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Abstract

This thesis deals with motion planning of flexible one-dimensional objects and hyper-redundant

serial robots moving in a plane or in three dimensional space. The flexible one-dimensional

object is modeled as a continuous curve and a point on the curve is given a prescribed dis-

placement. The key problem studied in the thesis is to obtain the motion of all points on

the curve for the prescribed displacement subject to the condition of the length of the curve

being preserved. Such motions are motivated by the need to model, analyze and realistically

render of motion of hair, ropes and, more recently, flexible endoscopes where the assumption

of constant axial length is realistic and reasonable. In this thesis, the discretized form of the

flexible one-dimensional object is related to hyper-redundant robots and motion planning for

such robots are obtained when the robot moves in free space and in a cluttered environment,

avoiding obstacles.

The motion planning of flexible one-dimensional objects is posed as an optimization problem

with constraints and calculus of variation is employed to derive general analytical results. The

first analytical result is that, for a given motion of a point on the curve and subject to the

preservation of the length of the curve, the infinitesimal motion of any other point on the curve

is minimized when the velocity vector at that point of the curve is along the tangent to the curve

at that point. This leads to the second key result that when one end of a straight line segment

is moved along a straight line, the velocity of the distal (far) end is minimized when it is along

the straight line segment and the curve traced by the distal end is the well-known tractrix

curve whose closed-form analytic expressions can be obtained using hyperbolic functions. If

the flexible one-dimensional object is discretized by several piece-wise straight line segments,

the magnitude of the velocity vector of the distal end of the segments attenuates as one goes

away from the end where the input displacement is provided and if the direction of the input

displacement is not changed, all the line segments eventually line up along the direction of the

input displacement. It is shown that the attenuating and eventual aligning features lead to

realistic and a more natural motion of the discretized segments and results in the establishment

of a O(n) algorithm for motion planning. It is shown that the developed algorithm can be
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Abstract

used for real-time simulation of the motion of discretized flexible one-dimensional objects and

hyper-redundant serial robots.

For realistic simulation and rendering of the motion, the flexible object must be discretized

into a large number of straight segments. In the second part of the thesis, the flexible one-

dimensional object is represented by a spline and motion planning algorithm is applied to the

segments of the underlying control polygon of the spline. Since the number of segments in

a control polygon can be significantly less, a significant increase in efficiency in simulation

and rendering of the motion is obtained. However, it is known that as the control polygon

is moved, the length of the spline curve changes. To overcome this problem, an innovative

adaptive algorithm, involving sub-division and merging of the segments of the control polygon,

is presented and this restricts the variation in the length of the curve to within a user prescribed

tolerance. New analytical results related to the length of the curve and the angle between the

adjacent segments of the control polygon are derived for quadratic and cubic splines and,

depending on the prescribed tolerance, threshold values of the angle are obtained and used in

the algorithm for approximate length preservation.

The last part of the thesis deals with development of a planar hyper-redundant robot and

implementation of motion planning algorithm on this robot. The hyper-redundant robot con-

tains 12 links connected by actuated rotary joints which can change the angle between the

links in a controlled manner. The links are on the wheels which provide support and allow it

to move forward. The leading link also has a DC motor which can rotate the wheels so that

it can move forward and pull the trailing links. Using the motion planning algorithm, for a

prescribed motion of the leading link, the angle between two successive links are computed.

These are given as input to the robot and the path traced by the 12 link robot is observed.

It is seen that the motion of the hyper-redundant robot has the expected natural and realistic

motion characteristics. It is furthermore demonstrated that the calculus of variation based ap-

proach for motion planning can be extended to include obstacle avoidance by adding additional

constraints related to the location and size of the obstacles. It is shown that the entire robot

optimally avoids the obstacles and moves in a more natural and realistic way.
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Chapter 1

Introduction

Motivation

Motion planning of flexible one-dimensional objects has been of continuing interest and an

active area of research in the geometric modeling, computer aided design (CAD) and robotics

community. The original motivation was the requirement of efficient simulation and realism

in rendering and display of the motion of cables, ropes, chains, hair, snakes etc. in computer

graphics, animation and gaming industry. In the recent past, there is an increased interest

in building realistic surgical simulators for minimally invasive surgery where motion of the

endoscope, catheters, sutures and other flexible one-dimensional (1D) objects is required. In

typical physics based simulations of such flexible 1D objects, the flexible 1D object is modeled

as rigid links connected by springs and dampers. These approaches suffer from the disadvantage

of difficulty in choosing the spring, damping and inertia parameters and difficulty in numerical

simulation of large number of ordinary differential equations which model the flexible 1D object.

Furthermore the length of the flexible 1D object is typically not preserved and as a result the

motion appears less realistic. In the robotics community, motion planning and simulation

of snake, elephant trunk and other hyper-redundant robots with large number of links and

actuated joints, in presence of obstacles, has been a continuing and active area of research. The

key problem in these robots is how to resolve the redundancy and choose one of the infinite

number of possible joint solutions for a given motion of the end or any part of the robot. This

thesis deals with motion planning of flexible 1D objects and hyper-redundant robots. The

aim of this work is to develop efficient algorithms for real-time and natural looking motions

of flexible 1D objects and hyper-redundant robots and their implementation demonstrating

efficient simulation, rendering in case of flexible 1D objects and validation with experiments in

the case of hyper-redundant robots.
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There exists extensive literature on modeling, simulation and motion planning of flexible

one-dimensional objects and hyper-redundant robots. The approach in this thesis is based on

optimization of appropriate functionals using the powerful tool of calculus of variations. The

flexible 1D object is modeled as a finite length curve in three-dimensional space, a motion

is prescribed at one end or any one point on the curve and depending on a chosen objective

function, the motion of the entire curve is obtained. We present new analytical results and

extensive numerical simulation results to illustrate the developed algorithms. When the flexible

1D object is discretized with rigid links connected by joints, it is shown that the developed

algorithms can be used for motion planning of hyper-redundant robots. It is shown that a more

natural looking motion can be realized efficiently and, furthermore, such natural motions can

be obtained with obstacle avoidance.

Since this work deals with flexible 1D objects and hyper-redundant robots, in the rest of

the chapter, we present existing relevant literature in these two areas separately. We end the

chapter with contributions of this work and the organization of the thesis.

Modeling & simulation of flexible one-dimensional objects

Flexible geometries are modeled as deformable curves (1D), surfaces (2D) and solids (3D).

Hence, as far as this thesis is concerned, the question of representation of flexible bodies boils

down to representation of curves and surfaces. We restrict our discussion to curves as deformable

surfaces and solids are not considered in this work.

Two of the most common methods used for representing curves are implicit equations and

parametric functions[1]. An implicit representation for a curve C ∈ R
n, n = 2, 3 describes the

set of points P lying on the curve in terms of relations between the coordinates of points as

C = {P ∈ R
n|f(P ) = K}, where K is a constant. (1.1)

A simple example is the equation of circle in R
2 given by x2 + y2 = R2. In parametric form, a

curve is represented by expressing the coordinates of the points as functions of an independent

parameter t. For example, a helix in R
3 has a parametric representation P = {cos t, sin t, t}, t ∈

(−∞,∞). It may be noted that the parametric representation for a curve is not unique and also

the curve may have both an implicit and parametric representation. Both representations have

their own advantages and disadvantages. The main advantages of a parametric representation

are ease of representing bounded curves in 3D space, possessing a natural direction of traversal

and extensive amount of available tools. In this work we use parametric representations of

curves. Two of the commonly used parametric representations are the Bézier and B-spline and

2



these are discussed briefly next.

• Bézier Curve: An nth degree Bézier curve is defined by

C(u) =
n∑

i=0

Bi,n(u)P i, 0 ≤ u ≤ 1 (1.2)

The basis(blending) functions {Bi,n(u)}, are the well known nth degree Bernstein polyno-

mials[2] given by

Bi,n(u) =
n!

i!(n− i)!
ui(1− u)n−i (1.3)

The geometric coefficients of this form, {P i} are called control points and the polygon

formed by {P 0,P 1,P 2, . . . ,P n}, called the control polygon, approximates the shape

of the curve rather nicely. Bézier curves are more suitable for interactive curve design

because the curve passes through P 0 and P 2 and the tangent directions to the curve at

its endpoints are parallel to P 1 − P 0 and P n − P n−1. Moreover, the curve is restricted

within the convex hull of the n defining control points, where n is the degree of the curve.

Many important geometric entities, such as circles, cannot be precisely represented using

polynomials. However, as it is also well know that all conic curves, including circles,

can be represented using rational functions (ratio of two polynomials) and an nth-degree

rational Bézier curve is defined as

C(u) =
n∑

i=0

Ri,n(u)P i, 0 ≤ u ≤ 1 (1.4)

where Ri,n =
Bi,n(u)wi

n∑
j=0

Bj,n(u)wj

(1.5)

The symbols P i = (xi, yi, zi) and Bi,n(u) are as before and the wi are positive scalars

called the weights, Ri,n(u) are the rational basis functions for this curve form and P ′
is are

the control points.. It is clear from Figure 1.1 that the general shape of the curve follows

intuitively from the control polygon which is the polygon formed from the control points.

• B-Splines: Even though the Bézier curves have many attractive properties making it

suitable for digitized representation of curves/surfaces, it has some shortcomings namely,

– a high degree is required to satisfy large number of constraints. For e.g.,(n − 1)th

3



P0

P1

P2

P3

Figure 1.1: Cubic Bézier curve

degree curve/basis functions are needed to pass a polynomial Bézier curve through

n data points, and it is well known that higher the degree, more inefficient it is to

process them and they are numerically unstable;

– a high degree curve is required to fit complex shapes;

– although Bézier curves can be shaped via the control polygon (and weights), the

control is not sufficiently local.

In order to circumvent these issues, piece wise polynomials, or piece wise rational func-

tions are used, mapping different polynomial segments across specified parameter intervals

defined via breakpoints. The piece wise segments are constructed so that they join with

some level of continuity (not necessarily same at all every break point). Hence, we have

the B-spline definition for a p−degree interpolation function as follows.

C(u) =
n∑

i=0

fi,p(u)P i (1.6)

where the P i are the control points and the {fi(u), i = 0, . . . , n} are piece wise polynomial

functions forming a basis for the vector space of all piece wise polynomial function of the

desired degree and continuity (for a fixed break point sequence, U = {ui}, 0 ≤ i ≤ m).

Continuity is determined by the basis functions and {fi} is expected to have all the usual

nice analytic properties mentioned earlier in this section.

The B-spline basis functions are defined by various methods including divided differences

of truncated power functions[3, 4], blossoming[5], and by a recurrence formula[6, 7, 8]. In

this thesis, we will use the recurrence formula method for all computations.

Given the breakpoints as U = {u0, . . . , um}, a non-decreasing sequence of real numbers

4



(ui are called knots and U , the knot vector), the ith B-spline basis functions of degree p

(order p+ 1), denoted by Ni,p(u), is defined as follows.

C(u) =
n∑

i=0

Ni,p(u)P i, u0 ≤ u ≤ um (1.7)

where, (1.8)

Ni,0(u) =

⎧⎨
⎩1 if ui ≤ u < ui+1

0 otherwise
(1.9)

Ni,p(u) =
u− ui

ui+p − ui

Ni,p−1(u) +
ui+p+1 − u

ui+p+1 − ui+1

Ni+1,p−1(u) (1.10)

It is to be noted that breakpoints correspond to the set of distinct knot values, and the

knot spans of nonzero length define the individual polynomial segments. It may be noted

here that multiplicity of knots and control points can all reduce the continuity of the

curve locally. For example, a knot ui ∈ U with multiplicity k ≤ p (degree of curve)

will have only Cp−k continuity at the point on curve corresponding to ui. This is due

to discontinuities induced in the interpolation functions by such multiplicities. Similar

effects can also be produced by duplication of control points.

Bézier curve is a special case of B-spline of degree p with knot vector of the form

U = { 0, . . . , 0︸ ︷︷ ︸
(p+1) times

, 1, . . . , 1︸ ︷︷ ︸
(p+1) times

}. (1.11)

In other words, the cubic Bézier curve in Figure 1.1 is a cubic B-spline with knot vector

U = {0, 0, 0, 0, 1, 1, 1, 1}. Further, Figure 1.2 shows the effect which degree of interpolation has

on the curve. Clearly, as the degree of interpolation functions increase, the curve get more

and more distant from the control polygon and starts getting flatter due to larger region of

influence/interpolation.

In this thesis, we use B-spline framework for modeling the curve because it is highly flexible,

in the sense that it spans both continuous and piece wise continuous curves. Hence, it can easily

represent a wide variety of curves. One has full and independent control over the degree and

the knot vector to be used to approximate the curve. Moreover, there exist many numerically

robust spline algorithms for refining and coarsening the defining control polygon of a spline,

which is one of the key ideas employed in this thesis. Last but not the least, extension of this

idea to NURBS (Non-Uniform Rational B-Splines), which is a generalization of B-splines, is
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Figure 1.2: B-spline with clamped ends and varying degrees

easy and straightforward.

One of the key idea in this work is length-preserving transformation. In differential geometry,

the length of a curve is defined as the limiting length of a polygonal line inscribed in the

curve (i.e., with vertices lying on the curve) as the maximum length of the chords forming the

polygonal line goes to zero. If this limit exists and is finite, the curve is said to be rectifiable[9].

For a given generic 2D rectifiable curve, with a readily available parametric representation as

in Equation 1.6 (B-spline, Bézier, NURBS etc.), the elemental curve (also called as elemental

arc) length can be calculated as

ds = lim
δx,δy→0

√
δx2 + δy2 =

√
x′2 + y′2du, where x′ =

dx

du
, y′ =

dy

du
(1.12)

The length can be obtained by integration as

s =

∫ um

u0

ds =

∫ um

u0

√
x′2 + y′2du (1.13)

The original motivation for simulation of one dimensional flexible objects was the require-

ment of realism in simulation and display of the motion of cables, ropes, chains, hair, snakes,

cloth etc. in computer graphics and animation industry and there exists a large amount of

literature on hair/cloth simulation[10]. In recent past, there is renewed interest in real-time

motion planning of flexible one-dimensional objects driven by the need to build simulators for

laparoscopy, endoscopy and in the general area of training of medical practitioners where motion

of blood vessels, tendons etc., motion inside the gastro-intestinal tract or intestine and actions

such as tying of knots and suturing needs to be simulated with a high degree of realism [11,

12]. Majority of the existing approaches may be categorized into two groups, algorithms based

purely on physically deformable models and algorithms based on geometry. We first discuss
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algorithms based on physically deformable models.

The review paper by Nealen et al. [13] discusses the existing physically deformable models

in computer graphics in detail and gives a very good overview. In one of the earliest works,

Barzel [14] uses mode shapes of a constrained string model and key-framing techniques to fake

the dynamics of a string. Hergenröether and Däehne [15] discretize the flexible 1D object into a

large number of small (linear) rigid objects, each endowed with mass and connected by different

kinds of springs and dampers. With appropriate choice of parameter values of mass, spring and

damping constant, a physics-based realistic simulation was obtained. Taskıran et al.[16] have

also employed spring-mass system for simulating hair dynamics. More recent interest in surgery

training, where flexible suturing thread is modeled as spring-mass-damper systems [11, 12], is

related and similar to this problem. In these works, the equations of motion are solved to

predict the motion of parts of the rope. In an extension to these works, Güdükbay et al.[17]

proposes spring mass systems for simulation of cloth motion. However, a major difficulty in

this approach is that there is no systematic way of choosing the spring, damping and other

parameters. The main issue in these techniques is to choose or obtain appropriate spring and

damping constants for which Natsupakpong et al.[18] have devised an algorithm for estimating

these based on error minimization between FEM and lumped element models. However, the

algorithm is not feasible for real-time implementation. In another approach, Grégoire et al. [19],

Spillman et al. [20] and Dinesh et al. [21] uses Cosserat model for rod-like solids to model bending

and torsion for real-time realistic simulation of flexible parts. Moll and Kavaraki [22] present

path planning for flexible 1D objects using minimal energy curves and probabilistic root maps.

Lenoir et al.[23] uses Lagrangian formulation posing lumped masses on the control polygon

vertices and springs along the curve (resisting bending and stretching) combined with spline

refinement techniques of sub-division/merging to simulate the motion of flexible objects. In

an extension to this work, Theetten et al. [24] generates geometrically exact expressions for

deformations of flexible 1D objects by concurrently using beams and spline theory. Goldenthal

et al. [25] use a constrained Lagrangian mechanics based approach to handle in-extensible cloth

simulation – the length constraint (in-extensibility) is explicitly enforced on the cloth mesh

thereby increasing computational effort especially when the resolution in the cloth model is

increased. To overcome the stiff nature of the differential equation in cloth simulation (due to

the high compliance along normal motion compared to almost zero compliance in the in-plane

extension), Baraff and Witkin [26] use an implicit solver to simulate cloth motion. This is

however an iterative procedure and convergence is an issue. Wang et.al. [27] use strain limiting

algorithms to overcome the stiffness issue. In another work, Mikchevitch et. al. [28] use free-

form surfaces and flexible beams to model a real time simulator for assembly-dis-assembly

7



operations. In all the above mentioned works, dynamics is incorporated and a large amount

of effort is towards speeding up the computation or improving the accuracy by adjusting the

algorithms. However, in general, all of these methods suffer from one or more issues like stability,

convergence, stiff systems, dependence on many arbitrary parameters, phantom forces from high

residuals, excessive damping/numerical losses or lack of feasibility for real-time implementation.

In contrast to the above mentioned approaches, several authors have focused on viewing

simulation of flexible one-dimensional objects as a kinematic problem so that the issues of

stability, convergence and choice of parameters do not arise. Brown et al. [29] have presented

tying of knots in a rope with a geometric approach where the flexible 1D object is discretized

into linear segments connected by joints and the motion of a trailing segment uses a follow

the leader based strategy. Su et al. [30] use inverse kinematics and energy minimization to

approximately preserve length of deformed poly-line and a 4-point subdivision scheme is used

to obtain smooth C1 curve from the deformed poly-line. In another work, Sreenivasan et al. [31]

use the closed-form equations of the classical tractrix curve1 to iteratively compute the motion of

all trailing linear segments. In a subsequent work, Menon et al. [33] have shown that the tractrix

based solution can be derived from a constrained optimization problem involving minimizing

the velocity of points on a curve subject to preservation of the length of the curve. In the above

works, only the kinematics of the 1D object is used to impart realism in the simulation and

rendering and since the flexible 1D object is discretized into linear rigid segments, the length is

explicitly and always preserved. Ideally, the algorithm should be purely kinematic, numerically

stable and easily scalable to large degree of freedom (DOF) systems and the preservation of

the length. In this work we have used the powerful tools from calculus of variations to solve an

optimization problem which results in a purely kinematics algorithm. The topic of calculus of

variations is described in brief next.

Calculus of variations is a field of mathematical analysis that deals with maximizing or mini-

mizing functionals, which are mappings from a set of functions to the real numbers. Functionals

are often expressed as definite integrals involving functions and their derivatives, as

J [y] =

∫
x2

x1

F

(
x, y,

dy

dx
, . . .

)
, y(x1) = y1, y(x2) = y2 (1.14)

where J [y] is the functional and y(x1) = y1 and y(x2) = y2 are the end/boundary conditions.

1According to Steinhaus [32], the tractrix is the path traced by an object starting off with a vertical offset
when it is dragged along by a string of constant length being pulled along a straight horizontal line. The tractrix
curve was studied by the great mathematician Leibniz, who obtained the differential equation and analytical
solution of the curve.
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The Euler-Lagrange equation for the local extremization of the functional as in Equa-

tion (1.14) is given by

∂F

∂y
− d

dx

(
∂F

∂y′

)
= 0, where y′ =

dy

dx
(1.15)

Often there are problems where the extremal must satisfy a constraint (also known as subsidiary

conditions or side conditions) in two forms-integral equation or algebraic equation. These are

addressed using the method of Lagrangian multipliers[34] to generate an augmented functional

which is subsequently solved by the Euler-Lagrange equation. We discuss briefly, the two types

of constraints.

• Global Constraint: In this case the subsidiary condition is in the form of an integral

equality and the functional and the constraint is given as

J [y] =

∫ x2

x1

F (x, y, y′, . . . ), y(x1) = y1, y(x2) = y2

such that K[y] =

∫ x2

x1

G(x, y, y′, y′′) = l (1.16)

Solution to this problem, if the extremas of K[y] and J [y] do not coincide, is the extremal

of the modified functional ∫ x2

x1

(F + ΛG)dx (1.17)

where Λ ∈ R is a Lagrange multiplier.

• Local Constraint: Here, the subsidiary condition is in the form of an algebraic equality

to be obeyed over the problem domain ie.

J [y, z] =

∫ x2

x1

F (x, y, z, y′, z′, . . . ),

y(x1) = y1, z(x1) = z1, y(x2) = y2, z(x2) = z2

such that g(x, y, z) = 0 (1.18)

Provided the partial derivatives gx and gy do not vanish simultaneously at any point on

the surface defined by the constraint, the solution to this problem is given by the extremal
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of the modified functional ∫ x2

x1

(F + λ(x)g)dx (1.19)

In this work, we wish to minimize a norm (or a distance measure) between two configurations

of a deformable curve subject to length-preservation constraint2. There have been extensive

studies in the field of kinematics to develop a norm for rigid body pose so that questions such as

those related to rigid body guidance can be answered using variational calculus. However, this

has been largely unsuccessful till date[36]. In this thesis, we use the temporal area traced by a

curve (of the form of an L2 norm) to measure the closeness between two curves. Though not

a norm/distance function in the classical sense (it does not satisfy conditions in pp.125,[37]),

for incremental motion of curves, this norm is a measure of velocity/incremental motion of the

flexible one dimensional object. The concept is illustrated in the Figure 1.3 and the functional

takes up the following form mathematically.

J [y] =

∫ L

0

√(
∂

∂t
x(s, t)

)2

+

(
∂

∂t
y(s, t)

)2

ds (1.20)

where s, t denote arc length and time, respectively.

We minimize the root mean square velocity norm of the incremental motion of a constant

length flexible one dimensional object between two time instants t and t + Δt for a known

perturbation of a point on the flexible object. From a robotics perspective, this minimization

leads to resolution of redundancy and we get a solution involving least overall motion of the

object, which in turn can be related to minimization of kinetic energy and expenditure incurred

from the actuators used to move the manipulator.

Motion planning of hyper-redundant serial robots

In a serial robot, if the number of actuated joints is more than six for motion in 3D space and

more than three for motion in a plane, then there exist infinite joint angle sets which will achieve

the same position and orientation of the end-effector of the robot. As an example, consider a

planar robot with three revolute (R) joints with rigid links of lengths li, i = 1, 2, 3 and joint

2In general, the space of admitted functions are Sobolev spaces [35].
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C(s, t) = (x(s), y(s))

(
d

dt
x(s),

d

dt
y(s)

)

C(s, t+Δt)

Input perturbation

Figure 1.3: L2 norm used for velocity/incremental motion measure of a curve

angles θi, i = 1, 2, 3. The position of the end-effector, denoted by (x, y) can be written as [38][
x

y

]
=

[
l1 cos θ1 + l2 cos(θ1 + θ2) + l3 cos(θ1 + θ2 + θ3)

l1 cos θ1 + l2 cos(θ1 + θ2) + l3 cos(θ1 + θ2 + θ3)

]
(1.21)

In the inverse kinematic s problem, (x, y) is prescribed and the goal is to obtain the three joint

angles, θi, i = 1, 2, 3. The above is a system of 2 equations with 3 unknowns and one can

obtain infinitely many θi, i = 1, 2, 3 for a given (x, y). For motion in 3D space, The position

and orientation of the end-effector (namely 6 quantities) are prescribed and the goal is to obtain

an unique set of joint variables. This is called the resolution of redundancy. If this number of

actuated joints is much more than six (for 3D) and three (for planar motion), such a robot is

called hyper redundant robot.

In the robotics community, resolution of redundancy of hyper-redundant snake-like and other

robots with large number of rigid links connected by actuated joints have been a continuing

research area (see, for example, [39, 40, 41, 42] and the references therein). One of the earliest

techniques involved the use of the manipulator Jacobian matrix to minimize joint rotation,

velocity, torque or to avoid obstacles and singularities in the path of the robot [39]. This
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approach involves obtaining the pseudo-inverse of the manipulator Jacobian matrix and can

have a complexity of O(n3) where n is the number of joint variables. Pseudo-inverse based

methods are thus not suitable for motion planning when the numbers of links and joints are

large. A second approach developed by Chirikjian et al. [40] and Zanganeh et al.[43] involves

the use of a backbone curve to approximate the redundant robot and the motion planning is

done on the backbone curve. The complexity of their algorithm is O(n) but in this approach

the length of the curve may not be preserved. Various authors have also attempted to utilize

this redundancy to optimize suitable objective functions of the robot motion variables, avoid

singularities in workspace and to avoid obstacles (see, the review paper by Klein and Huang [44]

and works by Liegeois [45], Baillieul et al. [46] and Yoshikawa [47]). In yet another approach

by Reznik and Lumelsky [41, 48, 49] and more recently by Ravi et al. [42], the motion planning

is done in the task space (instead of in the joint space) using the classical tractrix curve using

an O(n) algorithm. In the tractrix curve-based approach, for a prescribed motion of the head,

the motion of the trailing end of the same segment is computed using the analytical expression

of the tractrix curve. For the next segment, the motion of the leading end is assumed to be the

computed motion and the motion of its trailing end is again computed using the expressions of

the tractrix curve and motion of all segments are computed iteratively in this manner. One key

property of a tractrix is that for a given motion of the leader, the motions of the trailing parts

die down or attenuates as one moves away from the perturbed end. An additional well-known

property of the tractrix is that the velocity of the trailing end is along the line joining the

trailing and the leading end and, more importantly, this velocity is the least among all possible

velocities of the trailing end of the object for a given motion of the leading end. This suggests

that the tractrix-based solution can be obtained from a general minimization problem and

results in a more natural motion of the robot. In this thesis, we develop such a minimization

formulation and solve the problem using calculus of variations. It is shown that we can obtain

general results which for the special case of a serial hyper-redundant robot reduce to the tractrix

based redundancy resolution.

In the context of motion planning of flexible one-dimensional objects, they can be discretized

into a large number of rigid segments connected by joints and tools from redundancy resolution

of hyper-redundant robots can be used for simulation. The goal would be to prescribe (x, y, z)

(for 3D motion) of a point on the flexible 1D object and obtain the motion of all all other points

on the flexible 1D object. In this work, we use the analytical results obtained from minimizing

the distance measure discussed in the previous section to obtain realistic and efficient motion

planning and rendering of the motion of flexible one-dimensional objects.
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Obstacle avoidance for flexible one-dimensional objects

and hyper-redundant robots

In the motion planning of flexible one-dimensional objects and hyper-redundant robot, one

of the key aspect is avoiding obstacles. The problem of obstacle avoidance for point bodies

or mobile objects and robots approximated by a point has been studied in depth and many

solutions have been proposed (see the review paper by Hwang et al. [50] and the references

contained therein). The various methods can be broadly classified into three main categories

depending on their approaches. The first approach involve mapping obstacle information and

geometry into the workspace of a robot and partitioning the space into free and occupied

spaces and then finding a obstacle free path for the robot in this space (see, for example,

[51, 52]). A second approach is based on a method termed as the dynamic window approach

(see, for example, [53]) where graph theoretic constructions and search is used solve the so-

called find path problem. A third extensively used approach uses artificial potentials (see

Khatib [54] and later extensions of the concept by others [55, 56]) where a repulsive virtual

force field is generated around the obstacle locations and then a minimal potential energy

path is computed. The computed path effectively avoids the obstacles and can be directly

implemented in the control algorithm and hardware used by the robot. In addition, to the

three mentioned approaches, due to the need for effective and real-time obstacle avoidance for

mobile and stationary robots, researchers have attempted to use Voronoi diagrams [57], artificial

neural networks [58], polyhedral interference detection based on computational geometry [59],

reinforcement learning algorithms [60], dynamic programming [61] and optimal control (see, for

example, references [62],[63],[64],[65]).

Unlike motion planning for point objects, there is less work on obstacle avoidance algo-

rithms for entire manipulators, redundant or otherwise. In redundant manipulators, the main

approach is to carefully choose one of the infinitely many solutions such that interference with

the obstacles is avoided. Freund [66] used redundancy to trace a spatial trajectory avoiding

obstacles whereas Nakamura [67] proposed an algorithm to avoid obstacles by placing restric-

tion on joint angles indirectly while using the pseudo-inverse of the manipulator Jacobian to

resolve the redundancy. In the configuration space based approach (see, for example, [68, 69,

70]) the spatial description and geometry of the obstacles and the robot manipulator are used

to partition the configuration space of the manipulator into interference free zones. These are

in turn used for motion planning and obstacle avoidance. Obstacle avoidance for a redundant

robot have also been attempted with instantaneous Jacobian [71], artificial neural networks [72]

and optimal control [73]. However these methods do not explicitly address the extended and

13



articulated nature of a hyper-redundant robot’s physical structure.

For hyper-redundant manipulators or one dimensional flexible objects modeled as hyper-

redundant robots with large number of links and degrees of freedom, almost all of the above

mentioned approaches are not useful. This is due to demand for large computational power for

real-time simulation and visualization of the motion. To overcome this problem, Reznik and

Lumelsky [49] proposed the use of a classical tractrix curve combined with an iterative obstacle

avoidance algorithm based on active sensing of the environment. They claim efficient real-time

simulation for hyper-redundant robots and obstacles in two- and three-dimensions. Subse-

quently, Choset [74] proposed a follow-the-leader approach for obstacle avoidance combined

with generalized Voronoi graph. These methods essentially divide the motion planning prob-

lem into two distinct phases - one in free space and one in the vicinity of obstacles. Chirikjian

and Burdick [75] proposed an discrete summation model using differential geometry to con-

strain the manipulator into obstacle free zones called tunnels. An interesting approach, called

obstacle aided locomotion, has been used in reference [76] wherein the obstacles are used to

generate reaction forces for locomotion, thus mimicking natural snakes, and in a sense obviating

the problem of obstacle avoidance. In reference [33], authors have proposed a tractrix based

motion planning algorithm based on optimization.

The primary drawback of some of these methods is that a significant amount of engineering

and algorithmic intuition is required to formulate the algorithm for motion planning. For

example, in the Jacobian-based methods, it has to be ensured that algorithmic singularities are

either not encountered or at least addressed explicitly, which limits the applicability to well-

known environments. In the modal approach, the choice of modal functions is a non-trivial

task, where several sets of modes may need to be defined to span the workspace. Some of these

methods are also computationally very expensive. For example, configuration space methods are

generally not computationally feasible for hyper-redundant robots due to the high dimensions

of the configuration space. In general, except for the follow-the-leader approach, none of the

methods provide intuitive solutions from the perspective of a human machine interface, which

can be a serious drawback during, for example, tele-operation by a human operator. The follow-

the-leader approach, while being effective in the immediate vicinity of an obstacle, is inefficient

in relatively open spaces.

In this work, obstacle avoidance is incorporated as constraints in the velocity minimization

scheme discussed in Section 1.2 and a constrained Lagrangian formulation is used. The algo-

rithm is computationally efficient as it breaks down the obstacle avoidance problem for the

n-degree-of-freedom (DOF) hyper-redundant manipulator to n obstacle avoidance problems for

the 1-DOF rigid links. It is also shown that in free space, the motion is along the link (as in
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the tractrix based approach) and in the vicinity of the obstacle the link moves along the local

normal to the obstacle surface.

Contributions of the thesis

The main contribution of the thesis are as follows:

• A theoretical framework for formulating the motion planning of one dimensional flexible

objects/hyper-redundant robots as an optimization problem is developed. This allows the

use of techniques from calculus of variations resulting in analytical expressions of solutions

in certain scenarios. This provides invaluable insights on the solution characteristics like

the tangential character of local velocities at any point on the curve in the ensuing motion.

• The relationship of tractrix and incremental motion/velocity minimization of a generic

curve in 2D/3D has been obtained analytically. This allows the break the n-DOF problem

into n 1-DOF problems, thereby drastically reducing computational requirements for the

motion planning. More quantitative results have been provided in Chapter 2.

• Analytical expressions on the relationship between control polygon lengths and curve

lengths for a generic quadratic and cubic splines have been derived.

• An algorithm for generating approximately length-preserving motion of spline curves have

been formulated. The use of the algorithms results in more efficient and realistic rendering

of the motion of one-dimensional flexible objects.

• Obstacle representation and avoidance has been successfully incorporated into the mini-

mization based approach and optimal obstacle avoidance maneuvers have been generated.

• The algorithm for motion planning and obstacle avoidance has been validated on a fab-

ricated 12-DOF snake robot and shown to be practically feasible.

Preview

The thesis is organized as follows: in Chapter 2, we present the calculus of variations based

approach for minimizing the motion of a flexible one-dimensional object and the derivation

of the tractrix curve for a straight segment. In Chapter 3, the analytical expressions relating

the length of a spline curve as a function of the angle between the adjacent segments of the

underlying control polygon and the adaptive algorithm for approximate length-preservation of

a moving spline curve and numerical simulation results are presented. Chapter 4 deals with the
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formulation of obstacles into the minimization framework, describes the construction of a 12-

link hyper-redundant robot and experimental results which validate the algorithms developed

in Chapters 2 and 3. Finally in Chapter 5 we present the conclusions and present the scope for

future work in this area.
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Chapter 2

Minimization Based Motion Planning

Introduction

This chapter deals with the notion of length preservation and velocity minimization to arbitrary

planar and spatial curves modeling one-dimensional flexible objects. Using formal tools from

calculus of variations, we minimize an L2 norm between two configurations of a curve subject

to the length preservation constraint. We show that, for any planar or spatial curve subject to

preservation of the length, the L2 norm gets minimized when the velocity of any point on the

curve is along the tangent at that point. For the special case of a straight line, we show that

the results are identical to the classical tractrix solution. Subsequently, by means of a limiting

argument, we prove that for a arbitrary curve, the motion dies out as one moves away from the

perturbed end and the effect of the motion or disturbance is localized. We also show that when

the motion is along a straight line the entire curve, independent of its initial shape, deforms and

eventually aligns with the motion direction and becomes a straight line. Both these features

results in a more “natural” looking motion of the curve and the flexible one-dimensional object

modeled by the curve. Finally, we also demonstrate that other metrics such as the angular

motion (i.e., the bending of the flexible object) and stiffness can also be minimized and each of

these minimizations lead to different unique solutions.

The chapter is organized into six sections. For the sake of completeness, we present the

motion of a single straight rigid body, the associated concept of a tractrix and present its key

properties in Section 2.2. In Section 2.3, we use calculus of variations to derive analytical results

dealing with the motion of an arbitrary curve. It is shown that the general results yield the

tractrix solution when the curve is a straight line. Subsequently, an algorithm to simulate the

motion of a flexible object modeled as a curve or as a piece-wise linear segments is presented.

In Section 2.4, other metric functions which could also be used for minimization are presented.
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The simulation results are described and discussed in Section 2.5. The chapter is summarized

in in Section 2.6.

The tractrix formulation

dp

dx

dy
dr

A

P P1

A1

Tractrix

L

X(Prescribed Displacement)−→
T

Y↑

Figure 2.1: Motion of link AP when leading end P moves along PT(X-Axis)

Consider a rigid link AP of length L initially lying along the Y axis as shown in Figure 2.1.

Let the end P , the leading end, be moved along the X axis. Let A1P1 denote an arbitrary

configuration of the rigid rod. Without any constraint on the motion of end A, i.e., the trailing

end, it can trace an arbitrary curve in the X − Y plane. For example, A can move parallel to

the X axis and this corresponds to a pure translation of the rod. Now consider a constraint

that the velocity is along the rod at every instant. Under such a constraint, the motion of point

A can be described by the ordinary differential equation

dy

dx
=

−y√
L2 − y2

(2.1)

where (x, y) are the coordinates of point A and the denominator
√
L2 − y2 arises from using

the length preservation constraint x2 + y2 = L2.

Equation (2.1) has a closed-form solution [32] given by

x = L log
y

L−√
L2 − y2

−
√

L2 − y2 (2.2)

which in terms of a parameter p can be written as

x(p) = p− L tanh
( p
L

)
, y(p) = L sech

( p
L

)
(2.3)
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The curve described by Equations (2.2) or (2.3), traced by the end A, is called the tractrix

and this curve is known to have several interesting properties. We list some of the main ones.

• The magnitude of the instantaneous velocity of A is the minimum of all possible velocities

when A traces the tractrix([31]). This follows from the following reasoning:

From elementary mechanics, the velocity of A can be written as

VA = VP + ω × PA (2.4)

where ω is the angular velocity and PA denotes the vector from P to A with magnitude L.

From Equation (2.4) it follows by Cauchy-Schwarz inequality that |VA| ≤ |VP |+|ω×PA|
and 0 < |VA| ≤ |VP |. The equality holds if ω is zero, i.e., when the rigid body is lying

on the X axis and VA is parallel to VP .

Denoting the infinitesimal motion of A by dr and the motion of P by dp (shown in

Figure 2.1), we can write dr ≤ dp (refer [31] for an alternate algebraic proof).

• The position of A or the trailing end can be obtained in closed-form in terms of hyperbolic

functions as shown in Equation (2.3).

• The motion of P need not be along the X axis or in the plane. The formulation can be

extended to motion along any direction and in 3D (for details see [31, 42]).

The above properties were first used by Reznik and Lumelsky [41, 48, 49] for resolution of

redundancy in hyper-redundant serial robots. In their work, for a desired motion of the end-

effector or leading end, the motion of the trailing end was computed. The computed trailing end

motion was used as the desired motion of the previous link and thus recursively, the motion

of all links, down to the first link, was computed. In comparison to the pseudo-inverse[44]

and modal approaches[40] mentioned earlier, the strategy led to a more natural motion since

due to the fact that dr ≤ dp, the motion of the links of the hyper-redundant robot tends to

die out as one moves from the end-effector to the fixed base. In addition, the redundancy

resolution is in task space variables and is of linear complexity. More recently Sreenivasan et

al. [31] used the tractrix based approach to simulate and visualize more natural motion(locally

dying out perturbations and minimal overall motion) of snakes and ropes, and Ravi et al. [42]

experimentally demonstrated the more natural motion on a planar eight-link hyper-redundant

robot.

In the next section, we present an extension of the minimization of motion of a (rigid)

straight line segment to arbitrary continuous curves (flexible one-dimensional object) in a plane
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and 3D by using tools from calculus of variations.

Optimizing motion of a continuous curve

Consider a planar curve of length L, parametrized by its arc length s, and one of its tips is

given a prescribed motion. As shown in Figure 2.2, the arbitrary motion of one end is assumed

to be given by two independent continuous functions (Tx(t), Ty(t)). The curve at any instant t

can be written in terms of a spatio-temporal parametrization as

C : (Tx(t) + x(s, t), Ty(t) + y(s, t)) (2.5)

The terms (x(s, t), y(s, t)) define the curve configuration relative to the perturbed tip, i.e., the

curve configuration when viewed from a moving coordinate system attached to the perturbed

tip. Note that, in this proposed parametrization, the functions x(0, t) = 0 and y(0, t) = 0 at

any instant t. This is due to the fact that at s = 0 (leading end), the absolute displacements

are completely specified by the predefined functions (Tx(t), Ty(t)). For the infinitesimal dis-

( _Tx(t)Δt; _Ty(t)Δt)

(Tx(t) + x(s; t); Ty(t) + y(s; t))

(Tx(t+Δt) + x(s; t+Δt);
Ty(t+Δt) + y(s; t+Δt))

X

Y

s = 0

s = L

Figure 2.2: Infinitesimally displaced configurations along with perturbation function in contin-
uous case

placement shown in Figure 2.2 from time t to t + Δt, the magnitude of the velocity vector of

an arbitrary point (x(s, t), y(s, t)) on the curve is given by

|V | =
√(

dTx

dt
+

∂x(s, t)

∂t

)2

+

(
dTy

dt
+

∂y(s, t)

∂t

)2

(2.6)

20



One natural choice of a metric would be the velocity magnitude. However, this is for motion of

a single point on the curve. To arrive at a similar metric for the motion of the curve1, we can

integrate the velocity magnitude over the length of the curve and this is given by

L2 :

∫ L

0

√(
dTx

dt
+

∂x(s, t)

∂t

)2

+

(
dTy

dt
+

∂y(s, t)

∂t

)2

ds (2.7)

We also wish to impose the constraint that the length of the curve is preserved during the

motion, and this can be written as

∫ L

0

⎛
⎝
√(

∂x(s, t)

∂s

)2

+

(
∂y(s, t)

∂s

)2

− 1

⎞
⎠ ds = 0 (2.8)

It may be noted that the above constraint only enforces the constancy of overall length of the

curve. This does not guarantee local length preservation and hence, the one dimensional curve

may expand or contract locally all the while maintaining the overall curve length same.

The variational problem now reduces to one of minimization of the L2 metric in Equation 2.7

over a specified time interval [0, T ] and can be stated as follows:

Min I
x(s,t),y(s,t)

:

∫ L

0

∫ T

0

√(
dTx

dt
+

∂x(s, t)

∂t

)2

+

(
dTy

dt
+

∂y(s, t)

∂t

)2

dtds

Subject to

Λ(t) : A =

∫ L

0

⎛
⎝
√(

∂x(s, t)

∂s

)2

+

(
∂y(s, t)

∂s

)2

− 1

⎞
⎠ ds = 0

Data : x(s, 0), y(s, 0), Tx(t), Ty(t), x(0, t) = 0, y(0, t) = 0

(2.9)

where Λ(t) is the Lagrangian multiplier corresponding to the length-preserving constraint. The

Lagrangian for the above optimization, is written as

L = I + Λ(t)A (2.10)

1The defined metric is not a measure of distance between two rigid body configurations – such a metric does
not exist as has been shown by Angeles [36]. For a single rigid link, we show in Section 2.3.1 that this metric is
related to the minimization of velocity of the distal end for a prescribed velocity at the proximal end.
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and the corresponding Euler-Lagrange equations [77, 78] are as follows:

∂L

∂x
− ∂

∂s

(
∂L

∂x′

)
− ∂

∂t

(
∂L

∂ẋ

)
= 0 (2.11a)

∂L

∂y
− ∂

∂s

(
∂L

∂y′

)
− ∂

∂t

(
∂L

∂ẏ

)
= 0 (2.11b)

Note that x′ =
∂

∂s
x(s, t) and ẋ =

∂

∂t
x(s, t) and similar notations are used for the variable y(s, t).

By using Equations (2.11a) and (2.11b), and eliminating the Lagrange multiplier Λ(t) by divi-

sion, we obtain the following:

∂
∂s
y (s, t)

∂
∂s
x (s, t)

=
d
dt
Ty (t) +

∂
∂t
y (s, t)

d
dt
Tx (t) +

∂
∂t
x (s, t)

=
∂
∂t
(Ty (t) + y (s, t))

∂
∂t
(Tx (t) + x (s, t))

(2.12)

Though quantitative results are specific to the equation of the assumed curve, i.e., choice of

(x(s, t), y(s, t)), qualitatively, we can make the following general and key observations.

• The Lagrange multiplier has the units of velocity and this can be shown as follows:

The Euler-Lagrange Equations (2.11a) and (2.11b) can be written as

Λ(t)y′κs = −(ẏ + Ṫy(t))κt (2.13)

−Λ(t)x′κs = (ẋ+ Ṫx(t))κt (2.14)

where κs and κt are given by

κs =
x′y′′ − y′x′′

(x′2 + y′2)
3
2

κt =
(ẋ+ Ṫx(t))(ÿ + T̈y(t))− (ẏ + Ṫy(t))(ẍ+ T̈x(t))

((ẋ+ Ṫx(t))2 + (ẏ + Ṫy(t))2)
3
2

(2.15)

Squaring and adding Equations (2.13) and (2.14), and simplifying, we get

Λ(t)κs = κtV (2.16)

where V =
√

(Ṫx + ẋ)2 + (Ṫy + ẏ)2 is the velocity at any point on the curve. Hence, it is

clear that the Lagrange multiplier has units of velocity.

Also, from the form of Equation 2.15, it may be noted that κs and κt are spatial and

temporal curvatures respectively and relate to each other through the Equation 2.16.

22



• The extreme left-hand side of Equation (2.12) is the spatial derivative or the slope at a

given s and t and the far right-hand side is the temporal derivative or the velocity vector for

a given s and t. This implies for the curve, the L2 metric as defined in Equation (1.20) is

minimized if the velocity vector at any (s, t) is along the tangent at that point. In addition,

during this minimizing motion, the total arc length of the curve is preserved.

Special case of a straight line

X−!

Y"

b(t)
a(t)

_Tx(t)t

s = 0

s = L

(x(L; t); y(L; t))

Figure 2.3: Motion of straight rigid curve when leading end moves along X-Axis with unit
velocity

For the special case when the curve is a straight rigid link and the input perturbation is

along the X axis with the perturbed end on the X axis initially, the unit perturbation velocity

functions in Equation (2.12) take the form:

d

dt
Tx(t) = 1, Ty(t) = 0 (2.17)

Since the curve (x(s, t), y(s, t)) is a straight line, we have

x(s, t) = a(t)s, y(s, t) = b(t)s (2.18)

and since the length of the curve L is preserved, we get

√
(aL− 0)2 + (bL− 0)2 = L ⇒ a2 + b2 = 1 (2.19)

Furthermore, by assuming that the straight rigid link is vertical at t = 0, we get a(0) = 0 &
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b(0) = 1. Under the aforementioned conditions, the straight line equations transform as

x(s, t) = a(t)s+ t, y(s, t) = b(t)s (2.20)

and we also have

a2 + b2 = 1 ⇒ 2a
da

dt
+ 2b

db

dt
= 0 ⇒ db

dt
= −a

b

da

dt
, b �= 0 (2.21)

Finally, substituting the above in the Equation (2.12), and simplifying, we get

b

a
=

db/dt s

1 + da/dt s
=

−a
b
da
dt
s

1 + da
dt
s
⇒ s

da(t)

dt
+ (1− a(t)2) = 0, a �= 0

=⇒ a (t) = − tanh

(
t+K

s

)
(where K is an integration constant)

(2.22)

Using the initial conditions, we get K = 0, and

x(s, t) =s

(
t

s
− tanh

(
t

s

))

y(s, t) =s sech

(
t

s

) (2.23)

The path (curve) traced by the tip of the link is obtained by substituting s = L in the above
equation. Denoting the perturbation in time t with p, we get

x(L, p) =p− L tanh
( p
L

)
y(L, p) =L sech

( p
L

) (2.24)

It can be seen that Equation (2.24) is the same as that of a tractrix given in Equation (2.3).

The above derivation shows analytically that for a straight single link perturbed along a straight

line, the L2 metric (as defined in Equation (1.20)) is equivalent to minimizing the velocity of

the trailing end.

As p → ∞ (or t → ∞), we know from elementary calculus that tanh(p/L) → 1 and

sech(p/L) → 0 which gives

x(L,∞) = p− L, y(L,∞) = 0 (2.25)

From the above, it is clear that as time increases, the straight line or the rigid link aligns with
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the perturbation direction, in this case the X-axis.

Curve discretized by straight lines

It has not been possible to obtain analytical solution for Equation (2.12) except for a simple

straight line as shown in the preceding section. One way to solve the problem for an arbitrary

curve is to discretize the curve into finite number of straight line segments. The difference be-

tween the continuous (variational) formulation and the discretized formulation is schematically

shown in Figure 2.4.

Prescribed1

2

3

j

(n− 1)

n

Leading

Trailing

Sequentially

Propagated

Perturbations

End

End

Displacement

(Ṫx(t)Δt, Ṫy(t)Δt)

(Tx(t) + x(s, t), Ty(t) + y(s, t))

(Tx(t+Δt) + x(s, t+Δt),
Ty(t+Δt) + y(s, t+Δt))

Figure 2.4: Difference between variational and discretized formulations

In Section 2.3.1, we demonstrated that for a straight line the motion of the trailing end with

L2 metric or velocity minimization is given by the tractrix Equations (2.24). As shown in the

right-hand side of Figure 2.4, a known perturbation is given to the 1st point (the leading end)

of the initial curve. The L2 metric minimizing the motion of trailing end of the 1st segment

is computed in closed-form with Equation (2.24) and this is the perturbation for the leading

end of the 2nd segment. Sequential iteration along the linear segments up to the other end,

generates the motion of the entire discretized curve or the nth point. This approach is termed

as sequential optimization and is the same as the strategy used for resolution of redundancy

in hyper-redundant robots (see [41, 48, 49] and [31, 42]). Since for every iteration dr ≤ dp,

the perturbations die down as one moves down the segments and this gives a more ‘natural

motion’ of the curve. In addition, to this ‘dying down’ or attenuation property, as shown in

Equation (2.25), as time progresses, the motion of each segment and hence the curve aligns

with the motion of the perturbed end.

In specifying the motion of the leading end in time domain, we have two options – either a
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single step in time from zero to T or a series of steps in time. The series of steps is to be used if

the given perturbation is large or along a curve. For realistic simulations, the full step needs to

be broken into several smaller steps. The first method is called the single-step optimization and

the second is called the multi-step optimization. The multi-step optimization is more accurate

when compared to the single step because, in the latter, we neglect the intermediate path points

and consider only the initial and final states, which induces error. In the former case, we simply

need to use the single step (tractrix approach) several time between t and (t + Δt) with Δt

determined by the requirements of the simulation.

Spatial motion

For motion in 3D space, we can define the L2 metric as a direct extension of the 2D L2 metric

from Equation (1.20). Hence, the minimization problem can be posed as follows:

Min I
x(s),y(s),z(s)

:

∫ L

0

∫ T

0

√(
dTx

dt
+

∂x(s, t)

∂t

)2

+

(
dTy

dt
+

∂y(s, t)

∂t

)2

+

(
dTz

dt
+

∂z(s, t)

∂t

)2

dtds

Subject to Λ(t) : A =

∫ L

0

√(
∂x(s, t)

∂s

)2

+

(
∂y(s, t)

∂s

)2

+

(
∂z(s, t)

∂s

)2

ds = L

Data : x(s, 0), y(s, 0), z(s, 0), Tx(t), Ty(t), Tz(t), x(0, t) = 0, y(0, t) = 0, z(0, t) = 0

(2.26)

One can solve the optimization problem numerically by discretizing the curve into piece-wise

straight lines. Alternately, for a discretized flexible 1D object, we can solve the problem as done

in reference [31], which is repeated here for convenience of the reader. As shown in figure 2.5, we

consider the first straight segment whose one end (xh, yh, zh)
T is being moved to a destination

point (xd, yd, zd)
T . And the trailing end is (xp, yp, zp)

T .

1) The three points, (xh, yh, zh)
T , (xd, yd, z

T
d and (xp, yp, zp)

T lying on the tractrix curve, define

a plane.

2) Define a coordinate system {r} with the X̂r along motion of (xh, yh, zh)
T towards (xd, yd, zd)

T

and Ẑr along the normal to the plane. Ŷr completes the right handed system.

3) Define the rotation matrix 0
r[ R ] with respect to a fixed reference coordinate system {0} as

0
r[ R ] = [X̂r Ẑr × X̂r Ẑr].

4) For the given motion of (xh, yh, zh)
T to (xd, yd, zd)

T in the plane, obtain (xr, yr) from the

equation of the tractrix given in Equations (2.24). It may be noted that (xr, yr) is the

26



(x; y; z)

(xp; yp; zp)

(xh; yh; zh)
X

Y

Z Xr

ZrYr

frg

f0g

(xd; yd; zd)(xr; yr; 0)

Link n

Link n+ 1

Link n− 1

Figure 2.5: Deriving spatial motion from locally in-plane tractrix motions

point (x, y, z)T in the plane(represented in frame {r}) and hence the Z coordinate is zero.

5) Once xr and yr are known, the new position of trailing end of the link(which lies on the

tractrix) after motion (x, y, z)T in the fixed reference coordinate system {0} is given by

(x, y, z)T = (xp, yp, zp)
T +0

r [ R ](xr, yr, 0)
T (2.27)

The motion of the second segment can be found by setting the destination point of one end

as the computed (x, y, z)T (in step 5) above) and computing the motion of the other end by

following steps 1) through 5) above. Proceeding in a similar manner, the displacement of the

leading end of the (i−1)th segment is the displacement of the trailing end of the ith segment and

one can thus iteratively go down to the nth linear segment and obtain the new configuration of

the discretized flexible 1D flexible object. As shown in reference [31], the motion of the flexible

1D object, discretized as n straight segments, can be computed in O(n) steps.

In Section 2.5, we present several numerical simulation results for the motion of flexible

objects in 2D and 3D space. The interesting features of preservation of the length, dying-

out of motion and eventual aligning of the flexible 1D object along the perturbation vector is

discernible in the simulations.

Use of other metrics for minimization

In the previous section, we presented a metric, which for the case of single link expresses

minimization of velocity of the trailing end for a given input velocity of a leading end. In this

section, we present two additional possible metrics. In Section 2.5, we compare these metrics.
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Minimization of body rotation

Consider a straight rigid segment AP and the leading end P is moved to point Q. We wish

to obtain the motion of the trailing end A such that the straight rigid segment rotates the

least. In Figure 2.6, point A is schematically shown to move to B while maintaining the length

|AP | = |BQ| and hence the rotation angle is given by ∠BQR where line QR is parallel to

AP .

Q

x

y

P

B
A dr

L

L

R

dp

Figure 2.6: Incremental rotation minimization

We now pose a minimization problem:

Minimize :
xB ,yB

|(∠BQR)|

Subject to : |BQ| = L

Data : L, Step Length PQ

It may be noted that minimization of the rotation is in the same spirit as the L2 velocity

minimization discussed in the previous section. Since a general rigid body motion can be

considered to be a combination of translation and rotation, a solution of the above problem in

combination with the tractrix approach may result in alternate natural rigid-body motions. It

may be also noted that a curve can be discretized into straight rigid segments and the technique

of sequential optimization can then be applied for the discretized curve.
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Minimization of body deformation

Consider a rigid body comprising of two rigid line segments MA and AP . The end P is again

given a perturbation to Q. We wish to determine the motion of A and M , schematically shown

going to B and N respectively in Figure 2.7, such that the (∠MAP − ∠NBQ) is minimized.

This can again be expressed as a minimization problem as follows:

Minimize :
xB ,yB

|(∠MAP − ∠NBQ)|

Subject to : |BQ| = L, |NB| = L

Data : L, Step Length PQ

Q

x

y

P

B

A

L

L

NM

LL

Figure 2.7: Incremental joint rotation minimization

Results and discussion

In this section, we present numerical simulations to illustrate the theoretical results presented

in the previous sections. All symbolic computations required for the results were obtained using

MAPLE R© [79] and for numerical simulations using the fmincon routine of MATLAB R© [80].

Performance comparison of different optimization strategies

The first simulation result deals with a comparison of optimizing the motion of a continuous

curve (not discretized into piece-wise linear segments) with the sequential, single and multi-

step, optimization discussed earlier. As noted in Section 2.3, we can solve the continuous
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optimization for simple curves. Figure 2.8 shows the motion of an initial parabola using different

optimization strategies. The chosen initial parabola has the form y = x2 and it is discretized

into 20 segments, each of length 0.25 thereby creating a total curve length of 5. Further, for

single-step perturbation, we have a motion vector of 0.7 length equally inclined to X and Y

axes (45◦ with each axis) whereas for the multi-step perturbation, we move the curve in the

same direction but in 5 steps of 0.14 each.

�

�

�

�

�

��� ��� ��� ��� ���

Figure 2.8: Different optimization techniques applied on an initial parabolic curve

To compare the four minimizations, we choose the multi-step sequential optimization as the

reference and compute deviations norms from the same. For single-step sequential optimization,

#
Overall Optimization Sequential Optimization

Single-Step Multi-Step Single-Step Multi-Step
L2 Metric error 1.6982 1.6007 0.6347 0.0000
Time of execution(s) 33.6124 39.5479 15.2364 22.4861

Table 2.1: Comparison of Different Metrics

the L2 norm is 0.6347 and for multi-step overall optimization the value is 1.6007 whereas for

single-step overall optimization, it turns out to be 1.6982. This implies that better results are

obtained if the discretization in time and along the curve is finer.

As far as CPU times are concerned, the seqquential single step is the fastest as it ignores any

of the intermediate configurations. This is followed by sequential multi-step algorithm. The

longest times are taken by the overall optimization algorithms because is issues of convergence

to optima.
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Solution characteristics of candidate metrics

The second set of numerical results deals with the comparison of the tractrix, the minimization

of body rotation and body deformation for a straight line. As explained earlier, selecting

appropriate metrics depends greatly on the problem-specific task. In this section, the solution

properties for the three metrics used are discussed.

1. The L2 norm minimization yields a tractrix-based solution as already mentioned earlier

and shown in Figure 2.9. It may be noted that the initial configuration of the straight

line is parallel to the Y axis, the motion is from right to left, and the final configuration

of the straight line is parallel to the X axis. The figure clearly demonstrates that the

final configuration is getting aligned along the motion direction.

� �� �� �� ��
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Figure 2.9: L2 norm minimization for a straight line

2. Rotation norm minimization introduces the notion of pure translation mode, which can

be seen in the Figure 2.10. In this case also, the motion is from right to left.

� �� �� �� ��
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�

��

��
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Figure 2.10: Rotation minimization for a straight line
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3. The third candidate norm introduced, namely the one to minimize joint rotation, intro-

duces the rigid body behavior into the mathematical framework as can be noted from

Figure 2.11. In the Figure 2.11, we can notice that for the first link there is no joint ro-

tation as there is no previous link with respect to which this can be defined. The motion

of first link, in this case, has been derived using L2 norm minimization. Clearly, from

the figure, we see that the whole body shows a rigid body behavior for minimal body

deformation or maximum stiffness.
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Figure 2.11: Joint rotation minimization for a straight line

The distinct behavior of solutions displayed in Figures 2.9-2.11 indicate the effect of objective

chosen on the solution. Depending upon the nature of the problem in hand, proper objective

needs to be chosen. For example, if the application is for a flexible robotic manipulator chain,

the main objective will be to minimize the joint rotations so as to minimize motor actuation and

power consumption, in which case metric defined in Section 2.4.2 for minimizing joint rotations

may be more appropriate. However, if the problem is concerned with trajectory planning of a

locomotive pulling coaches, then the minimizing the motion or L2 norm of velocities over time

is more appropriate.

Planar and spatial simulation of a generic curve

In this section, we present simulation and visualization of the motion of an arbitrarily chosen

curve, whose arbitrarily chosen point is moved along an arbitrary path in 2D and 3D space.

Three cases, namely that of an arbitrary planar curve, a parabola and a curve in 3D space are

used to illustrate the features of the velocity L2 norm minimization based schemes. In this set

of simulations, we use multi-step sequential optimization.

In the planar sequential case, the input curve is discretized into 80 links of 0.05 length each

and is perturbed in 250 steps of 0.075 each over a length of 8.75 units along a generic path.

For overall optimization in 2D, the curve is again a parabola of the form y = x2 discretized
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into 20 links, each of length 0.25, and is given the motion in 6 steps with average motion step

length 0.4 units. In the case of 3D, an arbitrary curve of length 30 is discretized into 20 links

and perturbed in 2650 steps of 0.1, thus making a total motion step length of 265 units.

Figure 2.12 shows the snapshots of the planar motion from multi-step sequential optimiza-

tion and Figure 2.13 shows planar motion of a parabola in generic direction using multi-step

overall optimization. It may be noted that in Figure 2.12, though the curve is looped, as it

is arc length parametrized and out of plane dimension is neglected, no computational com-

plexity/singularity arises. Also, during the motion, the unwinding of the loop acts as perturba-

tion/disturbance absorber for the portion of curve lying downstream with respect to the portion

of the curve lying upstream.

Finally, Figure 2.14 show the snapshots of spatial motion and the accompanying videos

shows the entire motion for the last two cases. It may be mentioned the length of curve, 4 and

30 units for 2D and 3D curve, remain constant during the motion. It can be clearly seen that

the dying-out property is present and this clearly leads to a more natural looking motion of

the curve. One can also observe that the eventual motion of the curve aligns with the direction

of the motion of the input end. It may be noted that one can see a similar “dying-out” and

“aligning” motion in a ribbon being moved by a gymnast during floor exercises.

Summary

This chapter presented a new approach for the simulation and visualization of the motion

of one-dimensional flexible objects using calculus of variations and constrained optimization.

It was analytically proved that classical tractrix based solutions are direct consequence of a

minimization of the L2 norm of tail-velocity. Subsequently, using sequential optimization to

a curve discretized by piece-wise linear segments, a much simpler and computationally more

robust algorithm was developed for the simulation of arbitrary flexible one-dimensional objects

whose length is preserved during motion. It was shown that the minimization results in a

natural ‘dying out’ and aligning motion of the flexible object. An important feature of the

proposed algorithm is that it is a purely kinematics-based solution and it does not require

assuming values for mass, stiffness or damping of the flexible objects as in dynamics-based

approaches. Further, it was shown that the tractrix-based approach is one of the many possible

length-preserving transformations for a smooth, arc length parametrizable curve. Through two

additional candidate norms, the fact was demonstrated that objective function chosen affects the

solution drastically. Therefore, the proposed approach can give the optimized and appropriate

solutions for any given functional, which in turn can be decided by the given problem.
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Figure 2.12: Multi-step sequential optimization of an arbitrary curve moved in generic direction
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Figure 2.13: Multi-step overall optimization of a parabola moved along a generic direction in
2D
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Figure 2.14: Multi-step sequential optimization of an arbitrary curve in generic direction in 3D
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Chapter 3

Motion Planning of B-Spline Curve

Introduction

As mentioned in the previous chapter, the flexible one-dimensional object can discretized by

straight segments and then the tractrix based approach can be used to obtain a more natural

motion. It was also mentioned in the previous chapter that the complexity of the algorithm is

O(n) where n is the number of straight segments. To obtain realistic motion and acceptable

rendering, the number of segments can be very large and this can increase the computational

burden. In this chapter, the flexible one-dimensional object is modeled as a B-spline curve

which can be defined from a control polygon with very few sides. Instead of using the curve or

large number of discretized segments for motion planning, the tractrix based algorithm is used

on the straight segments of the control polygon. Unfortunately, the motion of the control, and

specifically when the angle between two successive segments changes, the length of the curve

changes. In this chapter, we obtain new analytic expressions for change in length of a B-spline

curve from an initial configuration as the angle between two adjacent segments of its control

polygon is changed and present an adaptive algorithm to approximately preserve the length of

the curve as the tractrix based algorithm is applied on the control polygon sides for motion

planning. The adaptive algorithm uses sub-division and merging of the sides of the control

polygon so that a prescribed error tolerance on the length of the curve is maintained at all

times during the motion. Since the tractrix based algorithm has a complexity of O(n) where n

is the number of segments used to represent the flexible 1D object and the number of sides of the

underlying control polygon is much less than n, the complexity of the algorithm can be termed

as O(1). The algorithms for natural and realistic motion planning, the adaptive altering of the

control polygon and the mathematical results are illustrated using numerical examples where

an arbitrary curve is moved along a generic direction with a prescribed length error tolerance.
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The efficiency of the developed algorithms are also demonstrated with the numerical examples.

The chapter is organized as follows: in Section 3.2 we present the new analytic expressions

and results for the length of a quadratic B-spline and cubic B-spline curve in terms of the angle

between two adjacent segments of the control polygon are presented. The notion of moving

the generating control polygon and resulting change in the length of the spline due to motion

of the control polygon is also presented. In Section 3.3, we present an algorithm to adaptively

subdivide and merge edges of a control polygon to maintain the length of a curve to within a

specified length error. In Section 3.4, we present numerical results illustrating our approach for

efficient and realistic motion simulation and visualization of motion of flexible one-dimensional

objects. In Section 3.5 we present the summary of this chapter.

Splines and control polygon

As mentioned earlier, the key idea is to move the segments of the control polygon instead of

the elements of the discretized curve (poly-line) to reduce computation and enable real-time

simulation and visualization.

The dying out and eventual alignment with the input motion features give the tractrix

based approach a more natural and physically realistic motion of the motion of a flexible one-

dimensional object. The complexity of O(n) makes it amenable for efficient simulation and

realistic visualization of the motion. The n term in the complexity O(n) can be further reduced

if instead of discretizing the flexible object with a large number of rigid linear segments, we

approximate the flexible one-dimensional object with a B-spline and we apply the tractrix based

motion strategy to the line segments in the control polygon. Figure 3.1-(b) shows a flexible

one-dimensional object discretized by several line segments and in Figure 3.1-(c), the same

flexible 1D object is represented by a spline curve, its control polygon and an open uniform

knot vector [1] - this guarantees that the spline interpolates the first and last control points,

thereby ensuring that the ends of the spline match the ends of the flexible 1D object. The

number of segments in the control polygon is typically much less than the number of linear

segments used to realistically discretize the flexible 1D object(L2 error is below a threshold) -

in the illustration the flexible one-dimensional object is discretized by 16 linear segments but

the control polygon shown in Figure 3.1-(c) has only 7 segments. However, it is well-known that

as the control polygon changes, the spline curve and its length changes [1]. This is illustrated

in Figure 3.2: the left most spline curve of length LC1 is generated by the control polygon CP 1

and as the sides of the control polygon is moved to CP 2 keeping LCP 1 = LCP 2 , one can clearly

see that the length of the spline curve changes. It can be observed from Figure 3.2 that as the

angle between the adjacent segments decrease the length of the spline decreases and the upper
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Figure 3.1: (a)One dimensional flexible object, (b) Tractrix based motion planning and (c)
Generating control polygon
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Figure 3.2: Spline length with length preserving transformations of control polygon

bound of curve length is the length of the control polygon. We provide mathematical proofs of

these two observations next, first for a quadratic B-spline and then for a cubic B-spline. Finally,

arguments for any higher degree 3D splines are provided.

Quadratic spline

For a quadratic spline shown in Figure 3.3, the three consecutive points P1, P2 and P3 always

lie on a plane. It may be noted that the analysis is not restricted to planar quadratic splines as

the next three points can lie on a different plane and the entire curve can be spatial. Without

loss of generality, the coordinates of the three points can be assumed to be [L1, 0]
T , [0, 0]T and

[L2 cos θ, L2 sin θ]
T , respectively, where L1, L2 are the lengths of the two sides of the control

polygon and θ is the angle between the adjacent sides of the control polygon. The set of control

points (P1, P2, P3) generate the part of the spline shown in Figure 3.3 for the parameter interval

u ∈ (ui, ui+1). The length of the spline curve for u ∈ (ui, ui+1), is given by
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Figure 3.3: Two segments of the control polygon of a quadratic spline

l(θ) =

∫
ui+1

ui

⎛
⎝( 3∑

i=1

dNi,p(u)

du
Xi

)2

+

(
3∑

i=1

dNi,p(u)

du
Yi

)2
⎞
⎠

1
2

du, (3.1)

where l(θ) means that the spline curve length depends on the included angle θ.

In an open-uniform knot vector of the form [u1 u1 u1 u2 u3 . . . um−1 um um um] with u1 ≤
u2 ≤ u3 ≤ · · · ≤ um, without loss of generality, an intermediate knot interval (ui, ui+1) (i �=
1, 2,m− 2,m− 1) can be reduced to (0, 1) by appropriate scaling and translation of parameter

u. The interpolation functions Ni,p for a quadratic spline with p = 2 and for the knot interval

(0, 1) are given by

N1,2 =
1

2
(1− u)2, N2,2 = −u2 + u+

1

2
and N3,2 =

1

2
u2. (3.2)

Using the above, l(θ) can be simplified to

l(θ) =

∫
1

0

√
(−L1(1− u) + L2u cos θ)

2 + (L2u sin θ)
2 du. (3.3)

and for L1 = L2 = L, l(θ) is given by

l(θ) =
1√

32L2(1 + cos θ)

(√
8L4(1 + cos θ) + L2(−1 + cos θ) ln

√
2−√

1 + cos θ√
2 +

√
1 + cos θ

)
, 0 < θ < π.

(3.4)

From above, lim
θ→π

l(θ) = L and this agrees with known result for a quadratic curve (see pp. 82
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in [1]). From Equation (3.4), (L− l(θ)) is maximum when θ → 0 and the maximum difference

is 50% (see Figure 3.6).

For the general case of a quadratic spline with l1 �= l2, the expression for the curve length

is more complicated and is given by

l(θ) =

∫ 1

0

dl =

√
l21 + l22 + 2l1l2 cos θ

(
(l51 + 2l31l

2
2 + 2l21l

3
2 + l52) + (l31l

2
2 + l21l

3
2) cos 2θ

2(l21 + l22 + 2l1l2 cos θ)
5
2

)

− l21l
2
2(l

2
1 + l22) sin

2 θ

2(l21 + l22 + 2l1l2 cos θ)
5
2

ln
−l21 − l1l2 cos θ + l1

√
l21 + l22 + 2l1l2 cos θ

l22 + l1l2 cos θ + l2
√
l21 + l22 + 2l1l2 cos θ

+
l1l2 cos θ(3l

3
1 + l1l

2
2 + l2(l

2
1 + 3l22))

√
l21 + l22 + 2l1l2 cos θ

2(l21 + l22 + 2l1l2 cos θ)
5
2

+
2l31l

3
2 sin

2 θ cos θ

2(l21 + l22 + 2l1l2 cos θ)
5
2

ln
l22 + l1l2 cos θ + l2

√
l21 + l22 + 2l1l2 cos θ

−l21 − l1l2 cos θ + l1
√
l21 + l22 + 2l1l2 cos θ

, 0 < θ < π.

(3.5)

For case when l1 �= l2 and θ → 0 (the curve folding and overlapping with itself), the curve length

is given by lim
θ→0

l(θ) =
l21 + l22

2(l1 + l2)
. In the case of l1 �= l2 and θ → π (curve straightening out to

a line), we have lim
θ→π

l(θ) = (1/2)(l1 + l2), which is another well known result for a quadratic

b-spline curve (see pp. 78, [1]). From the analytical expression of l(θ) in equation (3.5), the

maximum and minimum curve length occurs when θ → π and when θ → 0, respectively.

In general, for a quadratic spline with n segments in the control polygon, the total curve

length can be computed as

lc =

(
1

2
(ls + le) +

n−1∑
i=1

li(θi)

)
, (3.6)

where ls, le denotes length of starting and ending segment of the control polygon, respectively,

li denotes the length of the ith control polygon segment and li(θi) denotes the length of the

portion of the curve defined by the ith, (i+ 1)th and (i+ 2)th control points.

Cubic splines

In the case of the quadratic spline, the three points generating the spline define a plane and

locally the spline is planar in a knot interval. This is not valid for a cubic spline since the

four generating points and the resulting cubic spline need not be planar. Figure 3.4 shows four

points P1, P2, P3, P4 and the two included angles θ1 and θ2 between the three segments of a
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Figure 3.4: Three segments of the control polygon and planarity

control polygon for a cubic spline. The first three points define a plane and the fourth point

can lie anywhere on a cone with apex at P3 and slant length |P 3P 4| equal to l3. We denote the

vector on the surface of the cone along P 3P 4 by V (α), where α is the angle of rotation about

an unit vector n̂ along the cone axis lying along P 2P 3. For α = 0, the point P4, denoted by

P4(0), lies on the plane formed by P1, P2 and P3 and the vector from P3 to P4(0) is denoted by

V (0). From Figure 3.4, the angle between n̂ and V (0) is seen to be π − (θ1 + θ2) and we can

write

V (0) = [−L3 cos(θ1 + θ2) − L3 sin(θ1 + θ2) 0]
T . (3.7)

The vector V (α) can be obtained as

V (α) = R(α)V (0), (3.8)

where R(α) is a rotation matrix given by the Rodrigues’ rotation formula

R(α) = I3 + (sinα)K + (1− cosα)K2, (3.9)

with I3 denoting a 3× 3 identity matrix and K given by

K =

⎡
⎢⎣ 0 −n3 n2

n3 0 −n1

−n2 n1 0

⎤
⎥⎦ ,

41



is a skew-symmetric matrix which represents the cross product operation with vector n̂ =

[n1, n2, n3]
T .

From Figure 3.4, the vector n̂ is given by [cos θ1, sin θ1, 0]
T and we can write the vector

locating the point P4(α) with respect to the origin of the coordinate system O (or P2) as

P 4(α) = P 3 +R(α)V (0) = P 4(0) +ΔP 4(α), (3.10)

where

ΔP 4(α) =

⎡
⎢⎣ L3 sin θ1 sin θ2 (cosα− 1)

−L3 cos θ1 sin θ2 (cosα− 1)

−L3 sin θ2 sinα

⎤
⎥⎦ .

Using the above, the expression for the spline can be written as

C(u, α) = N1,3(u)P 1 +N2,3(u)P 2 +N3,3(u)P 3 +N4,3(u) (P 4(0) +ΔP 4(α)) , (3.11)

and its derivative can be written as

C ′(u, α) = N ′
1,3(u)

⎡
⎢⎣L1

0

0

⎤
⎥⎦+N ′

3,3(u)

⎡
⎢⎣L2 cos θ1

L2 sin θ1

0

⎤
⎥⎦

+N ′
4,3(u)

⎛
⎜⎝
⎡
⎢⎣L2 cos θ1 − L3 cos(θ1 + θ2)

L2 sin θ1 − L3 sin(θ1 + θ2)

0

⎤
⎥⎦+

⎡
⎢⎣ L3 sin θ1 sin θ2 (cosα− 1)

−L3 cos θ1 sin θ2 (cosα− 1)

−L3 sin θ2 sinα

⎤
⎥⎦
⎞
⎟⎠ .

(3.12)

When the spline lies in a plane and ΔP 4(0) = 0, the spline can be written as

C(u, 0) = N1,3(u)P 1 +N2,3(u)P 2 +N3,3(u)P 3 +N4,3(u)P 4(0), (3.13)

and the derivative can be written as

C′(u, 0) = N ′
1,3(u)

⎡
⎢⎣L1

0

0

⎤
⎥⎦+N ′

3,3(u)

⎡
⎢⎣L2 cos θ1

L2 sin θ1

0

⎤
⎥⎦+N ′

4,3(u)

⎡
⎢⎣L2 cos θ1 − L3 cos(θ1 + θ2)

L2 sin θ1 − L3 sin(θ1 + θ2)

0

⎤
⎥⎦ .

(3.14)
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The square of the elemental length of the cubic spline is given by

dl2(α) = C′(u, α)TC′(u, α)du2 = dl2(0)

+ 2N ′
4,3(u)L3 sin θ1 sin θ2 (cosα− 1)X ′(u, 0) +

(
N ′

4,3(u)L3 sin θ1 sin θ2 (cosα− 1)
)2

− 2N ′
4,3(u)L3 cos θ1 sin θ2 (cosα− 1)Y ′(u, 0) +

(−N ′
4,3(u)L3 cos θ1 sin θ2 (cosα− 1)

)2
+
(−N ′

4,3(u)L3 sin θ2 sinα
)2

,

(3.15)

where (X ′(u, 0), Y ′(u, 0)) denote the X and Y components of C′(u, 0) and Z ′(u, 0), the Z

component of C′(u, 0) is zero from Equation (3.14). The above equation on simplifying gives

dl2(α) = dl2(0) + 2N ′
1,3N

′
4,3L1L3 sin θ1 sin θ2(cosα− 1), (3.16)

and by using the Cauchy-Schwarz inequality, we can write

dl(α)− dl(0) ≤
√

2N ′
1,3N

′
4,3L1L3 sin θ1 sin θ2(cosα− 1), (3.17)

where (cosα− 1) ≤ 0 ∀α ∈ [0 2π].

For a cubic spline, the basis functions N1,3, N4,3 and their derivatives are given by

N1,3 =
1

6
(1− u)3, N ′

1,3 = −1

2
(1− u)2, N4,3 =

1

6
u3, N ′

4,3 =
1

2
u2, (3.18)

and hence dl(α)−dl(0) is real and positive. Additionally, the right-hand side of Equation (3.17)

is maximum when α = π and minimum when α = 0. The length of control polygon remains

the same for all α and hence the elemental length difference between the cubic spline curve and

the control polygon becomes maximum when α = 0. This proves the assertion that the worst

case difference between the length of the control polygon and the cubic spline is when α = 0

(when the four control points lie on a plane) and we do not need to consider the four points

in 3D space. Hence, we consider the case of a planar cubic spline and obtain expressions for

bounds on this difference.

Figure 3.5 shows the four control points Pi, i = 1, ..., 4 on a plane and the two included

angle θ1, θ2 between the first and second, second and third segments, respectively. The initial

configuration of the knot vector is assumed to be a clamped open-uniform knot vector of the

form [u1 u1 u1 u1 u2 u3 . . . um−1 um um um um], u1 ≤ u2 ≤ · · · ≤ um. Note that for a uniform

non-repeated knot vector, the difference between the curve length and control polygon length

is maximum as any repetition of knot vector or subdivision pulls the curve towards the control
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Figure 3.5: Control polygon for a planar cubic spline

polygon thereby reducing the length difference.

From the figure, the points of the spline are P 1 = [L1, 0]
T , P 2 = [0, 0]T , P3 = [L2 cos θ1, L2 sin θ1]

T

and P4 = [L2 cos θ1 − L3 cos(θ1 + θ2), L2 sin θ1 − L3 sin(θ1 + θ2)]
T . The elemental length of the

cubic spline C0(u) is given by

dl =

⎛
⎝( n∑

i=1

dNi,p(u)

du
Xi

)2

+

(
n∑

i=1

dNi,p(u)

du
Yi

)2
⎞
⎠

1
2

du, (3.19)

where (Xi, Yi) are the coordinates of Pi, i = 1, ..., 4.

Substituting the X and Y coordinates of the points on the control polygon and using N ′
i to

denote
dNi,3(u)

du
, we get

dl =
√
A+ B du,

A =

(
∂X

∂u

)2

= (N ′
1L1 +N ′

3L2 cos θ1 +N ′
4 (L2 cos θ1 − L3 cos (θ1 + θ2)))

2

B =

(
∂Y

∂u

)2

= (N ′
3L2 sin θ1 +N ′

4 (L2 sin θ1 − L3 sin (θ1 + θ2)))
2
.

(3.20)

For a cubic spline, the basis functions in u ∈ [0 1] are

N1,3 =
1

6
(1− u)3, N2,3 =

2

3
+

1

2
u3 − u2,

N3,3 =
1

6
+

1

2
u− 1

2
u3 +

1

2
u2 and N4,3 =

1

6
(1− u)3.

(3.21)
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Substituting the above in Equation (3.20), we get

dl =
√
Pu4 +Qu3 +Ru2 + Su+ T du,

P =
1

4
L2
1 +

1

4
L2
3 + L2

2 + L1L2 cos θ1 +
1

2
L1L3 cos(θ1 + θ2) + L2L3 cos θ2,

Q = −L2L3 cos θ2 − 3L1L2 cos θ1 − L1L3 cos(θ1 + θ2)− L2
1 − 2L2

2,

R =
3

2
L2
1 +

5

2
L1L2 cos θ1 +

1

2
L1L3 cos(θ1 + θ2)− 1

2
L2L3 cos θ2,

S = L2
2 − L2

1, T =
1

4
L2
1 +

1

4
L2
2 −

1

2
L1L2 cos θ1,

(3.22)

and the length of the spline generated in the knot interval [0 1] can be obtained as the integral

of the right-hand side in Equation (3.22). Unlike in the quadratic case, for a cubic spline, the

analytical form of the integral as a function of θ1 and θ2 is not known and it is not possible to

find analytical expressions for the difference between the total length of the control polygon and

B-spline curve length. The length difference is a surface (being a function of θ1 and θ2) and can

always be found using numerical integration. We can, however, obtain useful approximations

to the integral by considering the following:

• We consider the effect of change of one angle at a time, i.e., θ1 is varied with θ2 held

constant. This is a reasonable since during the motion of the control polygon, the angles

between the adjacent segments are monitored. When the difference in length between

spline and control polygon due to a single angle change becomes large, subdivision is used

to reduce the difference (see Section 3.3) and hence effect of change in one included angle

can be considered.

• We consider the case of a control polygon with equal lengths, i.e.,

L1 = L2 = L3 = L.

With the above two assumptions, the integral simplifies to

l(θ1) =
L√
2

∫ 1

0

√
1 + (pu4 + qu3 + ru2 − cos θ1) du,

where p = cos(θ1 + θ2) + 2 cos θ1 + 2 cos θ2 + 3,

q = −2 cos(θ1 + θ2)− 6 cos θ1 − 2 cos θ2 − 6 and

r = cos(θ1 + θ2) + 5 cos θ1 − cos θ2 + 3.

(3.23)

Since 0 ≤ u ≤ 1, the term |W | = |pu4 + qu3 + ru2 − cos θ1| ≤ 1. Hence, we can approximate
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(1 +W )
1
2 as

(
1 +

1

2
W

)
by keeping only the first term in the binomial expansion. The first-

order length difference between the control polygon and the curve, in the knot interval [0 1]

due to a change in θ1 (with θ2 held constant) is given by

efirst-order(θ) =
L

2
√
2

∫ π

θ

∫ 1

0

∂W

∂θ1
dθ1du

=
1

120
L
√
2 (13 cos θ − cos θ2 − cos(θ + θ2) + 13) ,

(3.24)

where efirst-order(θ) denotes the length difference when
√
1 +W is approximated by 1+ (1/2)W .

The plot of the exact length difference obtained by numerically integrating right-hand side

of Equation (3.22) and the plot of the first-order approximation is shown in Figure 3.6. For

comparison, the length difference obtained for a quadratic spline is also shown in the figure.
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Figure 3.6: Plot of bound on length difference for a quadratic and cubic B-spline

Summary

We can summarize the results obtained from the quadratic and cubic B-splines as follows:

• For a quadratic B-spline, we can obtain closed-form analytic expression for the curve

length as a function of the angle between the adjacent segments. For any angle θ the

change in curve length from the completely stretched out case (θ = π) can be obtained
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using Equation (3.5) as

equadratic B-spline = l(π)− l(θ) =

(
L1 + L2

2
− l(θ)

)
. (3.25)

• The difference between the length of the control polygon, LCP =
n∑

i=1

Li, and the length

of the curve LC is given by

EC = LCP − LC =
n∑

i=1

Li −
(
1

2
(Ls + Le) +

n−1∑
i=1

li(θi)

)
. (3.26)

• For a cubic B-spline, there is no known closed-form analytic expression for the curve length

as a function of the two angles between the three consecutive segments. The length of

the curve can be obtained by integrating Equation (3.22) and a numerical plot of change

in length with respect to one or both angles can be obtained.

• A first-order approximation of the difference between the length of cubic spline and the

length of the generating control polygon, with one angle held constant and equal control

polygon leg lengths, can be obtained as shown in Equation (3.24). The first-order approx-

imation is conservative to within a maximum of 3.73% difference from the exact length

difference obtained from integration.

• It can be seen by comparing the plots in Figure 3.6 that a cubic spline gives less length

difference when the angle between two adjacent segments change – for a θ value of 100◦

the length difference for a quadratic spline is 15% where as for a cubic spline it is 10%.

A consequence of this result is that less number of subdivisions (see Section 3.3) may be

required during the motion of the flexible 1D object when it is modeled with cubic splines.

• Although the plots in Figure 3.6 are for equal lengths, they serve as a design tool whereby

the user can choose a threshold angle to limit the change in curve length within desirable

limits.

• When a curve is modeled using cubic splines, C2(curvature) continuity is guaranteed.

Majority of real-world problems demand a maximum of curvature continuity or lesser and

hence, the results have been obtained only for a quadratic and cubic spline. However, first-

order results along similar lines as the cubic spline can also be developed for higher-order

splines.
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One key consequence of the above results is that as the control polygon is moved the angle

between adjacent segments will change and the length of the spline curve will change. The

key idea of length preserving motion of the flexible 1D object will not be possible. In the next

Section, we present an adaptive algorithm to approximately preserve the length of the spline

curve to within a user specified tolerance when the control polygon is moved.

Approximate length preservation in splines

As discussed in Section 3.2, error in length of the B-spline curve from an initial value can be

related to the included angle θ between two adjacent segments. The key idea in approximate

length preservation is to sub-divide a segment of the control polygon when the included angle

between two adjacent segments is less than a threshold value and merge the two adjacent

segments when the included angle is larger than another threshold value. In the subdivision
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Figure 3.7: Subdivision and merging in splines

step, the control polygon is modified by inserting control points as illustrated in Figure 3.7.

As shown, the segment P1P2 in Figure 3.7 (a) is replaced by two segments P1P2 and P2P3 in

Figure 3.7 (b) with the original segment P1P2 shown as P ′1P
′
2. From the construction and using

triangle inequality in Figure 3.7 (b), |P1P
′
1| + |P ′1P2| ≤ |P1P2| and |P2P

′
2| + |P ′2P3| ≤ |P2P3|.

Hence the length of control polygon P0P1P2P3P4 after subdivision is less than the length of the

original control polygon P0P1P2P3. If the segments P1P2 and P2P3 are further subdivided, as

in Figure 3.7 (c), the total length of the modified control polygon will decrease even more. In

the limit of infinite subdivisions, the length of control polygon will coincide with the length of

the curve.

One effect of subdivision is that the number of control points (and the number of segments)

monotonically increases over time depending on the extent of bending/warping of the control

polygon during the motion and this increases the computation requirement in the tractrix based

motion algorithm. To overcome this problem, we reduce the number of segments in the control

polygon when parts of the control polygon stretch out and the included angle is larger than a
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pre-defined threshold. The reduction in the number of segments is schematically opposite of

subdivision – the sequence for merging is from right to left in Figure 3.7. Note that during

merging the length of the resulting control polygon increases.

We discuss in detail and present mathematical results for subdivision and merging in the

rest of this section.

Subdivision in splines

=⇒
Knot Insertion

=⇒
Knot Removal
(Removes a segment)(Adds a segment)
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θ
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L
′
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(a) (b)

Figure 3.8: Knot insertion and knot removal

Figure 3.8 (a) shows subdivision (also called knot insertion). Assuming the control polygon

segments are of lengths L1, L2 and the included angle is θi, the length of the portion of control

polygon before subdivision (LCP0) and the length after subdivision (LCP1) is given by

LCP0 = L1 + L2 and LCP1 = cL1 + dL2 + L3 (0 < (c, d) < 1), (3.27)

where by using law of cosines

L3 =
√
((1− c)L1)2 + ((1− d)L2)2 − 2(1− c)(1− d)L1L2 cos θi,

and c, d are the ratios for subdivision which can be chosen by user. Hence, the decrease in

length of the control polygon after subdivision is given by

ΔLCP = LCP0 − LCP1

= (1− c)L1 + (1− d)L2 −
√

((1− c)L1)2 + ((1− d)L2)2 − 2(1− c)(1− d)L1L2 cos θi.

(3.28)

From the above, as the portion of the control polygon stretches out and the included angle

θi → π, the change in length of the control polygon lim
θi→π

ΔLCP → 0.

During subdivision, the length of the spline curve remains the same. As mentioned earlier,

the length of the control polygon, LCP , is more than the length of the spline curve, LC , and we
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can write

LCP = LC + e, (3.29)

where e ≥ 0 is the difference in length between the control polygon and the spline curve.

During subdivision, the length of the spline curve is not changed, and from Equations (3.28)

and (3.29), we get

LCP 1 ≤ LCP 0 and e1 ≤ e0, (3.30)

where e0 and e1 are the length differences before and after subdivision, respectively.

The above proves that the length difference between spline curve and control polygon de-

creases during a subdivision. Most importantly, the angles between the adjacent segments of

the control polygon increases, and, as shown in Figure 3.6, increasing the angle reduces the

difference in the length between the spline curve and the control polygon. Hence, through

subdivision, it is possible to control spline length by setting a threshold angle value θth. If

the angle between any two segments is less than this threshold (θi ≤ θth), then the control

polygon is subdivided to obtain two new control points. As θth increases, length difference on

any elemental segment reduces which in turn reduces the total difference in length. Hence the

threshold angle plays a key role in the total difference between length of the control polygon

and curve. From the analytical results in the previous section and from Figure 3.6, a suitable

θth can be chosen to satisfy a desired length error requirement. In extensive simulations (see

Section 3.4), it is observed that a threshold angle of 140◦ gives total difference less than 5%.

Merging in splines

When two adjacent segments of a control polygon are merged (by knot removal), the number

of segments in the control polygon will reduce and the computations required for the tractrix

based motion algorithm will reduce. Knot removal is shown schematically in Figure 3.8 (b).

As mentioned earlier, in case of knot removal, the length of the control polygon increases and

the length before and after knot removal can be written as

LCP0 = L1 + L2 + L3 and LCP1 = L1 + L′2 + L′3 + L3. (3.31)

But we know that θpi = (θ1 + θ2)− π and by using the law of sines,

L′2 = − sin θ2
sin(θ1 + θ2)

L2 and L′3 = − sin θ1
sin(θ1 + θ2)

L2. (3.32)
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From Equation (3.31) and Equation (3.32), the increase in length of the control polygon can

be computed as

ΔLCP = LCP1 − LCP0 = − sin θ2
sin(θ1 + θ2)

L2 − sin θ1
sin(θ1 + θ2)

L2 − L2. (3.33)

Unlike subdivision, the increase in the length of the control polygon is a function of two angles

θ1 and θ2 and thus lies on a surface. When (θ1, θ2) → π, lim
(θ1,θ2)→π

ΔLCP → 0 and we can infer

that knot removal should be done when the θ1 and θ2 are close to π.

Knot removal has the additional complexity of not yielding a unique solution/curve (see

pp. 179 in [1] for further details). As shown in Figure 3.9, there are two possible solutions for

the merged spline curves, which can be derived from the original spline (black). The length of

the two spline curves can be computed by integration, and are denoted by LC1 and LC2 . We

denote the control polygon and curve length before merging by LCP and LC , respectively. Since

merging increases the length of the control polygon, we can write

LCP1 ≥ LCP , LCP2 ≥ LCP , LCP1 = LC1 + e1, LCP2 = LC2 + e2, (3.34)

where the two control lengths are denoted by LCP1 , LCP2 , and the difference between the curve

length and the control polygon length are denoted by e1 and e2. As the length of the two

control polygons is known, the terms e1 and e2 can be computed and the solution with lower

difference between the spline and control polygon length is chosen as the new curve definition.

For a knot of multiplicity 2 to be removed once, the condition to be satisfied is that two points

P1

P2

P3

P4

P 1
s

P 2
s

Solution 2: Spline defined by P1P
2
s
P4

Solution 1: Spline defined by P1P
1
s
P4

Original Spline: Spline defined by P1P2P3P4

Figure 3.9: Illustration of multiple solutions encountered in merging process
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given below

P 1
s =

P2 − (1− α1)P1

α1

and

P 2
s =

P3 − α2P4

1− α2

,

(3.35)

with α1 =
u3 − u1

u4 − u1

, α2 =
u3 − u2

u5 − u2

must coincide [1]. As shown in Figure 3.9, the two points-

P 1
s and P 2

s , lie on the vector directed along P1P2 and P4P3. Substituting for points P1 =

[L1 0]
T , P2 = [0 0]T , P3 = [L2 cos θ1 L2 sin θ1]

T , and P4 = [L2 cos θ1−L3 cos(θ1+θ2) L2 sin θ1−
L3 sin(θ1 + θ2)]

T , we get

P 1
s =

u4 − u3

u3 − u1

[
−L1

0

]
and

P 2
s =

1

u5 − u3

[
L2 cos θ1(u5 − u3) + L3 cos(θ1 + θ2)(u3 − u2)

L2 sin θ1(u5 − u3) + L3 sin(θ1 + θ2)(u3 − u2)

]
.

(3.36)

Since merging is done only when both the angles θ1 and θ2 cross the threshold angle, the limiting

case can be taken as θ1 = θ2 = θm. For equi-spaced knots, the above equation simplifies to

P 1
s =

[
−1

2
L1

0

]
and P 2

s =

[
L2 cos θm + 1

2
L3 cos 2θm

L2 sin θm + 1
2
L3 sin 2θm

]
(3.37)

Figure 3.10 shows the two points P 1
s and P 2

s that define the two control polygons. We can
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Figure 3.10: Portion of spline to be merged (knot removal)
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make the following observations from the above analysis:

• If link lengths L1 = L3 = L, then in the limiting case mentioned above (θ1 = θ2 = θm),

the portion of spline shown in Figure 3.9 is symmetric about an axis AA passing through

the midpoint of points P2 and P3. The lengths of the two curves are equal and either of

the two curves can be chosen after merging. The two curves and the length difference due

to merging as a function of θm are shown in Figure 3.11.
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Figure 3.11: Multiple merging solutions when L1 = L3

• In a more generic case, where L1 �= L3, the two solutions are asymmetrical. This is

shown in Figure 3.12 for arbitrarily chosen control polygon leg lengths L1 = 1, L2 = 3

and L3 = 4. The difference between the curve length and the control polygon is shown

in Figure 3.12(b); during simulations we noted that the smaller of the two differences is

chosen.

• Figure 3.12 can be numerically computed and generated for other combination of lengths.

Similar to subdivision, the plot of length difference versus θm can be used to choose the

threshold angle for merging. From extensive numerical simulations (see also Section 3.4),

it was observed that an angle of 160◦ for merging (knot removal) resulted in a total spline

curve length error of less than 5%.

Algorithm for approximate length preservation

Based on the analysis in Section 3.3, the algorithm followed for approximate length preserving

configuration planning for a flexible 1D body is summarized in the flowchart of Figure 3.13.
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Figure 3.12: Multiple merging solutions when in a generic scenario

The inputs to the algorithm are the initial curve configuration, the path (curve) along which

the leading end is moved, the velocity of the motion and location of the perturbed point on

the curve. Based on these data, the initial control polygon configuration and the open uniform

knot vectors are derived and initialized into the algorithm. The output is the motion of the

flexible 1D object.

Steps in the Algorithm

1. Obtain the control polygon by interpolating the vertices/points in the input poly-line.

The number of segments in the control polygon is taken to be n, degree 3 and a clamped

open uniform knot vector is used. The maximum deviation between the curve and the

points is set to a predefined threshold for terminating the interpolation algorithm.

2. Initialize length parametrized motion of the leading end and discretized it for smooth

visualization of motion.

3. For each incremental motion, starting from leading segment, recursively obtain the motion

of all segments using the tractrix equations.

4. Perform threshold crossover checks for each included angle in the control polygon and

execute subdivision or knot removal algorithms.

5. Update the new control polygon configurations and knot vectors and continue to next

incremental motion of the leading end.
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Figure 3.13: Flow chart of the algorithm

6. Repeat steps 3, 4 and 5 till the full motion of leading end is completed.

In the next section, we present numerical simulation results illustrating the approach developed

in this work.

Numerical simulation

In this section, we present numerical simulation results for a chosen one-dimensional flexible

object with 5 links of unit link length. All simulations were done using the commercial software

MATLAB [80] on a PENTIUM quad core PC with 16 Gb RAM running the LINUX operating

system. The first two simulations are for an arbitrarily chosen 2D path of the leading end

and there are two 3D simulation. We present simulation results for an exact length-preserving

tractrix-based algorithm (labeled as TRX), an approximate length preserving tractrix and spline

based algorithm with subdivision (labeled as TRX SD) and finally an approximate length pre-

55



serving tractrix and spline based algorithm with subdivision and knot removal (labeled as

TRX SD MRG). In all the simulations the initial configuration of the flexible 1D object is a

straight line – there is no restriction on the initial configuration and it is chosen as a straight line

to ensure that the initial length error between the actual object and the discretized object/curve

is zero.

In the first simulation, the leading end is moved along an arbitrarily chosen 2D path in

steps of 0.5 length units over 52 steps. The arbitrary path is shown in Figure 3.14 (a). Along

the path, seven arbitrary snapshot locations are chosen and these are denoted by 0© through

6©. The configuration of the flexible 1D object at each of the seven snapshot locations of the
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(b) Trajectory comparison with different algorithms

Figure 3.14: Simulation a planar curve subjected to generic 2D motion

leading end is shown in Figure 3.14 (b) – as mentioned at the start the flexible 1D object is a

straight line (see configuration 0© in Figure 3.14 (a)). The configuration of the flexible 1D object

computed according to the three algorithms, namely TRX, TRX SD and TRX SD MRG, are

shown in Figure 3.14 (b).

In the purely tractrix (TRX) algorithm, the flexible 1D object needs to be discretized into

a large number of linear segments to realistically represent the continuous flexible 1D object

and to make the motion look smooth. As the number of linear segments, n, increases, the

computations, as expected, grow in a O(n) manner – the simulation time grows from 40 seconds

for n = 10 to about 1680 seconds for n = 200. In Figure 3.14(b), the configuration simulations

for the tractrix based simulations are done for n = 20.

For the approximate length preserving tractrix and spline based algorithms (TRX SD and
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TRX SD MRG), the initial number of linear segments in the control polygon is chosen as 6

and the angle threshold for subdivision was chosen as 140◦. The threshold angle for removing

a control point/knot was chosen as 160◦. Snapshots of the curve for different points on the

chosen path are shown in Figure 3.14(b) for illustrating the qualitative nature of the results.

As mentioned the maximum percentage length difference depends on the chosen threshold

angles (140◦ for subdivision and 160◦ for knot removal in this simulation) and the number of

control points required to ensure that the angle threshold is not exceeded, in this case, turns

out to be 20 for subdivision algorithm and 18 for subdivision with merging algorithm as seen

from the Figure 3.15. The maximum error introduced by merging at any instant over the whole

simulation is 1.8%.

Figure 3.15(b) shows the variation of curve length and Figure 3.15(a) shows number of

control points in the control polygon backbone over the simulation duration. As seen, the

algorithm adapts to the characteristics of the motion by adding control points as and when

required to compensate for the warping of the curve. It also removes control points as and

when the curve can be simplified and represented in terms of a lesser number of control points.

From the figures, it is observed that the maximum number of control points to represent the

curve over the complete duration of simulation is 17 for TRX SD MRG algorithm.

Intuitively, the higher the number of control points chosen initially, the lesser will be the

error in length between control polygon and the spline. This is demonstrated in Table 3.1 in

which results of TRX SD MRG simulation run on the planar curve input as 20 line segments

is shown. As seen in the results, as the initial number of control points increases, the error in

total length over the whole simulation comes down significantly to 4.90%. However, as seen in

the results, the number of line segments in the backbone also increases accordingly. Finally,

No.
Initial number
of points in
Control Polygon

Max. %
Error in
Curve Length

Max. number
of sides
in Control Polygon

Total
Simulation
Time(sec.)

1 7 12.65 14 25.53
2 10 8.81 14 25.80
3 13 6.74 18 36.34
4 16 4.90 19 37.37

Table 3.1: Algorithm performance comparison for different initial number of control points in
the control polygon

to see the effect of the threshold angle, we performed the TRX SD MRG simulations on the

generic planar curve discretized into 20 segments with different threshold angles for subdivision

and knot removal. The results are given in Table 3.2. Clearly, as the threshold angle increases,
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the curve sub-divides more frequently thereby resulting in more number of sides in the control

polygon. However, the length error keeps on reducing with higher thresholds because the curve

subdivides more to keep the length difference within bounds. The simulation results illustrate

the theoretical results developed earlier in Section 3.3.

No.
Subdivision
threshold(deg.)

Knot
removal
threshold(deg.)

Max. percentage diff.
in length b/w curve
and control polygon

Max. number
of sides in
control polygon

Total
simulation
time(sec.)

1 160 170 8.60 19 37.51
2 140 160 12.65 16 30.73
3 120 150 20.35 12 18.91

Table 3.2: Algorithm performance comparison for different threshold angles for subdivision and
knot removal
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Figure 3.15: Simulation a planar curve discretized by 50 linear segments subjected to generic
2D motion

It may be mentioned that the actual numbers for length error and control points will vary

based on the motion. However, the algorithm adaptively computes the lowest number of control

points to effectively represent the curve respecting the prescribed error bounds. To illustrate

this, a slightly modified trajectory of the leading end is chosen as shown in Figure 3.16. In

this trajectory at the end there exists a longer straight segment. The results for the simulation

for the new motion are shown below. The number of segments initially chosen was 20 and the

merging thresholds are relaxed to 150◦. Other parameters were kept exactly the same as before.
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As expected, due to the presence of straight trajectory towards the end, the number of control

points further reduce to 12 when compared to 18 in the earlier case. However, due to relaxed

merging threshold, the maximum error introduced by merging is now seen to be 4%. The
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Figure 3.16: Modified motion trajectory for second simulation
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Figure 3.17: Simulation of motion of a planar 1D curve with generic 2D motion at the leading
end

numerical results shown in above figures clearly shows that the spline based algorithm results

in a more natural motion(locally dying perturbations and minimal overall motion) together

with a significant reduction in computation time. Additionally, the spline based algorithm is

tunable for tolerances on length error specified by user requirements via the threshold values

of the angles and the initial number of control points.
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The algorithm is easily extendable to three dimensional space without any significant modifi-

cations. Figure 3.18 shows the input desired motion of the leading end and simulated snapshots

of motion of the complete flexible 1D object using the adaptive spline based subdivision algo-

rithm proposed in this chapter for a generic motion in three dimensions. Below, we describe

No. Algorithm used
Initial number
of points in
control polygon

Maximum percentage difference
between curve length and
control polygon length

Total
simulation
time(sec.)

1 TRX 15 0.0 280
2 TRX 25 0.0 914
3 TRX SD MRG 12 8.9 244
4 TRX SD MRG 15 4.7 300

Table 3.3: Algorithm performance comparison for in 3D

results for a set of three simulations carried out for a generic motion in three dimensions. In

the first simulation, we used the exact length preserving tractrix based algorithm (TRX) for

motion planning and used 15 linear segments to approximate the 1D flexible object. In the

second simulation, the number of linear segments is increased to 25 for enhanced smoothness

and the third simulation uses the approximate spline based algorithm, the path and snapshots

of which are shown in Figure 3.18. The time for simulating with 15 segments is about 280 sec-

onds while it increases to 914 seconds when 25 segments are used to make the motion appear

more smoother. In comparison, the third simulation shows an equally smooth motion with the

approximate length preserving algorithm (difference less than 10%) in about 244 seconds. It

may be noted that the approximate length preserving spline based algorithm takes even smaller

time than the exact length preserving algorithm with 15 segments as only a 12 sided control

polygon is employed initially. As mentioned in the text, the length error can be brought down

below 5% if more number of legs are used to represent the curve in the initial control polygon

is used – if a 15 sided control polygon is used and time required is of the order of 300 seconds.

Table 3.3 summarizes the simulation results for the 3D trajectory of Figure 3.18.

Results for a second set of simulations shows similar improvement in execution time and

smoothness in motion when the leading end is moved along a completely different arbitrary

trajectory (Figure 3.19(a)). Motion snapshots of this simulation are shown in Figure 3.19(b).

Summary

In this chapter, we have presented a new paradigm for the simulation and rendering of the

motion of 1D flexible objects. The motion of the flexible 1D objects, represented using splines,

60



−10
0

100

10

20

30

40

50

60

0

10

0

1

2

3

4
5

6
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(b) Motion snapshots along the path at various points

Figure 3.18: Motion simulation of an arbitrary curve(A) subjected to a generic 3D motion at
the leading end
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(a) A generic 3D motion for the leading end

−20

0

20 0
20

40
60

80
100

120
140

160

20

0

20

0

1
2

3 4
5

6

(b) Motion snapshots along the path at various points

Figure 3.19: Motion simulation of an arbitrary curve(B) subjected to a generic 3D motion at
the leading end

is computed using a tractrix based approach. The tractrix based approach yields a more natural

and realistic motion with the motion dying out along the length of the flexible 1D object. The

use of splines and adaptive modification of the control polygon leads to an approximate length
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preservation with efficient computation and smoother rendering of the motion of the 1D flexible

object. An important feature of the proposed algorithm is that it is a purely kinematics or

geometry based algorithm. It is shown that the use of splines and adaptive modification of the

control polygon increases computation efficiency and the increased efficiency is more clearly

observed when the number of segments in the input is large (more than 20 in the simulations

shown in this work). The approach can be easily applied to simulation and realistic rendering

of the motion of generic 1D flexible objects such as snakes, chains, ropes and for redundancy

resolution in hyper-redundant robotic manipulators.

62



Chapter 4

Motion Planning with Obstacle

Avoidance

Introduction

In Chapter 2, we had presented a tractrix-based approach for motion planning for flexible

one-dimensional objects discretized into straight segments. In this chapter we first present an

extension of the tractrix-based approach to include obstacle avoidance using the concept of a

constrained Lagrangian. The statement of the problem being tackled here is as follows: Given

an n-link hyper-redundant robot (n � 6 in 3D & n � 3 in 2D) and a desired path for the head

to follow through a field of smooth, implicitly defined obstacles, plan a natural motion of the

entire robot (locally dying perturbations and minimal overall motion), simultaneously avoiding

obstacles by gracing them(hence with least possible movement of the robot). In this chapter,

we model the obstacles as smooth differentiable surfaces in 3D space and curves in the plane

as this enables us to use the calculus of variations approach developed for the motion planning

of flexible one-dimensional objects. It is shown that the motion of the links near the obstacles

are normal to the obstacles and away from the obstacles the motion is along the link as in the

tractrix-based approach. The developed theory is illustrated with numerical simulations. In

the second part of the chapter, the details of a 12 link planar hyper-redundant robot prototype

are presented. The tractrix-based approach, in free space and in the presence of obstacles,

is implemented on the hyper-redundant robot. It is shown that the tractrix-based approach

indeed results in a more natural motion of the hyper-redundant robot and avoids the obstacles

during its motion.

The chapter organization is as follows. Section 4.2 describes the constrained Lagrangian

formulation of the obstacle avoidance problem for an extended one-dimensional body. The
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constrained optimization requires that the obstacles are represented by smooth differentiable

surfaces and in Section 4.2.1, we describe in brief representation of objects using super-quadrics.

Section 4.3 presents simulation results for snake robot moving in a two- and three-dimensional

space with obstacles represented by super-quadrics. In this section, the theoretical results re-

lated to obstacle avoidance of the flexible one-dimensional object are also presented. Section 4.4

describes simulations and experiments conducted on a 12-degree-of-freedom (DOF) prototype

serial robot, and discusses the results of the experiments. Section 4.5 summarizes the contents

of this chapter.

Constrained Lagrangian approach

As shown in Chapter 2, the tractrix motion is the solution to the Cartesian velocity minimization

under length preservation constraint. For a flexible one dimensional object of length L, the

optimization problem constructed is as follows.

Min I
x(s,t),y(s,t)

:

∫ L

0

∫ T

0

√(dTx

dt
+

∂x

∂t

)2
+
(dTy

dt
+

∂y

∂t

)2
dtds

Subject to

Λ(t) : A =

∫ L

0

(√(∂x
∂s

)2
+
(∂y
∂s

)2 − 1
)
ds = 0

Data : x(s, 0), y(s, 0), Tx(t), Ty(t), x(0, t) = 0, y(0, t) = 0

(4.1)

The above global optimization problem can be broken down into smaller optimization problems

on discretized rigid link kinematic chain approximation of the flexible object. If the discretized

form of the flexible object made of (n − 1) links is P = [p1 p2 . . . pn]
T = [X, Y ] where

X = [x1(t) x2(t) . . . xn(t)]
T and Y = [y1(t) y2(t) . . . yn(t)]

T , then the reduced set of optimization

problems are as follows.

Min I
pi+1(t2))

:
(
Δ(Tx + xi+1)

)2
+
(
Δ(Ty +Δyi+1)

)2
Subject to

λi :
√

(xi+1(t2)− xi(t2))2 + (yi+1(t2)− yi(t2))2 = L

Data : pi(tm), pi+1(t1), Tx(tm), Ty(tm), p1(t1) = (0, 0)T

∀i ∈ [1, n− 1] & ∀ t1 ∈ [0 . . . T ], t2 = t1 +Δt

(4.2)

It may be noted that here m = 1, 2.
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Given any two dimensional circular obstacle C ∈ R
2 (or it’s topological equivalent curve),

by Jordan-Brouwer Theorem[81], R2−C has two components, an interior(I) and an exterior(E)

with C bounding both(obstacle boundary). For example, given a circular obstacle with center

Pc : (xc, yc) and radius R, the classification of a point Pi : (xi, yi) into the three partition sets

can be done as follows.

(xi − xc)
2 + (yi − yc)

2 −R2

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
> 0 ⇒ Pi ∈ E

< 0 ⇒ Pi ∈ I

= 0 ⇒ Pi ∈ C

(4.3)

The Jordan curve theorem has also been extended to R
3 wherein any topologically equivalent

spherical obstacle boundary (S) partitions the points in space into points in the interior set (I),

points in the exterior (E) and points on the surface of spherical obstacle (S). The partitioning

is based on the value of the implicit representation of the obstacle boundary f(P ) = 0, P ∈ R
2

or R3. For example, for the circular obstacle in Equation (4.3), f(P ) = (xi−xc)
2+(yi− yc)

2−
R2 ∀P ∈ R

2), the general classification for spatial point P ∈ R
3 or R2 for this obstacle is as

follows.

E ={P |f(P ) > 0}
I ={P |f(P ) < 0}
C ={P |f(P ) = 0}

(4.4)

If the implicit obstacle boundary representation f(P ) = 0 is differentiable, then such obstacles

can be incorporated as constraints in optimization problem and classical optimization algo-

rithms like gradient-based methods can be used. In case of a single obstacle with implicit

boundary representation f(P ) = 0, the modified optimization problem for obstacle avoidance

takes the following form.

Min I
pi+1(t2))

:
(
Δ(Tx + xi+1)

)2
+
(
Δ(Ty +Δyi+1)

)2
Subject to

Λi :
√

(xi+1(t2)− xi(t2))2 + (yi+1(t2)− yi(t2))2 = L

β : f(P ) > 0

Data : pi(tm), pi+1(t1), Tx(tm), Ty(tm), p1(t1) = (0, 0)T

∀i ∈ [1, n− 1] & ∀ t1 ∈ [0 . . . T ], t2 = t1 +Δt

(4.5)

65



More generally, if there are multiple interfering obstacles Oj, 1 ≤ j ≤ p, each with an ex-

terior Ej, then the intersection of all the individual exteriors gives the permissible space for

motion planning, namely E =
p⋂

j=1

Ej. Hence, the most general form of the optimization problem

for obstacle avoidance in presence of multiple obstacles Oj each having differentiable implicit

representation fj(P ) = 0 is as follows.

Min I
pi+1(t2))

:
(
Δ(Tx + xi+1)

)2
+
(
Δ(Ty +Δyi+1)

)2
Subject to

Λi :
√

(xi+1(t2)− xi(t2))2 + (yi+1(t2)− yi(t2))2 = L

βj : fj(P ) > 0 ∀ j ∈ [1, p]

Data : pi(tm), pi+1(t1), Tx(tm), Ty(tm), p1(t1) = (0, 0)T

∀i ∈ [1, n− 1] & ∀ t1 ∈ [0 . . . T ], t2 = t1 +Δt

(4.6)

It may be noted that in this thesis, existence and knowledge of an obstacle free path for

the head/leading end of the curve is assumed and taken as the prerequisite for the following

algorithm. Also in this work, we restrict the obstacle shapes to a span a class of objects known

as differentiable super-quadrics as they represent superset of differentiable implicit functions

making them amenable for use in minimization using calculus of variations and other gradient

based methods.

Differentiable super-ellipses and super-ellipsoids

Super-quadrics were first invented by Piet Hein [82, Chapter 18] and studied by Barr [83]. They

are defined as follows.

(∣∣∣∣ xa1
∣∣∣∣

2
ε1

+

∣∣∣∣ ya2
∣∣∣∣

2
ε1

) ε1
ε2

+

∣∣∣∣ za3
∣∣∣∣

2
ε2

= 1, ai, εj ∈ R & ai �= 0 (4.7)

To limit to cases of curves/surfaces with well defined gradients, this work restricts to super-

ellipsoids of the following form.

((( x

a1

)2) 1
ε1 +

(( y

a2

)2) 1
ε1

) ε1
ε2 +

(( z

a3

)2) 1
ε2 = 1

0 ≤ ε1 ≤ 1, 0 ≤ ε2 ≤ 1

(4.8)
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The family of manifolds generated by variation of parameters ε1 and ε2 in Equation (4.8)

includes circles, ellipses, rectangles, cylinders, cuboids, cubes, ellipsoids, spheres etc. Some

of shapes generated with their parameters are shown in Figures 4.2 and 4.1. Note that ε1 =

p2/q2, ε2 = p1/q1. It may also be noted that some shapes though they have the same exponent

parameters, differ in scaling along the axes, namely, the variables ai. Examples are spheres

and ellipsoids, cubes and cuboids and this family of curves and surfaces have Equation (4.8) as

their exterior-interior partition function.

ε1 = 1, a = b

ε1 = 1, a > b

ε1 =
1
3, a < b

Figure 4.1: Super-ellipses

Obstacle avoidance

As shown in Chapter 2, the optimization of the motion of the articulated chain (in free space)

is equivalent to the iteration of the tractrix curve equations to a single link at a time. Hence,

we consider the case of a single link and without loss of generality, consider a single obstacle

with boundary represented by implicit function f(x, y) = 0. These assumptions simplify the

2D variational problem (4.1) to

Min I
x(t),y(t)

:

∫ T

0

√(
Ṫx + ẋ

)2
+
(
Ṫy + ẏ

)2
dt

Subject to

Λ(t) : A = x2 + y2 − L2 = 0

Ω(t) ≥ 0 : B = f(x, y) ≥ 0

Data : x(0), y(0), Tx(t), Ty(t)

(4.9)

Applying the Euler-Lagrange equations on the augmented Lagrangian L = I+Λ(t)A−Ω(t)B

and simplifying, this takes the following form.

Ṫx + ẋ = Rc

(
Ω(t)

∂f

∂y
− 2Λ(t)x

)
(4.10a)
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Ṫy + ẏ = Rc

(
Ω(t)

∂f

∂x
− 2Λ(t)y

)
(4.10b)

where Rc is the radius of curvature of the trailing end path and Ω(t) and Λ(t) are the Lagrange

multipliers. Clearly, we see that the velocity spans a half space through a linear combination

of obstacle outward normals and slope of the link. Figure 4.3 illustrates this.

(a) p1

q1
= 1

5 ,
p2

q2
= 1 (b) p1

q1
= 1

5 ,
p2

q2
= 1

5

(c) p1

q1
= 1, p2

q2
= 1 (d) p1

q1
= 1, p2

q2
= 1

(e) p1

q1
= 1, p2

q2
= 1

7 (f) p1

q1
= 1

3 ,
p2

q2
= 1

Figure 4.2: Super-ellipsoids
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In the absence of obstacles, the motion is a pure tractrix motion with the velocity along the

link. In the presence of obstacles, the velocity of the tip lies in the above mentioned half space

and ensures obstacle avoidance. The exact direction of the velocity depends on the relative

magnitudes of the Lagrange multipliers but the magnitude of the velocity is higher in areas

where the path tangent changes rapidly (small Rc) and vice-versa.

(Ṫx, Ṫy)

O
Obstacle

Velocity Half Space

Link

f(x, y) = 0

−→
N =

(
∂f

∂x
, ∂f

∂y

)

−→
S = (x, y)

f(x, y) ≤ 0

Figure 4.3: Span of calculated link velocity solutions. Note that the calculated velocity is guaranteed
to move the body away from the obstacle.

Simulation results and discussion
In this section, the numerical simulation1 results are presented for a chosen one-dimensional

(1D) flexible object whose leading end is moved along a generic path in two- and three-

dimensional space. In all the simulations, the initial configuration of the object is chosen

to be a straight line although there is no restriction on initial configuration.

In the first simulation done in two-dimensional (2D) space, a 1D object of length 5 units is

discretized into 30 rigid segments connected by rotary joints yielding a hyper-redundant system

with 30 degrees of freedom. The leading end is moved along an arbitrarily chosen path in steps

of 0.05 length units for 540 steps. The arbitrary path is shown in Figure 4.4. The path is chosen

so as to avoid the obstacles and should be continuous(need not be differentiable or tangential

to the obstacle boundaries). Along the path, eight arbitrary snapshot locations are chosen

denoted by 1© to 8©. The initial configuration (at snapshot 1©) of the 1D flexible object is

shown in blue.

1All simulations were done using the commercial software MATLAB [80] on a Pentium quad core PC with
16Gb RAM running Linux operating system.
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Figure 4.4: Path for 2D simulation with snapshot locations and initial configuration of the
flexible 1D object

The configuration of the 1D flexible object at each of the 8 snapshot locations of the leading

end are shown in Figure 4.5. As seen here, the obstacles are avoided and motion is minimized

as one moves away from the leading end of the flexible object. In other words, tractrix motion

is followed in obstacle-free spaces and algorithm automatically switches to obstacle avoidance

once the objects are encountered. This is totally determined by active and passive constraints

in the optimization problem posed here. Whenever the obstacle lies outside the

Figure 4.5: Motion snapshots 1© to 8© for 2D simulation

1

(a) Snapshot at 1©

2

(b) Snapshot at 2©
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3

(c) Snapshot at 3©

4

(d) Snapshot at 4©

5

(e) Snapshot at 5©

6

(f) Snapshot at 6©

7

(g) Snapshot at 7©

8

(h) Snapshot at 8©
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Figure 4.6: Path for 3D simulation with snapshot locations and initial configuration of the
flexible 1D object

In the second simulation, the motion planning of the 1D flexible object is done in for an

arbitrarily chosen three-dimensional (3D) motion of the leading end. Here too, the initial

configuration of the object is chosen as a straight line. A flexible 1D object of length 30 units

is discretized into 40 rigid segments with two degree of freedom joints connecting the segments.

The leading end is subjected to an arbitrarily chosen motion discretized in to steps of 0.2 length

units and the total motion is for 400 steps. The path is in an obstacle field with 7 obstacles of

type super-quadrics discussed earlier. It can be seen that the extended body avoids obstacles

by gracing them tangentially in worst case. This demonstrates the efficacy of the algorithm.

Figure 4.7: Motion snapshots 1© to 8© for 3D simulation

1

(a) Snapshot at 1©

2

(b) Snapshot at 2©
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3

(c) Snapshot at 3©

4

(d) Snapshot at 4©

5

(e) Snapshot at 5©

6

(f) Snapshot at 6©

7

(g) Snapshot at 7©

8

(h) Snapshot at 8©
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Experimental results and discussion

In this section, the results on test runs carried out on an experimental prototype is discussed.

The set-up consists of an 12-link serial robot as shown in Figure 4.8. It has single degree-of-

freedom revolute joints connecting each adjacent pair of links. The joints are aligned parallel

to each other, allowing for only planar motion. Each link additionally has a powered wheel to

enable overall mobility of the mechanism and at each instant the position and orientation of the

head in the XY -plane is specified. Each link consists of a bracket for two motors, one for the

body joint and the other for the wheel motor, as seen in Figure 4.9. The link length, measured

from one body joint to the next, is 85 mm. The robot fits into a cylinder of 130 mm diameter.

The links were fabricated using a 3D printing machine and the wheels are mounted alternately

on either side of the robot. The joints are driven by standard Futaba S3003 RC hobby servos

Figure 4.8: Experimental 12-DOF snake robot with wheels for demonstrating obstacle avoidance.

while the wheels are driven by SpringRC SM-S4303R continuous rotation (CR) hobby servos.

The servos have a 3-wire interface, with one wire each for positive supply, negative return and

command input signal. The servos feature an integrated closed-loop controller to maintain the

position/speed according to the command input pulse, thus making a compact actuator ideal

for this purpose. On the flip side, the 3-wire interface of the servos does not permit higher level
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Figure 4.9: Close-up of joint and wheel assembly of the experimental snake robot.

monitoring of the motor position or speed, thus reducing the possibility of effective higher level

motion control. The servos take a command position in the form of a pulse-width modulated

(PWM) pulse with a nominal time period of ∼ 30 ms. For the S3003 servos, a pulse width of

∼1 ms corresponds to the −90◦ position and a pulse width of 2 ms corresponds to the +90◦

position, with the motor centered at 1.5 ms. For the SM-S4303 servos, the motor is at rest at

a commanded pulse width of ∼1.5 ms. Higher pulse widths cause a clockwise rotation while

lower pulse widths cause counter-clockwise rotation, with the speed varying approximately with

pulse width. The CR servos were calibrated to determine the relation between pulse width and

motor speed and motors with near linear pulse-speed relation were used. These motors were

distributed along the length of the body to maintain the balance of the robot when it moves

along a straight line. A custom designed PIC18F252 micro-controller-based board is used to

generate the command pulses for all the 12 joint servo motors. An identical board is used

to control the wheel motors. Both the boards also have an RS232 serial interface port to

communicate with a PC.

Several experiments were conducted for different choices of obstacle placements and paths.

The results of one such experiment are presented below. The experiments were conducted on

a planar smooth tiled floor, with known obstacle locations. Obstacles were chosen from among

a set of a rectangular object and circular objects of three different sizes. Different numbers,

shapes, sizes and relative locations of the obstacles were chosen for each experiment. The initial
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orientation of the robot was arbitrarily chosen to be a straight line lying along the Y -axis and

pointing in the −Y direction. Way-points were manually chosen for the robot to pass between

and beyond the obstacles, after inflating the obstacles suitably to account for the robot’s width.

In these experiments, the path of the robot’s head and the joint configuration of the robot,

as the head moves along this path in discrete steps, are calculated using the algorithm as

described in 4.2. The sequence of these joint configurations is then fed to the robot through

the PC’s RS232 interface to the PIC18F252 board controlling the joint servo motors and the

wheel kinematics are not considered in these experiments. The calculated wheel speeds are fed

to the robot through the PC’s RS232 interface to the PIC18F252 board controlling the wheel

servo motors. The joint configurations and wheel speeds are synchronized at each step. The

algorithm itself is implemented in MATLAB, while the interface to the PIC18F252 boards is

implemented in C, both running under Windows XP on an Intel Xeon workstation with 2 GB

of RAM.

Figure 4.10 shows a simulated view of the workspace and obstacles, with the calculated path

of the robot’s head. Figure 4.11 shows a plot of three joint angles angles – joints 1 (head), 6

(middle) and 12 (tail) of the snake robot– over the entire path chosen for the head. It is seen

that in the free space, at the start of the path, the motion of the joint angles fall off towards the

tail as predicted by the tractrix-based approach. At path points close to the obstacles, all the

joint movements are similar and they are such that the entire body of the snake robot avoids

the obstacle.

The top half of Figure 4.12 shows a sequence of snapshots of the simulated robot configu-

ration along the path and the bottom half shows the corresponding robot configuration. The

path consisted of 12 way-points specified manually for the robot head to pass between the ob-

stacles, with initial and end point orientations specified. The path of the head was calculated

by fitting a spline through the 12 way-points and joint configurations were calculated for 132

steps at a spacing of 25 mm along the spline, using the optimization algorithm with obstacle

avoidance constraints. The calculation of the spline through all the way-points took 242 ms and

the computation of the joint configurations with obstacle avoidance for each step of movement

took 244 ms on average, with a worst case time of ∼2.23 s for the first step and an average time

of 228 ms for subsequent steps. The joint angles and wheel speeds were further interpolated

in 30 steps, for smoothness of motion, before being fed to the robot. The commands to the

robot take approximately 100 ms to be transferred over a slow (9600 bps) serial link. It may

be mentioned that computation times can be improved with code optimization and dedicated

hardware.

The main objective of the experiments with carried out with the fabricated hyper-redundant
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Figure 4.10: Workspace with obstacles and desired path of the robot head.
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Figure 4.11: Comparison of joint angles at various points in the body.
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(a) (b) (c)

(d) Step 45 (e) Step 65 (f) Step 97

Figure 4.12: Simulated (top) and actual (bottom) configuration of the robot at steps 45, 65
and 97 of the motion

robot was to verify the feasibility of implementing the tractrix based algorithm on a physical

prototype. It may be noted that the usage of wheels results in non-holonomic constraints on

the wheel-ground contact points of the robot and the wheel slip and other dynamic effects

are not taken into account in the tractrix based algorithm. We have tried to minimize these

effects by moving slowly and on a hard flat floor. One consequence of the wheel slip and other

un-modeled dynamics is that the path traced is not exactly the same as the desired path.

Nevertheless, the hyper-redundant robot using the tractrix based motion planning algorithm

avoids the obstacles and the path followed by the prototype is reasonably close to the desired

path as seen in figure 4.12.

Summary

In this chapter, an efficient optimization-based approach to motion planning with obstacle

avoidance for extended bodies, such as snake-like robots has been proposed. The presented

approach yields natural looking motion while avoiding obstacles by tangentially gracing them.

An important feature of the proposed algorithm is that it is purely kinematics and geometry

based algorithm – it does not use any dynamics or artificial potential field type of constructs.

The framework is very general as any obstacle shape modeled by union of objects modeled by

first order differentiable implicit equation can be directly incorporated. The numerical results

demonstrates that the algorithm is able to efficiently avoid obstacles while maintaining the
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nature of tractrix motion diminishing property wherever possible. This approach presented in

this work has been numerically simulated to obstacle avoidance in 2D and 3D space and works

for obstacle avoidance of extended bodies like snakes, ropes, surgical suturing simulation and

in motion planning of hyper-redundant manipulators.

Further, experimental results for a 12-link hyper-redundant robot moving in a field of ob-

stacles have been presented. Results from a prototype 12-link snake robot are seen to be very

close to the simulation results and validate the optimization based algorithm. The algorithm is

also amenable to efficient implementation with on-board sensing of the obstacles in real-time.

In the present setup, the lack of wheel speed and joint position feedback results in a certain

amount of wheel slippage at certain points in the path and slippage can be minimized by refined

design. The obstacles are represented by smooth, differentiable functions due to the require-

ment of the gradient based optimization algorithm. However, this is not a serious constraint

and one can have obstacles represented by piece-wise smooth functions and one can also use

other optimization algorithms.

79



Chapter 5

Conclusions

Summary

The key contributions of this thesis are in the area of motion planning of flexible one-dimensional

objects modeled as curves or discretized as piece-wise straight segments. New theoretical results

and algorithms are developed for the motion of points on the curve or the ends of the straight

segments. The algorithms lead to a more natural motion and are highly efficient thereby

making them amenable to real-time implementation. The algorithms developed for discretized

segments are extended to include obstacle avoidance and implemented on a planar 12-link

hyper-redundant robot. It is demonstrated through numerical simulations and experiments

that the motion planning algorithms indeed give rise to natural motion of one-dimensional

flexible objects.

Chapter 1 presents the motivation and a detailed literature survey on the motion planning

of flexible one-dimensional objects and hyper-redundant robots. The representation of flexible

objects as B-spline curves, its control polygon and known results on the length of a curve are

presented. Hyper-redundant robots and the key problem of resolution of redundancy using

existing approaches in literature is discussed and various techniques for obstacle avoidance in

mobile robots are presented. The scope and contributions of the work is also presented in this

chapter.

In Chapter 2, the problem of motion planning of flexible one-dimensional objects is posed

as a velocity minimization problem subjected to constraints. Using the tools of calculus of vari-

ation, several new analytical results are obtained for curves and flexible 1D objects discretized

by straight segments. It is shown that the known tractrix based approach for resolution of

redundancy in hype-redundant robots can be derived as special case of the general minimiza-

tion problem. New results which lead to a more natural motion of the flexible 1D object and
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hyper-redundant robots are presented. It is shown that other objective functions can also be

used and these results in different approaches for motion planning of flexible 1D objects and

hyper-redundant manipulators. Several numerical simulations in plane and three-dimensional

space are used to illustrate the theoretical results.

Spline theory is introduced in Chapter 3 to further optimize the motion planning algorithm

developed in Chapter 2. A B-spline curve can be represented by a control polygon with very

few sides and the key idea for minimizing and better rendering of the motion of the flexible 1D

object was to move the sides of the control polygon instead of the large number of discretized

segments used to represent the curve. Analytical relations between the length of a B-spline

curve and the control polygon length were established and useful error bounds on the length

of the curve as a function of the angle between adjacent segments of the control polygon were

established. When the B-spline curve is moved, the length of the curve changes. In this chapter,

using the developed error bounds, an adaptive algorithm, using sub-division and merging, was

designed to approximately preserve the length of the curve. Extensive numerical simulation

results were used to demonstrate the effectiveness and increased computational efficiency of

adaptive algorithms.

In Chapter 4, the problem of motion planning in a field of obstacles was studied. The

obstacle avoidance problem is again posed as an optimization problem with obstacles modeled

as smooth super quadrics. It was shown that near an obstacle the motion of the point was

normal to the obstacle surface and away from the obstacle, as in the case of the tractrix, the

motion was long the tangent. Extensive numerical simulations in 2D and 3D were presented

which demonstrated the effectiveness of the developed algorithms. Chapter 4 also presented the

details of 12-link planar hyper-redundant prototype robot developed to validate the developed

motion planning algorithms for free space motion and motion in the presence of obstacles.The

motion of the prototype robot was seen to match closely with the numerical simulation thereby

demonstrating that the algorithms can be used for practical implementation.

On a note of caution, there exist pathological cases also where this algorithm might fail.

One typical case will be when the leading end is being pushed(perturbation vector is along

the link towards trailing link) around an obstacle, due to existence of two symmetric solutions.

This ia a singularity/degenerate case for this algorithm. However, there are ways around these

special cases. A possible resolution is to add additional constraints which might be suitable for

the problem in hand, so as to make one solution more preferable(cost effective) over the other.

Another resolution would be to slightly perturb the solution toward one feasible solution so

that the optimization converges to that solution due to the slightly differential cost gain in that

direction.
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At the time of submitting this thesis, the author hasn’t been able to locate any publicly

available data concerning locomotion studies on different real snakes so as to compare with the

results from the proposed tractrix-based algorithm. Also, the author was unsuccessful in finding

any common benchmark standards for comparison-neither data from different algorithms nor

codes. Hence, a quantitative comparison with existing algorithms couldn’t be carried out.

Scope for future work

In Chapter 2, lack of analytical expressions for arbitrary curves and the norms have forced us

to employ numerical methods. This brings along with it inherent issues, namely ones related to

convergence, stability and sensitivity to initial guess in the numerical optimization. Although

a rigorous mathematical proof of convergence, stability and sensitivity to initial guess is not

available for the theoretical approach presented in this chapter, the situation is not hopeless.

This is based on following specific observation and reasoning – (a) we did not face any of these

issues during the numerous numerical simulations we performed on a large number of arbitrarily

chosen curves pulled along arbitrary directions in 2D and 3D space, and (b) for a straight line

there exists analytical solutions without any of the above mentioned issues and an arbitrary

curve can be considered to be the limiting case of a large number of linear segments. However,

closed-form analytical expressions (as in the case of a straight line) for some simpler planar and

spatial curves are expected to strengthen the theoretical approach.

In Chapter 3, we have been able to obtain analytical results for a quadratic spline and only

bounds on length of the cubic and higher-order splines. However, it will be better if analytical

expressions can be found in terms of the length of the sides of the control polygon and angles

between them for cubic and other splines. This can provide an exact expression for curve length

for any arbitrary degree of interpolation function.

In Chapter 4, results from a prototype 12-link hyper-redundant robot are seen to be very

close to the numerical simulation results and validate the optimization based algorithm. Im-

plementing this algorithm with on-board sensing of the obstacles in real-time will be the ideal

route and will form a part of future work in this space. Additionally in the current setup, the

lack of wheel speed and joint position feedback results in a certain amount of wheel slippage at

certain points in the trajectory. Extensions planned to this work include an in-depth analysis

of the Lagrangian multipliers and also improving the mechanism to reduce slippage in motion.
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(1966), pp. 71–107 (cit. on p. 4).

[4] Isaac J Schoenberg. “Contributions to the problem of approximation of equidistant data

by analytic functions”. In: IJ Schoenberg Selected Papers. Springer, 1988, pp. 3–57

(cit. on p. 4).

[5] Lyle Ramshaw. “Blossoms are polar forms”. In: Computer Aided Geometric Design 6.4

(1989), pp. 323–358 (cit. on p. 4).

[6] Maurice G Cox. “The numerical evaluation of B-splines”. In: IMA Journal of Applied

Mathematics 10.2 (1972), pp. 134–149 (cit. on p. 4).

[7] Carl De Boor. “On calculating with B-splines”. In: Journal of Approximation Theory

6.1 (1972), pp. 50–62 (cit. on p. 4).

[8] Carl De Boor et al. A practical guide to splines. Vol. 27. Springer-Verlag New York,

1978 (cit. on p. 4).

[9] Bernard Dacorogna et al. Introduction to the Calculus of Variations. Vol. 13. World

Scientific, 2004 (cit. on p. 6).

[10] Kelly Ward et al. “A survey on hair modeling: styling, simulation, and rendering”. In:

IEEE Transaction on Visualization and Computer Graphics. 2006, pp. 213–234 (cit. on

p. 6).

83



BIBLIOGRAPHY
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