1 − 2σ2)
2× (3.31)

{8σ3
2σ1 + 16σ4

2 + 108J32J22J
2
31

+ 12J31J32

√
3J22(−4σ3

2σ1 + 8σ4
2 + 27J32J22J

2
31)

J32
}

The fixed points of the undamped slow flow equations for different values of Ug can be

computed from equation (3.30) and (3.31). The fixed points for representative Ug values

are given in Table 3.2 below. The damped slow flow equations given by equations (3.27),

where α ̸= 0, J3d ̸= 0, have no fixed points although the damped slow flow equations
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Table 3.2: Fixed points of undamped slow flow equations

Ug Fixed points

250 (-67.8988,0,0,-4.0000 +58.1750i),
(-67.8988,0,0,-4.0000 -58.1750i), (0,0,0,2)

150 (0,0,0,0), (-24.3996,0,0,-0.5000 +77.6724i),
(-24.3996,0,0,-0.5000 -77.6724i)

100 (0,0,0,0.1250), (-10.8228,0,0,-122.75-0.06199i),
(-10.8228,0,0,123.5+0.06199i)

50 (0,0,0,0), (-2.6902,0,0,-27.5044 + 0.0004i),
(-2.6902,0,0,27.5058 - 0.0004i)

show the existence of an attractor. Since there are no fixed points, the attractor can be

an attracting limit cycle.

3.4 Numerical Simulation

We now present the numerical simulation of the damped and undamped slow flow equa-

tions of the flexible beam given by equation (3.27). We check the equations for the

existence of chaos by considering as parameter the non-dimensional characteristic veloc-

ity Ug. For this purpose, we use phase plots, Poincaré maps and Lyapunov exponents

described in Chapter 1. To perform the numerical study of the system in equation (3.27),

we use the parameters given in Table 3.1. All simulations were done using MATLAB

2012Rb [17] and ode15s solver was used to solve the differential equations. The relative

and absolute tolerances were kept at 10−6 and 10−9 respectively. The results were veri-

fied to converge to those shown in this section for lower values of tolerances.

Figures (3.3-3.4) show the numerical simulation results of the undamped slow flow

equations given by setting α and J3d as zero in equation (3.27). Figure 3.3 show the

Poincaré maps of the undamped slow flow system. All the maps shown in figure 3.3 are

magnified. Figure 3.3 (a) shows the formation of nonlinear resonance islands at Ug = 250.

The resonance islands can be observed as elliptic formations, and the appearance of
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(a) Ug = 250 (b) Ug = 150

(c) Ug = 100 (d) Ug = 50 – Chaos

Figure 3.3: Poincaré maps for the undamped slow flow equations

‘straight lines’ in between the islands, known as invariant tori [107, 108]. Figures 3.3

(b,c) show the Poincaré maps at Ug = 150 and Ug = 100. We can see that with the

decrease in the value of the parameter Ug, the islands are slowly destroyed, implying that

nonlinear resonances overlap to break the tori and produce chaotic motion as shown in

figure 3.3 (d) with the map filled with chaotic trajectories as shown.

Figure 3.4: Plot of Lyapunov exponents at Ug = 50 – undamped case
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To confirm chaos, we compute the largest Lyapunov exponent. In figure 3.4, the spec-

trum of Lyapunov exponents is shown for Ug = 50. It can be easily observed from this

figure, that the largest Lyapunov exponent is positive, and hence chaos exists at Ug = 50.

Figures (3.5-3.6) show the numerical simulation of equation (3.27), representing the

damped slow flow equations. The map shown in figure 3.5 (c) is magnified and one can

observe the dissipative motion of the system towards the attractor and with the curves

winding up on a attractor.

(a) Ug = 155 (b) Ug = 105

(c) Ug = 50

Figure 3.5: Phase plots for the damped slow flow equations

In figure 3.6, the spectrum of Lyapunov exponents is shown for Ug = 105. It can

be observed from this figure, that the largest Lyapunov exponent is positive, and hence

chaos exists at Ug = 105 and the attractors shown in the phase plots for Ug ≤ 105 are

chaotic attractors.
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Figure 3.6: Spectra of Lyapunov exponents at Ug = 105 – damped case

Observations

From the results presented, it can be observed that in the undamped system of equations

chaos occurs by the breaking up of tori by the overlap of nonlinear resonances. For the

damped system, however, chaos occurred by the motion settling onto an attractor. The

reason for this different routes to chaos is due to the fact that the damped system of

equations, as shown in section 3.3, are dissipative. Thus the volume of the system in

state space reduces until it settles onto an attractor. On the other hand, the undamped

equations are conservative, i.e., the volume of the system in state space is conserved for

all values of system parameter Ug. Chaos in conservative systems occurs by the mixing

of nonlinear resonances to break the tori as described earlier.

From the numerical simulation results, it can be also seen that the chaotic motion

for the undamped slow flow equations appears at Ug = 50 and for the damped slow flow

equations at Ug = 105. From extensive simulations, it was observed that for Ug greater

than 150, there is no chaos for the undamped slow flow equations. If we assume that

the rotating wind turbine blade has a uniform circular cross-section, using the parameter

values in Table 3.1 and from equation (3.7) we obtain that an Ug value of 150 corresponds

to R ≈ 34.08 cm. Hence, to avoid chaotic motion, the radius of the blade must be more

than 34.08 cm. Likewise, for the damped slow flow equations, for an Ug value greater

than 200, no chaos is observed in simulations. Using equation (3.7), the corresponding

radius of the blade is R ≈ 45.44 cm and hence, in order to avoid chaotic motion, the
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radius of the blade must be more than 45.44 cm. It may be noted that a rotating wind

turbine blade will be subjected to torsion as well as bending and in that sense, the Ug and

corresponding R values are only indicative. Nevertheless, the chaotic dynamic analysis

presented in this work can be used in the initial design of the wind turbine blades.

3.5 Concluding Remarks

This Chapter dealt with the chaotic dynamics of a flexible rotating beam with large

deformation and geometric nonlinearities. The equations of motion were obtained as

a set of four ordinary differential equations and were non-dimensionalized using two

characteristic velocities representing the speed of sound (Ua) and speed of transverse

vibrations (Ug). A perturbation analysis was done to study the nonlinear system at a

slower time scale and the slow flow equations were derived from the original nonlinear

ordinary differential equations by the method of multiple scales. Both the undamped

and damped system of equations were obtained and analyzed. The slow flow equations

were simulated numerically to investigate the existence of chaos. From the numerical

simulation results, it can be concluded that in both undamped and damped cases chaos

is obtained below certain values of Ug. The practical application of this analysis would

be in the initial design of a rotating wind turbine blades where the radius of the blade

could be chosen to avoid possible chaotic motion.



Chapter 4

Synchronization of Chaos in a

Rotating Flexible Link

In the previous Chapter, we analyzed the chaotic motion of a flexible rotating link, mod-

eled as a one link flexible beam. We performed a multiple scales analysis on the equations

of motion of the beam and derived four first-order autonomous equations, also known

as slow flow equations, of the system which represent the solvability conditions for the

beam’s equations to have a solution. The slow flow equations were shown to be chaotic.

In this Chapter, we develop a method for controlling chaos using a technique known as

chaos synchronization.

In the recent past, chaos synchronization has received significant attention after the

work of Pecora et al. [69, 70]. The idea behind chaos synchronization is as follows. Any

chaotic system, by definition, is sensitive to initial conditions. The same chaotic system,

when simulated with one set of initial conditions shows one particular kind of behavior.

But when the initial conditions are altered, even slightly, the behavior of the system

radically changes. Chaos synchronization is a technique by which the behavior of the

chaotic system at different initial conditions is synchronized, i.e., irrespective of the ini-

tial conditions of the system, the behavior of the system, after synchronization, does not

change. The implication of this is that the core feature of chaos, which is sensitivity to

initial conditions, is nullified.

We consider a chaotic system-known as the drive system, which we operate at one

set of initial conditions. We then consider an identical system to the drive system-known

66
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as the response system, which we operate at a different set of initial conditions. In the

absence of a controller, the behavior of the drive and response systems after some period

of time, will diverge due to the property of chaotic systems, i.e., sensitivity to initial

conditions. The central idea of synchronization is to design a controller such that the re-

sponse system asymptotically tracks the drive system. This means the behavior of both

the systems will converge, thus nullifying the property of sensitivity to initial conditions.

The chaos synchronization approach is conceptual. More work needs to be done to

implement this on a physical system and such an implementation or its details (real-

time, measurement of states and its relationship to the actual variables of the rotating

link, output of the controller etc.) is outside the scope of this work. To describe chaos

synchronization conceptually, consider

Ẋd = f(Xd) Drive System

Ẋr = f(Xr) + U Response System (4.1)

where Xd, Xr are the vectors of state variables of the drive and response systems

respectively, while U is the vector of controllers. The idea of chaos synchronization is

to design U such that Xr tracks Xd and the error between the two goes to zero. To

implement the controller, we follow the scheme as shown in Figure 4.1.

Figure 4.1: Schematic of Controller for Chaos Synchronization

In figure 4.1, the inputs are the vectors of initial conditions Xd(0), Xr(0) of the drive

and response systems respectively. The difference between the two will be the initial

error vector E(0). The initial error vector and the initial response vector will be used to

compute the control law U . The control law is then substituted into the second part of

equation (4.1), which in turn is integrated to calculate the response vector Xr(t). The

drive vector Xd(t) is computed by integrating the first part of equation (4.1). Now the

error vector is computed as E = Xd(t) −Xr(t). This error is resubstituted to compute

the control law U .
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A number of approaches for chaos synchronization already exist in literature and

were presented in Chapter 1. Apart from those mentioned in Chapter 1, global chaos

synchronization was studied using sliding mode control [109, 110] on the Li-Wu and the

Zhu systems, respectively. Chaos Synchronization of chaotic chua system with cubic

nonlinearity in complex coupled networks [111] and modified projective synchronization

of different order chaotic systems with adaptive scaling factor [112] were also studied.

In this Chapter, we perform the chaos synchronization of the equations of a flexible

rotating link studied in the previous Chapter. In Chapter 3, we studied the chaotic

dynamics of a flexible link modeled as a beam, which for practical purposes, we considered

as representing a rotating power generating wind turbine blade. We then derived (using

MMS) four first-order autonomous slow flow equations (equation (3.27)). In this Chapter,

we reintroduce those equations and explain the nature of chaos in those those equations.

Then we develop an active nonlinear control scheme, using Lyapunov stability theory, to

synchronize the chaotic slow flow equations represented by equation (3.27).

4.1 Chaos Synchronization of a rotating flexible link

The slow flow equations (3.27) of the flexible rotating link developed in Chapter 3 using

MMS are given by

ẋ = −α

2
x− σ1y + 2J32xy + 2J31

yw

z2 + w2

ẏ = −α

2
y + σ1x− J2(z

2 + w2)− 2J32x
2 − 2J31

xw

z2 + w2
(4.2)

ż = −J3dz − σ2w + J31 + J32(xw − yz)

ẇ = −J3dw + σ2z − J32(yw + xz)

The above equations are chaotic as demonstrated in Chapter 3 and owing to the

property of chaotic systems of being sensitive to initial conditions, that prediction of

state output of equation (4.2) is nearly impossible after some time. Our task is to

construct a controller to ensure that irrespective of the particular initial conditions, the

system given by equation (4.2) gives a predictable output, i.e., the behavior of the state

output remains the same. We attempt to do this by constructing a nonlinear controller
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using Lyapunov stability theory. First we construct the drive and response systems, as

described in the first part of this Chapter, identical to equation (4.2). The drive and the

response systems are given by

ẋd = −αxd

2
− σ1yd + 2J32xdyd + 2J31

ydwd

zd2 + wd
2

ẏd = −αyd
2

+ σ1xd − J2(zd
2 + wd

2)− 2J32xd
2 − 2J31

xdwd

zd2 + wd
2

(4.3)

żd = −J3dzd − σ2wd + J31 + J32(xdwd − ydzd)

ẇd = −J3dwd + σ2zd − J32(ydwd + xdzd)

and

ẋr = −αxr

2
− σ1yr + 2J32xryr + 2J31

yrwr

zr2 + wr
2
+ u1

ẏr = −αyr
2

+ σ1xr − J2(zr
2 + wr

2)− 2J32xr
2 − 2J31

xrwr

zr2 + wr
2
+ u2 (4.4)

żr = −J3dzr − σ2wr + J31 + J32(xrwr − yrzr) + u3

ẇr = −J3dwr + σ2zr − J32(yrwr + xrzr) + u4

where the lower subscript d and r stand for drive and response system respectively, and

ui, i = 1, 2, 3, 4 are the control which synchronizes the two chaotic systems. The two

systems given by equations (4.3, 4.4) shall be operated at different initial conditions,

hence producing different state outputs both of which are unpredictable owing to their

chaotic nature. Under active control (ui), if the error between the drive and response

systems given by equation (4.3) and equation (4.4) respectively, goes to zero, then the

two systems stand synchronized and our goal shall be deemed to have been achieved.

For that, we consider the error between the equations of the drive and response systems

as

ė1 = −αe1
2

− σ1e2 + 2J32(xre2 + yre1 − e1e2) + 2J31
yrwr

zr2 + wr
2

− 2J31
(yr − e2)(wr − e4)

(zr − e3)2 + (wr − e4)2
+ u1

ė2 = −αe2
2

+ σ1e1 − J2(e3(2zr − e3) + e4(2wr − e4))

− 2J32(e1(2xr − e1))− 2J31
xrwr

zr2 + wr
2
+ 2J31

(xr − e1)(wr − e4)

(zr − e3)2 + (wr − e4)2
+ u2
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ė3 = −J3de3 − σ2e4 + J31 (4.5)

+ J32(xre4 + wre1 − e1e4 − yre3 − zre2 + e2e3) + u3

ė4 = −J3de4 + σ2e3 − J32(xre3 + zre1 − e1e3 + yre4 + wre2 − e2e4) + u4

where e1 = xr−xd, e2 = yr−yd, e3 = zr−zd and e4 = wr−wd represent the errors of the

four state variables of the drive and response systems respectively. If these error states go

asymptotically to zero, then the drive and the response system will be synchronized. For

this end, we must propose the use of a control input u = [u1, u2, u3, u4]
T which makes the

error states asymptotically go to zero. Using the Lyapunov second method for stability,

consider the candidate Lyapunov function

V = (1/2)(e1
2 + e2

2 + e3
2 + e4

2) (4.6)

The differential of the Lyapunov function along the trajectory of the system is

V̇ = e1ė1 + e2ė2 + e3ė3 + e4ė4 (4.7)

Substituting equation (4.5) in equation (4.7), we get

V̇ = −α

2
e1

2 − α

2
e2

2 − J3de3
2 − J3de4

2

+ J32(yr(2e1
2 − e3

2 − e4
2)− 2xre1e2) + (J32 + J2)e2(e3

2 + e4
2)

− zr(e2e3(J32 + J2) + J32e1e4) + wr(e1e3J32 − (J32 + J2)e2e4) (4.8)

+ 2J31(xre2 − yre1)Q1 + u1e1 + u2e2 + u3e3 + u4e4

For asymptotic stability according to the Lyapunov second method, we must have

V > 0 and V̇ < 0. It can be seen from equation (4.6) that V > 0. To ensure V̇ < 0, the

control input u = [u1, u2, u3, u4]
T in equation (4.8) must be designed accordingly. Hence,

we propose the following control law,

u1 =
(α
2
− 1

)
e1 + J32(2e2xr − 2e1yr + e4zr − e3wr) + 2J31yrQ1

u2 =
(α
2
− 1

)
e2 − (J32 + J2)(e3

2 + e4
2)

+ (J32 + 2J2)(e3zr + e4wr)− 2J31xrQ1 (4.9)

u3 = (J3d − 1)e3 + J32yre3, u4 = (J3d − 1)e4 + J32yre4
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where

Q1 =

(
wr − e4

(zr − e3)2 + (wr − e4)2
− wr

(zr)2 + (wr)2

)
(4.10)

Substituting (4.9) into (4.8), we have

V̇ = −e1
2 − e2

2 − e3
2 − e4

2 < 0 (4.11)

and we can obtain asymptotic stability in the sense of Lyapunov.

The above analysis shows that the chaotic systems (4.3) and (4.4) are synchronized

for any initial conditions with the use of the control law (4.9). In the next section, we

present numerical simulation results illustrating synchronization.

4.2 Numerical Simulation

In this section we verify the effectiveness of the control law proposed in section 4.1. We

numerically simulate equations (4.3), (4.4), and (4.5) from section 4.1. To perform the

numerical simulation, we use the parameters given in Table 3.1 for the power generating

wind turbine blade. All simulations are done in MATLAB 2012Rb [17] and ode15s solver

was used to solve the differential equations. The relative and absolute tolerances were

kept at 10−6 and 10−9 respectively. We verified that the results converged to those pre-

sented in this section for lower values of tolerances. For both the undamped and damped

slow flow equations, we have used Ug = 50 in the numerical simulations.

For numerical simulations in this section, we use the MATLAB command randi to

generate random initial conditions and consider these as the initial conditions for the

drive system given by equation (4.3). Since equation (4.3) is chaotic (sensitive to initial

conditions) for particular values of system parameter Ug, we slightly perturb the above

initial conditions, and consider them as the initial conditions for the response system

given by equation (4.4).

(xd(0), yd(0), zd(0), wd(0)) = (−0.3538,−1.5771, 0.2820,−1.3337) Drive System (4.12)

(xr(0), yr(0), zr(0), wr(0)) = (−0.34,−1.5771, 0.2820,−1.3337) Response System
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Using the above initial conditions, we plot the time responses of the damped slow flow

equations for two state variables (x, y) of the drive and response systems with and with-

out control (figure 4.2).

(a) xd(t) vs xr(t) without control (b) xd(t) vs xr(t) with control

(c) yd(t) vs yr(t) without control (d) yd(t) vs yr(t) with control

Figure 4.2: Magnified image of time series of state variables (x, y) of the damped slow
flow equations with and without control

The figures have been magnified for clarity with the solid lines representing the drive

system, whereas the dashed lines represent the response system. As seen from the fig-

ure 4.2, the motions of response system and the drive system are different when no

controller is present and there is divergence in the drive and response systems. Whereas

in the presence of the controller, the response system asymptotically tracks the drive

system – the dashed lines are not visible as they lie on top of the solid lines imply-

ingg asymptotic tracking of the response system with the drive system. The asymptotic

tracking is more evident in figures (4.3, 4.4) where the error, given in equations (4.5),

between the drive and response system is plotted for the damped and undamped equa-

tions respectively. It can be clearly seen that the controller drives the error to zero.
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(a) e1(t) vs time (without control) (b) e1(t) vs time (with control)

(c) e2(t) vs time (without control) (d) e2(t) vs time (with control)

(e) e3(t) vs time (without control) (f) e3(t) vs time (with control)

(g) e4(t) vs time (without control) (h) e4(t) vs time (with control)

Figure 4.3: Plots of the error of the damped slow flow equations with respect to time
with and without control
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(a) e1(t) vs time (without control) (b) e1(t) vs time (with control)

(c) e2(t) vs time (without control) (d) e2(t) vs time (with control)

(e) e3(t) vs time (without control) (f) e3(t) vs time (with control)

(g) e4(t) vs time (without control) (h) e4(t) vs time (with control)

Figure 4.4: Plots of the error of the undamped slow flow equations with respect to time
with and without control
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Observations

From the results presented, it can be observed that the control law given by equation (4.9)

is successful in forcing the response system (equation (4.4)) to track the drive system

(equation (4.3)). The error state variables given by equation (4.5) are plotted with and

without the use of the controller. Figures (4.3, 4.4) show the plots of the damped and

undamped slow flow equations with and without control. It can be observed that in

the absence of the controller, the errors are large, whereas in the presence of the con-

troller the errors asymptotically go to zero. Thus the response system with the controller

asymptotically tracks the drive system and chaos synchronization has been achieved.

It is interesting to observe that for the damped slow flow equations, the errors e3(t)

and e4(t) (related to z(t) and w(t)) go to zero even without the controller (see figure 4.3

(e) and (g)). This can be more clearly seen from the phase plots for the damped slow

flow equations (shown in Chapter 3) where we can see that the state variables z and w go

to zero in both the chaotic case and the non-chaotic case. Figure 4.5 shows illustration

of this, where irrespective of the chaoticity, the two state variables z, w tend to zero –

the spiral trajectory in the z − w plane can be clearly seen in figure 4.5.

(a) Ug = 400 – non-chaotic case (b) Ug = 100 – chaotic case

Figure 4.5: Phase plots for the damped slow flow equations
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4.3 Concluding Remarks

In this Chapter, we investigate the synchronization of chaos in a flexible rotating beam,

whose equations were developed in Chapter 3. A nonlinear control law for asymptotic

chaos synchronization was proposed. The nonlinear control law is derived using Lya-

punov stability theory and numerical simulations demonstrated the effectiveness of the

control law with the response system asymptotically tracking the drive system.



Chapter 5

Conclusions and Future Work

5.1 Conclusions

In this Chapter, we summarize the work presented in this thesis and present some of the

scope for future work in this research area.

The two problems studied in this thesis had a common theme binding them, i.e., the

presence of chaotic motion in their governing equations. The study of chaotic equations

has had a long history with several interesting problems. One such problem was con-

sidered in Chapter 2, with the demonstration of the ranges of parameter gain values of

asymptotic stability of a 2R planar robot driven by PD and model based control (absence

of chaos implies asymptotic stability). Results in literature had demonstrated a numer-

ical way of deriving such ranges of parameter gains. In Chapter 2, we demonstrated an

analytical approach of deriving such ranges using the Routh-Hurwitz criterion. Numeri-

cal simulations were done to compute these ranges which are also known as chaos maps.

The asymptotically stable regions of parameter gains were examined with variation in

the forcing frequency (in the case of PD control), whereas they were examined with re-

spect to the model mismatch parameter in the case of model based control. The results

verified the numerical approaches used in literature.

In Chapter 3, we demonstrated the chaotic motion of a one link flexible beam, whose

equations were derived from a finite element model of the beam. We considered a single

element in the modeling. We also found out various values of parameter Ug (characteristic
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velocity associated with bending) for which the equations show chaos. We assumed the

equations represented a model of a power generating wind turbine blade with uniform

circular cross section. Numerical simulations verified the existence of chaotic motion.

The flexible beam, however showed two different types of chaotic motion depending

upon whether damping (in the form of Rayleigh damping) was present or absent. If

damping was present, the beam system became dissipative in nature and the motion

of the beam wound up on an attractor. In the absence of damping, the beam system

showed conservation of volume in state space and the route to chaos was by the breaking

up to tori due to the chaotic mixing of nonlinear resonances.

In Chapter 4, we demonstrated the synchronization of chaotic motion of the equa-

tions of the flexible beam developed in Chapter 3. To this effect, we used active nonlinear

control and Lyapunov stability theory. The use of active nonlinear control is justified by

its simplicity of usage. Numerical simulations verified the control law proposed for chaos

synchronization.

The core method used in the two problems solved in this thesis is the method of

multiple scales. The problems were shown to be bounded by using the method of multiple

scales, which was represented by the presence of solvability conditions as a result of

performing the analysis at various time scales. The method of multiple scales (MMS) is

useful for two reasons:

• Numerical integration at slower time scales is faster than that of the full original

system of equations. Studies of the effects of various parameters on the system can

be conducted more effectively and extensively.

• MMS converts equations that are non-autonomous (forced equations given by the

equations of both the system we considered in the thesis) into autonomous equa-

tions (solvability conditions or slow flow equations), making it easier to analyze.

The full range of engineering problem solvable by MMS is yet to be seen. We close by

the concluding remark that there exists a variety of problems yet to be explored and

solved by classical method of multiple scales.



Chapter 5. Conclusions and Future Work 79

5.2 Scope for Future Work

In Chapter 2, we derived an analytical approach for testing the asymptotic stability of a

2R planar robot for trajectory tracking. In the analytical procedure, the Routh-Hurwitz

criterion was used, according to which if the co-efficients of the characteristic equation

derived from the jacobian of the slow flow equations (see Chapter 2) satisfied particular

conditions, then the 2R robot system was asymptotically stable. However the success

was only partial. This is due to the fact that if any of the co-efficients were zero, then

asymptotic stability was indeterminate. This means that although we could determine

ranges of asymptotic stability at some values of parameter gains, the ranges where the

Routh-Hurwitz criterion did not show asymptotic stability could not be concluded as

asymptotically unstable – they could also be indeterminate. We resolved the indeter-

minacy, but we used a numerical approach for doing so. One problem for the future

work could be to attempt find a complete analytical procedure for deriving such ranges

of asymptotic stability.

In Chapter 3, we studied chaotic motions in a rotating flexible beam. We assumed

that the equations of the beam represented a model of a power generating wind turbine

blade with uniform circular cross section. It is not clear if the same method used for

studying the beam’s dynamics is applicable for models where the cross-section is not uni-

form. We also considered the beam to be a single element in the finite element model used

to derive the beam’s equations. The applicability of the method where the model con-

sists of more than one element in the finite element model is possible area of future work.

In Chapter 4, we developed an active nonlinear controller using Lyapunov stability

theory for synchronization the chaotic slow flow equations of the flexible beam developed

in Chapter 3. Such control procedures are used for their simplicity and the same method

has been used in literature of chaos synchronization for many systems. However, these

exists almost no method of unified chaos synchronization of any system, let alone a

class of systems. The only proposal so far known was given by Wu et al. [114] where

the authors demonstrated chaos synchronization for a class of unified Lorenz systems.

However, its applicability to a system of higher dimension in not known and could be

one problem for the future work.



Appendix A

Derivation of equations (2.24)

In section 2.3, we performed a multiple scales analysis on the equations of a 2R planar

robot. At order ϵ, two equations, given by equations (2.23) were obtained. The solution

to those equations was given by equation (2.24). This section presents the derivation of

equation (2.24).

From equation (2.23), we get a system of coupled differential equations with constant

coefficients whose solutions can be obtained by letting

θ10 = c1e
iωT0 , θ20 = c2e

iωT0 (A-1)

Substituting equation (A-1) into equation (2.23), we get

[(Kpn − (P1 + 1 + P2 + 2P2P3)ω
2)c1 − (1 + P2P3)ω

2c2]e
iωT0 =

Af1((iE1 + E2)e
iT0 + (−iE1 + E2)e

−iT0) (A-2)

[−(1 + P2P3)ω
2c1 + (Kpn − ω2)c2]e

iωT0 = Af2((iE1 + E2)e
iT0 + (−iE1 + E2)e

−iT0)

In equation (A-2), the left-hand side is a multiple of eiωT0 , whereas the right-hand side

is a multiple of eiT0 . To compute the solution of equation (A-2), we first equate terms

proportional to eiωT0 (by putting the right-hand side to zero) and compute c1 and c2.

Then we put ω = 1 and recompute the values of c1 and c2 by equating terms proportional

to eiT0 . Putting the right-hand side equal to zero, we get

[(Kpn − (P1 + 1 + P2 + 2P2P3)ω
2)c1 − (1 + P2P3)ω

2c2]e
iωT0 = 0
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[−(1 + P2P3)ω
2c1 + (Kpn − ω2)c2]e

iωT0 = 0 (A-3)

For a non-trivial solution, the determinant matrix must be zero, i.e., we have∣∣∣∣∣ Kpn − (P1 + 1 + P2 + 2P2P3)ω
2 −(1 + P2P3)ω

2

−(1 + P2P3)ω
2 Kpn − ω2

∣∣∣∣∣ = 0 (A-4)

The values of ω thus calculated are,

ω1 =

√
Kpn(Lq2 +

√
Lq1)

2Lq3

, ω2 =

√
Kpn(Lq2 −

√
Lq1)

2Lq3

(A-5)

where

Lq1 = 4 + 8P2P3 + 4P1P2P3 + (P1 + P2)
2 + 4P 2

2P3 + 8P 2
2P

2
3

Lq2 = 2 + P1 + P2 + 2P2P3 (A-6)

Lq3 = P1 + P2 − P22P 2
3

Substituting the values of ω in the second equation in (A-3), we have

When ω = ω1, c11 = 1, c21 =
Kpn − ω2

1

(1 + P2P3)ω2
1

When ω = ω2, c12 = 1, c22 =
Kpn − ω2

2

(1 + P2P3)ω2
2

(A-7)

The general solution of equation (2.13) can be written as,[
θ10

θ20

]
= A1e

iω1T0

[
c11

c21

]
+ A2e

iω2T0

[
c12

c22

]
(A-8)

Now, in equation (A-2), we substitute ω = 1 and equate terms proportional to eiT0 . We

get [
Kpn − (P1 + 1 + P2 + 2P2P3) −(1 + P2P3)

−(1 + P2P3) Kpn − 1

][
c1

c2

]
=[

Af1((iE1 + E2)e
iT0 + (−iE1 + E2)e

−iT0)

Af2((iE1 + E2)e
iT0 + (−iE1 + E2)e

−iT0)

]
(A-9)
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Solving for c1 and c2, we get

c1 = F1(iE1 + E2)e
iT0 + F1(−iE1 + E2)e

−iT0

c2 = F2(iE1 + E2)e
iT0 + F2(−iE1 + E2)e

−iT0 (A-10)

where

F1 =
(Kpn − 1)Af1 + (1 + P2P3)Af2

Ef

F2 =
(1 + P2P3)Af1 + (Kpn − (P1 + 1 + P2 + 2P2P3))Af2

Ef

(A-11)

Ef = (Kpn − 1)(Kpn − (P1 + 1 + P2 + 2P2P3))− (1 + P2P3)
2

Combining equation (A-8) and (A-10), we get

θ10 = A1e
iω1T0 + A2e

iω2T0 + F1(iE1 + E2)e
iT0 + F1(−iE1 + E2)e−iT0 + c.c. (A-12)

θ20 = c21A1e
iω1T0 + c22A2e

iω2T0 + F2(iE1 + E2)e
iT0 + F2(−iE1 + E2)e−iT0 + c.c.

The equation (A-12) is identical to the equation (2.24) in section 2.3.

Terms in equation (2.34)

R11 = −2(P1 + 1 + P2 + 2P2P3 + (1 + P2P3)c21), R121 = −Kvnω1

R122 = −P2P3F
2
2ω

2
1(2 + c21)(E

2
2 + E2

1), R124 = −P2P3c
2
22ω

2
1(2 + c21)

R123 =
−P2P3c

2
21ω

2
1(2 + c21)

2
, R14 =

−3P2P3F
2
2 (2F1 + F2)

2

R13 = −P2P3(ω2 + 2)

(
F 2
2 (2 + c22)ω2

2
+ c22F2(2F1 + F2)

)
S11 = −2(P1 + 1 + P2 + 2P2P3 + (1 + P2P3)c22), S121 = −Kvnω2

S122 = −P2P3F
2
2ω

2
2(2 + c22)(E

2
2 + E2

1), S123 = −P2P3c
2
21ω

2
2(2 + c22)

S13 = P2P3(ω1 − 2)

(
−F 2

2 (2 + c21)ω1

2
+ c21F2(2F1 + F2)

)
R21 = −2(1 + P2P3 + c21), R221 = −Kvnω1c21, S124 =

−P2P3c
2
22ω

2
2(2 + c22)

2
(A-13)

R223 =
−P2P3c21ω

2
1(2 + 3c21)

2
, R24 =

−P2P3F1F2(2F1 − F2)

2
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R222 = −P2P3(E
2
2 + E2

1)(c21F1(2F1 + F2) + F2(c21F1 + F2ω
2
1))

R224 = −P2P3(c21ω
2
2(2 + c22) + c22(c21ω

2
2 + c22ω

2
1))

R23 = P2P3

(
F1c22(2F1 − F2)

2
+ F2(2F1ω2 −

c22F1 + F2ω
2
2

2
)

)
S21 = −2(1 + P2P3 + c22), S221 = −Kvnω2c22, S224 =

−P2P3c22ω
2
2(2 + 3c22)

2

S222 = −P2P3(E
2
2 + E2

1)(c22F1(2F1 + F2) + F2(c22F1 + F2ω
2
2))

S223 = −P2P3(c22ω
2
1(2 + c21) + c21(c21ω

2
2 + c22ω

2
1))

S23 = P2P3

(
F1c21(2F1 − F2)

2
+ F2(−2F1ω1 −

c21F1 + F2ω
2
1

2
)

)

Terms in equations (2.39, 2.40)

L11 = R11(Kpn − ω2
1) +R21(1 + P2P3)ω

2
1, L13 = R13(Kpn − ω2

1) +R23(1 + P2P3)ω
2
1

L121 = R121(Kpn − ω2
1) +R221(1 + P2P3)ω

2
1

L122 = R122(Kpn − ω2
1) +R222(1 + P2P3)ω

2
1

L123 = R123(Kpn − ω2
1) +R223(1 + P2P3)ω

2
1

L124 = R124(Kpn − ω2
1) +R224(1 + P2P3)ω

2
1

L14 = R14(Kpn − ω2
1) +R24(1 + P2P3)ω

2
1

L21 = S11(Kpn − ω2
2) + S21(1 + P2P3)ω

2
2, L23 = S13(Kpn − ω2

2) + S23(1 + P2P3)ω
2
2

L221 = S121(Kpn − ω2
2) + S221(1 + P2P3)ω

2
2

L222 = S122(Kpn − ω2
2) + S222(1 + P2P3)ω

2
2 (A-14)

L223 = S123(Kpn − ω2
2) + S223(1 + P2P3)ω

2
2

L224 = S124(Kpn − ω2
2) + S224(1 + P2P3)ω

2
2

J121 =
L121

ω1L11

, J122 =
L122

ω1L11

, J123 =
L123

ω1L11

, J124 =
L124

ω1L11

, J13 =
L13

ω1L11

, J14 =
L14

ω1L11

J221 =
L221

ω2L21

, J222 =
L222

ω2L21

, J223 =
L223

ω2L21

, J224 =
L224

ω2L21

, J23 =
L23

ω2L21

Terms in equations (2.44)

Considering the following terms

D11 = Kpnα3 − ω2
1, D12 = (1 + P2P3)ω

2
1 −Kpn(α3 + α2), E1 =

1−Kpn

2



Appendix A. 84

D21 = Kpnα3 − ω2
2, D22 = (1 + P2P3)ω

2
2 −Kpn(α3 + α2), E2 =

Kvn

2

we have

Ja1 = 2J13E1E2 − J15E2, Ja2 = J13(E
2
2 − E2

1) + J15E1

Ja3 = J14E1(3E
2
2 − E2

1)− J16(E
2
2 − E2

1), Ja4 = J14E2(E
2
2 − 3E2

1) + 2J16E1E2

Ja5 = 2J23E1E2 − J25E2, Ja6 = J23(E
2
2 − E2

1) + J25E1

where

J12k =
L12k

ω1L11

∀k = 1, 2, 3, 4, J1k =
L1k

ω1L11

∀k = 3, 4, 5, 6

J22k =
L22k

ω2L21

∀k = 1, 2, 3, 4, J2k =
L2k

ω2L21

∀k = 3, 5

where

ω1 =

√
Kpn(Lq1 +

√
Lq2)

Lq3

, ω2 =

√
Kpn(Lq1 −

√
Lq2)

Lq3

where Lq1 = α1 + α3(P1 + P2 − 1)− 2P2P3α2, Lq3 = P1 + P2 − P 2
2P

2
3

Lq3 = P 2
1α

2
34P1P2P3α2α3 − 2P1P2α

2
3 − 2P1α1α3 + 4P1α

2
2 + 2P1α

2
3 + 4P 2

2P
2
3α1α3

− 4P 2
2P

2
3α

2
3 − 4P 2

2P3α2α3 + P 2
2α

2
3 − 4P2P3α1α2 + 4P2P3α2α3 − 2P2α1α3 + 4P2α

2
2

+ 2P2α
2
3 + α2

1 − 2α1α3 + α2
3

and L1k = Q1kD11 +Q2kD12 ∀k = 1, 3, 4, 5, 6, L2k = R1kD21 +R2kD22 ∀k = 1, 3, 5

L12k = Q12kD11 +Q22kD12, L22k = R12kD21 +R22kD22 ∀k = 1, 2, 3, 4

where

Q11 = −2(P1 + 1 + P2 + 2P2P3 + C21(1 + P2P3)), Q15 = α2(2Af1 + Af2)E1C22F2

Q121 = −Kvnω1(α1 + (2 + C21)α2 + C21α3), R121 = −Kvnω2(α1 + (2 + C22)α2 + C22α3)

Q14 = F 2
2 (2F1 + F2)

(
α2(2 +Kpn)− 3P2P3

2

)
, Q16 = α2(2Af1 + Af2)E1

F 2
2

2

Q122 = (E2
2 + E2

1)(P2P3(−F 2
2ω

2
1(2 + C21)− 2C21F2(2F1 + F2))

+ (P2P3 − α2)(2C21F2(2F1 + F2)))− 2α2C21E
2
1F2(2Af1 + Af2)
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+Kpnα2(2F
2
2 (2 + C21) + 4C21F2(2F1 + F2))

(
E2

2 + E2
1

2

)
Q123 = P2P3

(
−3C2

21ω
2
1(2 + C21)

2

)
+ (P2P3 − α2)(C

2
21ω

2
1(2 + C21))

+Kpnα2

(
3C2

21(2 + C21)

2

)
, Q124 = −P2P3C

2
22ω

2
1(2 + C21)− 2α2C21C22ω

2
2(2 + C22)

+Kpnα2

(
2C2

22(2 + C21) + 4C21C22(2 + C22)

2

)
, Q15 = α2(2Af1 + Af2)E1C22F2

R11 = −2(P1 + 1 + P2 + 2P2P3 + C22(1 + P2P3)), R15 = α2(2Af1 + Af2)E1C21F2

R122 = (E2
2 + E2

1)(P2P3(−F 2
2ω

2
2(2 + C22)− 2C22F2(2F1 + F2))

+ (P2P3 − α2)(2C22F2(2F1 + F2)))− 2α2C22E
2
1F2(2Af1 + Af2)

+Kpnα2(2F
2
2 (2 + C22) + 4C22F2(2F1 + F2))

(
E2

2 + E2
1

2

)
R124 = P2P3

(
−3C2

22ω
2
2(2 + C22)

2

)
+ (P2P3 − α2)(C

2
22ω

2
2(2 + C22))

+Kpnα2

(
3C2

22(2 + C22)

2

)
, R123 = −P2P3C

2
21ω

2
2(2 + C22)− 2α2C21C22ω

2
1(2 + C21)

+Kpnα2

(
2C2

21(2 + C22) + 4C21C22(2 + C21)

2

)
Q13 = −P2P3

(
F 2
2ω

2
2(2 + C22)

2
+ C22F2(2F1 + F2)

)
− (P2P3 − α2)(F

2
2ω2(2 + C22) + (ω2 + 1)C22F2(2F1 + F2))

+Kpnα2F2

(
F2(2 + C22) + 2C22(2F1 + F2)

2

)
, Q21 = −2(1 + P2P3 + C21)

R13 = −P2P3

(
F 2
2ω

2
1(2 + C21)

2
+ C21F2(2F1 + F2)

)
+ (P2P3 − α2)(F

2
2ω1(2 + C21) + (ω1 − 1)C21F2(2F1 + F2))

+Kpnα2F2

(
F2(2 + C21) + 2C21(2F1 + F2)

2

)
, R21 = −2(1 + P2P3 + C22)

Q25 = α2Af1E1C22F2, R25 = α2Af1E1C21F2, Q26 = α2Af1E1
F 2
2

2

Q221 = −Kvnω1(α3 + α2 + C21α3), R221 = −Kvnω2(α3 + α2 + C22α3)

Q222 = −2α2C21E
2
1F2Af1 + (−P2P3(F

2
2ω

2
1 − 2C21F1F2) +

Kpnα2

2
(2F 2

2 + 4C21F1F2)

+ 2(α2 − P2P3)C21F
2
1 )(E

2
2 + E2

1), R222 = (
Kpnα2

2
(2F 2

2 + 4C22F1F2)

− P2P3(F
2
2ω

2
2 − 2C22F1F2) + 2(α2 − P2P3)C22F

2
1 )(E

2
2 + E2

1)− 2α2C22E
2
1F2Af1
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Q223 = −3P2P3C
2
21

ω2
1

2
+ (α2 − P2P3)C21ω

2
1 + 3Kpnα2

C2
21

2

Q24 =
F1F2

2
(F1(P2P3 − 2α2) + F2Kpnα2)

Q224 = Kpnα2C22(C22 + 2C21)− P2P3(C
2
22ω

2
1 + 2C21C22ω

2
2)− 2(α2 − P2P3)C21ω

2
2

R223 = Kpnα2C21(C21 + 2C22)− P2P3(C
2
21ω

2
2 + 2C21C22ω

2
1)− 2(α2 − P2P3)C22ω

2
1

R224 = −3P2P3C
2
22

ω2
2

2
+ (α2 − P2P3)C22ω

2
2 + 3Kpnα2

C2
22

2

where

C21 =
ω2
1(1 + P2P3)−Kpn(α3 + α2)

(Kpnα3 − ω2
1)

, C22 =
ω2
2(1 + P2P3)−Kpn(α3 + α2)

(Kpnα3 − ω2
2)

F1 =
1

Ef

((Kpnα3 − 1)(Af1α1 + Af2α3 + α2(2Af1 + Af2))

+ (1 + P2P3 −Kpn(α3 + α2))(Af1(α3 + α2) + Af2α3))

F2 =
1

Ef

((1 + P2P3 −Kpn(α3 + α2))(Af1α1 + Af2α3 + α2(2Af1 + Af2))

+ (Kpn(α1 + 2α2)− (P1 + 1 + P2 + 2P2P3))(Af1(α3 + α2) + Af2α3))

where

Ef = (Kpnα3 − 1)(Kpn(α1 + 2α2)− (P1 + 1 + P2 + 2P2P3))

− (1 + P2P3 −Kpn(α3 + α2))
2

Non-dimensional parameters Kpn and Kvn are

Kpn =
Kp

Ω2
, Kvn =

Kv

Ω
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The description of the terms given in equation (3.8) is presented in this section. It may

be noted that all terms have been computed symbolically using Maple [113].

Table B.1: Description of terms in the equation (3.8)

Term Description

[Qf ]4×1 Vector of flexible nodal variables U2, V2, ϕ2

[Q]4×1 Vector of all variables θ1, U2, V2, ϕ2

[τ ]4×1 Vector of input torques [Γ, 0, 0, 0]T

ρ Density of the Material (kg/m3)
A Area of cross-section (m2)
L Length of the beam element (m)
E Modulus of elasticity of beam element (GPa)
I Polar moment of inertia of beam element (m4)
Ua Speed of sound through the material (m/s)
Ug Velocity associated with transverse vibration (m/s)

[M ]4×4 System mass matrix
[K]4×4 Conventional Stiffness matrix
[∆K]4×4 Geometric Stiffness matrix
[H]4×1 Vector of coriolis and centripetal terms

Elements of the mass matrix

In this section, we present the detailed mass matrix, conventional and geometric stiff-

ness matrix and the centrifugal and coriolis effects in their nondimensional form for the

rotating flexible link given in figure 3.1. The mass and stiffness matrices are symmetric

and hence only the upper triangular part is presented.
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M(1, 1) =
1

3
+

2

3
U2 +

1

3
U2
2 +

13

35
V 2
2 − 11

105
V2ϕ2 +

1

105
ϕ2
2

M(1, 2) = − 7

20
V2 +

1

20
ϕ2

M(1, 3) =
7

20
+

7

20
U2

M(1, 4) = − 1

20
− 1

20
U2

M(2, 2) =
1

3

M(2, 3) = 0

M(2, 4) = 0

M(3, 3) =
13

35

M(3, 4) = − 11

210

M(4, 4) =
1

105

Conventional stiffness matrix

[
K
]
=


0 0 0 0

0 0 0 0

0 0 12 −6

0 0 −6 4


Geometric stiffness matrix

The non-zero elements of the symmetric geometric stiffness matrix are

∆K(2, 2) =
U2
a

U2
g

, ∆K(2, 3) =
U2
a

U2
g

(
3

5
V2 −

1

20
ϕ2

)
∆K(2, 4) =

U2
a

U2
g

(
− 1

20
V2 +

1

25
ϕ2

)
, ∆K(3, 3) =

U2
a

U2
g

(
3

5
U2

)
∆K(3, 4) = −U2

a

U2
g

(
1

20
U2

)
, ∆K(4, 4) =

U2
a

U2
g

(
1

15
U2

)
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Nonlinear terms due to centrifugal and Coriolis effects

H(1, 1) =
2

3
U̇2θ̇1

H(1, 2) = − 7

10
V̇2θ̇1 −

1

3
θ̇1

2

H(1, 3) =
7

10
U̇2θ̇1 −

13

35
V2θ̇1

2

H(1, 4) = − 1

10
U̇2θ̇1 +

11

210
V2θ̇1

2

Derivation of equations (3.12)

In Chapter 4, we performed a multiple scales analysis of the rotating link. At order ϵ,

four equations, given by equations (3.11) were obtained. The solution to those equations

was given by equation (3.12). This section presents the derivation of this set of equations.

From equation (3.11), we get a system of coupled differential equations with constant

coefficients whose solutions can be obtained by letting

θ10 = c1e
iωT0 , U20 = c2e

iωT0 , V20 = c3e
iωT0 , ϕ20 = c4e

iωT0 (B-1)

Substituting (B-1) into (3.11), we get

− 1

3
ω2c1 −

7

20
ω2c3 +

1

20
ω2c4 = 0(

U2
a

U2
g

− ω2

3

)
c2 = 0 (B-2)

− 7

20
ω2c1 +

(
12− 13

35
ω2

)
c3 +

(
11

210
ω2 − 6

)
c4 = 0

1

20
ω2c1 +

(
11

210
ω2 − 6

)
c3 +

(
4− 1

105
ω2

)
c4 = 0
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For a non-trivial solution, the determinant matrix must be zero, i.e.,∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−1

3
ω2 0 − 7

20
ω2 1

20
ω2

0
U2
a

U2
g

− ω2

3
0 0

− 7

20
ω2 0

(
12− 13

35
ω2

) (
11

210
ω2 − 6

)
1

20
ω2 0

(
11

210
ω2 − 6

) (
4− 1

105
ω2

)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0 (B-3)

The values of ω thus calculated are,

ω1 = 0, ω2 =

√
3Ua

Ug

, ω3 = 70.0871, ω4 = 17.5444 (B-4)

Substituting the values of ω in equation (3.11), we have

When ω = ω1, c11 = c21 = c31 = c41 = 0 (B-5)

When ω = ω2, c12 = c32 = c42 = 0, c22 = 1 (B-6)

When ω = ω3, c13 = 1, c23 = 0, c33 = −0.8222,

c34 = 0.9112 (B-7)

When ω = ω4, c41 = 1, c42 = 0, c43 = −1.2789,

c44 = −2.2856 (B-8)

The general solution of equation (3.11) can be written as,
θ10

U20

V20

ϕ20

 = A1e
iω1T0


c11

c21

c31

c41

+ A2e
iω2T0


c12

c22

c32

c42



+ A3e
iω3T0


c13

c23

c33

c43

+ A4e
iω4T0


c14

c24

c34

c44

 (B-9)

which is identical to the form in equation (3.12).
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Terms in equation (3.18, 3.24)

J22 =
1

20
(c43 − 7c33)ω

2
3 −

U2
a

U2
g

(
3

5
c233 +

c243
15

− c33c43
10

)
− 7

10
c33ω

2
3 −

ω2
3

3
, Z11 = −2

3
− 7c33

10
+

c43
10

Z12 = (ω3 − ω2)

(
2

3
ω3 + (ω3 + ω2)

(
7c33 − c43

20

))
Z31 = − 7

10
− 26c33

35
+

11c43
105

Z32 =
7ω3

20
(ω3 − 2ω2) +

U2
a

U2
g

(
−6c33

5
+

c43
10

)
Z41 =

1

10
+

11c33
105

− 2c43
105

, Zw1 =
ω4
3

3780
− 34ω2

3

105
+ 4

Z42 =
ω3

20
(2ω2 − ω3) +

U2
a

U2
g

(
c33
10

− 2c43
15

)
Zw3 =

11ω2
3

30
− ω4

3

4200
, Zw4 =

ω2
3

2
+

ω4
3

12600

Zd1 = α

(
−1

3
− 7c33

20
+

c43
20

)
Zd3 =

(
−7α

20
−
(
13α

35
+ 12β

)
c33 +

(
11α

210
+ 6β

)
c43

)
Zd4 =

(
α

20
+

(
11α

210
+ 6β

)
c33 −

( α

105
+ 4β

)
c43

)
where c33, c43 were calculated in the preceding section of this Appendix.
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