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Abstract

Human sensorimotor control can achieve highly reliable movements under cir-

cumstances of noise, redundancy, uncertainty, and sensory delays. Our ability to

achieve reliable and accurate movements is in the fact we have a nervous system

that learns these limitations and continuously compensates for them. The pur-

pose of the thesis is to understand brain mechanisms and computations underlying

supervised motor learning, its interaction with reinforcement learning and study

its relation to motor variability. To address these issues, we have investigated fac-

tors influencing supervised motor learning such as neurological disease condition,

the role of the reinforcement signal, motor variability and motor redundancy.

Traditionally, supervised or error-based learning and reinforcement or reward

based learning are thought to be occurring at anatomically different places and

have functionally separate mechanisms. By leveraging the performance of human

patients with Parkinson disease and cerebellar ataxia disease, we demonstrate

how the presence and absence of dopamine medication and subthalamic deep

brain stimulation (STN-DBS) influenced supervised learning. Furthermore, we

also show that the presence and absence of reinforcement at the end of the trial

profoundly affected learning such that the difference in learning as a consequence

of medication reduced significantly. These results suggest that the basal gan-

glia modulate the gain of supervised learning in the cerebellum based on the

reinforcement received at the end of the trial.
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Abstract

Furthermore, we explored motor variability (thought to be an unwanted char-

acteristic of the motor system) and investigated its significance and effect on

supervised motor learning. We propose that some part of motor variability arises

out of the redundancy in the joints in the human arm. We showed that greater

uses of redundancy in the arm lead to faster learning across healthy subjects. We

observed these both in dynamic perturbation learning and kinematic perturba-

tion learning. Interestingly, we also found differences in the use of redundancy

between the dominant hand and non-dominant hand, suggesting that the nervous

system actively controls the redundancy. Furthermore, we also observed some di-

rections in reaching are difficult to learn in comparison to others directions. To

understand such behavior, we separated direction wise errors and constructed er-

rors ellipses and found out that eccentricity of ellipse change with learning, which

suggests brain while reducing errors in learning, is also trying to homogenize the

distribution of errors caused by the perturbation. We also found interesting dif-

ferences between redundancy and motor learning that was selectively impaired in

PD patients but not cerebellar patients, possibly pointing to a role of the basal

ganglia in processing of the use of redundancy in motor learning.

In summary, the results in the thesis provide experimental support for the

hypothesis that the basal ganglia modulate the gain of supervised learning and

exploration of redundancy aids in learning and that the redundancy component

of the motor variability is not noise. In future, we hope that this relationship

between basal ganglia, reinforcement, and redundancy in supervised motor learn-

ing can be leveraged to enhance motor rehabilitation and motor skills in patients

with motor deficits.
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Chapter 1

Introduction

Human sensorimotor control can achieve highly reliable movements under cir-

cumstances of noise, redundancy, uncertainty, and sensory delays. Our ability

to produce precise and reliable movements despite the presence of variable and

highly non-linear actuators (muscles), unprecise sensors (proprioception), and

slow transmission lines is due to a nervous system that adapts or learns these

limitations and continuously compensates for them. In addition to motor con-

trol, the motor system also needs to possess mechanisms to deal with changes in

the external and internal environment. For example, learning new skills entail

the learning of new sensory-motor mappings or new control policy. Likewise,

changes in the organization of the skeletal muscular system also occur with age,

fatigue and disease and they also demand a reconfiguration of existing motor com-

mands. Motor learning involves the ability to construct or improve sensorimotor

mappings or strategies, and reliably achieve desired goals.

Typically, natural motor learning, for example, learning to drive bicycle, learn-

ing to serve in badminton, or learning a bipedal walk are difficult to study and

comprehend in a laboratory environment because such learning process involves

large time scales and are experimentally hard to control. In a laboratory envi-
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ronment, motor learning is typically studied in the context two major paradigms:

supervised learning, and reinforcement learning 1. In supervised learning tasks,

subjects have to learn new sensorimotor mapping whereas, in reinforcement learn-

ing tasks, subjects have to learn a new control policy for controlling movements.

In these lab paradigms, healthy human subjects show a monotonic improvement

in performance by a systematic reduction in errors. This trial to a trial decrease

in errors is referred to as motor learning and can be easily quantified.

Motor learning in the context of supervised and reinforcement learning is

typically thought to be derived from two primary and independent sources of in-

formation, namely errors signals and reinforcement signals (see Figure 1.1). Error

information based learning is called supervised learning and reward information

based learning is called reinforcement learning. In other words, in supervised

learning, the learning occurs due to minimization of the differences between pre-

dicted and actual sensory feedback termed the error signal. On the other hand,

the learning that occurs by selecting the motor commands that maximize the

reward or minimize the punishment is defined as reinforcement learning.

1.1 Supervised motor learning

To execute movements reliably and faster under sensory delays, uncertainty, and

noise (motor control), the brain appears to predict two kinds of information.

First, given the desired change in sensory state, it predicts the motor commands

that are likely to produce the desired movement by using the sensory informa-

tion about the goal. These sensory to motor predictions are thought to reflect the

computations made by an inverse model [2, 3, 4]. Similarly, given the desired mo-

tor command, the brain is believed to predict the sensory consequences of those

1Other forms of learning such operant conditioning, Pavlovian conditioning learning, and
unsupervised learning while being important in their own right, are beyond the scope of the
current thesis.
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Input Output

Error

TargetSupervised learning

Input Output

Reward

Reinforcement learning

Figure 1.1: Illustration of two major types of learning. The cerebellum (in red
color), specialized for supervised learning (model-based learning), predicts the
error signal. The basal ganglia (in blue), specialized in reinforcement learning
(model-free learning), predicts the error in anticipated and actual reward (figure
adapted from Doya et al. 2000 [1]).

motor commands. A forward model is believed to generate these desired motor

command to sensory consequences of action and reflects a prediction. These pre-

dicted sensory consequences can be compared with the actual sensory feedback to

generate a composite error signal that can be used to control the motor command

as the movement is executed.

The inverse model and forward model are collectively termed as internal mod-

els of actions [5]. If these models are accurate, they are capable fo generating

valid motor commands even in the absence of sensory feedback, which is often

delayed by more than 100 ms. However, motor commands are notoriously noisy

as are the muscle actuators and sensory feedback is desirable to minimize or

mitigate the presence of such noise. Thus it is envisioned that in addition to a

feedforward motor command, sensory feedback also provides an additional con-

trol signal to update the ongoing motor command. While this computational

3



architecture provides a mechanism for motor control, independent feedforward

and feedback control in and of itself does not change the internal model per se.

However, their integration (see Figure 1.2) provides an error signal which is the

difference between the sensory and actual feedback which can be used to update

the internal models and forms the basis of supervised motor learning. Thus when

subjects are exposed to a new paradigm to learn or adapt, due to the inaccurate

internal model of new tasks errors are repeatedly experienced. Then brain tries

to construct or update the internal model, and error signal serves as teaching

signal to govern the learning. Such mechanisms of learning constitute supervised

motor learning [6, 7, 8, 9].

1.1.1 Types of supervised motor learning

Typically two kinds of learning paradigms are used to study supervised learning in

a laboratory setting. The first type of learning involves a kinematic perturbation,

where the relationship between sensory input and motor output is perturbed, for

example, a visuomotor rotation, visuomotor reversal, or visuomotor gain ampli-

fication [11, 12, 13]. In visuomotor learning tasks, a subjects hand position is

coupled with a cursor on the screen. On a given trial, one of the targets will ap-

pear on the screen and subject has to move the hand so that the cursor reaches the

target. In the baseline period, the mapping between cursor and hand is congruent

such that wherever the hand goes the cursor will move accordingly. However, in

perturbation trials, the standard mapping between cursor and hand is rotated by

45 degrees. Such a perturbation will typically result in a movement error since

the final position of the cursor will be 45 degrees apart from the target location as

illustrated in Figure 1.3A. However, as a consequence of learning, the brain will

learn to compensate for this perturbation in approximately 50 to 100 trials such

that the cursor will eventually start moving directly towards the target. Such

learning is thought to occur in an extrinsic coordinate system because errors are

4



Goal
Motor Command Generator Body + Environment

Forward Model

Sensory System

Predicted Sensory 
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Integration
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Goal
Motor Command Generator Body + Environment

Forward Model

Sensory System

Predicted Sensory 
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Error Signal
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body and world

Measured Sensory 
consequences

State change
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A

B

Figure 1.2: Internal models for motor control and motor learning. (A) The
learning composed of two compensatory processes. Predict the motor commands
that likely to make desired movement. Given desired motor command, predicts
the sensory consequences of that motor commands. (B) Internal models for mo-
tor learning capability of updating the forward model and feed-forward motor
commands. (figure adapted from Shadmehr et al. 2010 [10]).
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caused in the extent and direction of movement as seen on the screen, and hence

visuomotor rotation tasks are also called kinematic learning tasks.

The second type of motor learning studied in the laboratory involves a dy-

namic perturbation, where an external applied force changes the physical charac-

teristics or dynamics of the motor system. Such perturbations often involve the

use of force-fields and the addition of external loads [14, 15, 16]. Such dynamic

errors are thought to be learned in an intrinsic coordinate system because the

sensory prediction error is thought to be proprioceptive in nature. In force-field

learning tasks, subjects have to move a robotic arm with their hand. On a given

trial, one of the targets will appear on the screen and subject has to move the

robotic arm to the target. In the baseline period, the robotic arm does not apply

any external force. However, in perturbation trials, the robotic arm applies forces

on the subjects arm, which moves the hand in a distorted trajectory that leads

to an error as illustrated in Figure 1.3B. As a consequence of motor learning the

brain will gradually learn to compensate for this perturbation in approximately 50

to 100 trials eventually producing movements directed towards the target with

minimal error. In such tasks, subjects have to learn a new sensory to motor

transformation based on the structure of the task.

Evidence in the literature, suggests that kinematic and dynamic learning are

independent mechanisms resulting from updating different internal models [17].

In contrast, some studies indicate the presence of interference between kinematic

and dynamic learning and raise the possibility of a single internal model for

kinematic and dynamic learning [18, 19]. Thus whether kinematic and dynamic

learning occurs via a single internal model or separate internal models, remain

an open question in the field of motor learning.
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Target

Force Field

Target

Hand

Cursor

A B

Figure 1.3: Kinematic and Dynamic supervised learning. Both paradigms re-
quire subjects to make reaching movements to targets (green color). (A) Kine-
matic learning paradigm involves learning a new relationship between actual hand
position and the visually shifted cursor (red color). This perturbation causes a
perception error between actual hand positions and perceived hand position. (B)
Dynamic learning paradigm involves the learning of a new relationship between
the motor commands and an arm movement. This perturbation causes a discrep-
ancy between the predicted and actual motor commands required to counter the
perturbation.

1.1.2 Neural basis for supervised motor learning

The cerebellum has been widely implicated to be critical in motor learning. The

earliest critical evidence for the involvement of the cerebellum in supervised learn-

ing came from human patients with cerebellar disease. When cerebellar disease

patients where asked to throw darts at a target while wearing wedge prism specta-

cles they were unable to adapt to the induced visuomotor perturbation compared

to healthy controls [20]. In this experiment, the wedge prism caused a perturba-

tion in the form of visual shift and patients have to learn the new relationship

between actual hand position and target location as illustrated in Figure 1.4. Fur-

thermore, patients with lesions of the mossy fibers, the cerebellar peduncles, and

7



the inferior olive showed similar impairments in supervised learning [20]. These

studies indicated that the whole cerebellum contributes to or is responsible for

supervised learning. Furthermore, studies in patients with cerebellar lesions or

cerebellar ataxia also have shown deficits in both kinematic learnings [21, 22]

and dynamic learning [23, 24]. Additionally, the cerebellum is also thought to be

a potential candidate for representing internal models [2, 7, 25]. The deficit in

supervised learning is thought to be due to the inability of the system to update

the forward model and not due to failure in computing the inverse model [26].

Interestingly, patients with basal ganglia diseases, for example, Parkinsons and

Huntington diseases patients show no deficit in supervised motor learning. How-

ever, savings or consolidation is absent in c disease patients [27, 28, 29], which

indicate that other processes may also be involved in supervised learning for the

consolidation of motor memories.

The circuit of the cerebellum is mostly feed-forward in nature as illustrated

in Figure 1.5. In the cerebellum, the mossy fibers carry input, which includes

both sensory and cerebral afferent signals and the granule cells combine different

mossy fibers and work as expansion encoders. The parallel fiber takes input from

granule cells and converges to Purkinje cells and climbing fibers. Purkinje cells

receive approximately two million connections through parallel fibers and only one

climbing fiber. This circuitry of parallel fiber inputs and climbing fiber inputs are

distinguished as two different forms of spikes. The simple spikes from Purkinje

cells encode movement related signals, and complex spikes generated from the

input of the climbing fiber encode for the error signal. Hence, the cerebellum

is proposed to be specialized for supervised learning based on the capability of

the climbing fibers to encode an error signal. Furthermore, evidence from the

vestibular-ocular reflex (VOR), which is a reflex to stabilize images on the retinas

during head movement by producing eye movements in the direction opposite to

8



Figure 1.4: Supervised motor learning with prism glasses. (A) Wedge prisms
bend the optical path to the subject’s right causing a visual shift. (B) Error in
throwing the dart before learning, during learning, and after learning is shown
for a representative healthy subject it demonstrates the progression of learning
across trials. (C) Error in throwing the dart before learning, during learning,
and after learning for a cerebellar disease subject. The errors indicate that no
learning occurs in these subjects. (figure adapted from Kandel et al. 1998)
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head movement also implicates the cerebellum. During the learning of the VOR

which involves a change in the gain of the oculomotor response, Purkinje cell

synapses elicit the long-term depression (LTD) following climber fiber simulation,

suggesting that the climbing fiber input is the neural substrate of such error-based

learning [30]. Neurophysiological recordings from cerebellum also demonstrated

cerebellum is not directly related to motor commands per se. Instead, Purkinje

cells in the cerebellum reflect the kinematic properties of the movement and

not the actual motor commands [31]. Furthermore and interestingly, Purkinje

cell activity precedes the kinematic state of the system, which suggests that the

cerebellum could encode the internal model and predict the sensory consequences

of motor commands. Interestingly, cerebellar Purkinje cells may also have motor

properties and are thought to encode the gain in the VOR, thus potentially

encoding an internal inverse model/ adaptive motor controller as well.

Figure 1.5: The circuit of the cerebellum. Mossy fibers input carry both sensory
and cerebral afferent signals. Granule cells combine different mossy fibers. The
parallel fiber takes input and converges to Purkinje cells and climbing fibers.
(figure adapted from Doya et al. 1999 [32]).
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1.2 Reinforcement motor learning

In contrast to supervised motor learning, learning through trial and error to

explore the space of potential actions and track which action leads to a beneficial

outcome is called reinforcement learning [33, 34, 35]. In reinforcement learning

tasks, subjects have to move the hand toward the target and learn the trajectory

or movement which maximizes reward in the absence of any cursor feedback.

After successful trials subjects receive a graded or binary reward based on the

prescribed value function. In the baseline period, the mapping between virtual

cursor and hand is congruent just as in the case of the similar to supervised

motor learning task. However, in perturbation trials the mapping between the

virtual cursor and hand is rotated by some prescribed value and feedback about

success and failure in a trial is given by reward or punishment. As a consequence

of learning the brain gradually compensates for the induced perturbation and in

approx 50 to 100 trials makes the desired movement that maximizes reward.

1.2.1 Neural basis for reinforcement motor learning

Reinforcement learning, particularly in the context of learning new actions has

been traditionally thought to be instantiated by the basal ganglia [34, 36, 37].

The first clear evidence for the role of dopamine in reinforcement learning was

derived from a Pavlovian conditioning task in which monkeys learned stimulus-

reward continencies. In their pioneering studies, Shultz and coworkers [38, 39]

showed that, monkeys did not associate the stimulus with reward with dopamine

neurons in the substantia nigra pars compacta within the basal ganglia. the

neurons responded to after the reward. However, after monkey learns the task,

dopamine neurons start to respond only to the conditioned stimulus instead of

responding to actual reward. Unexpected withdrawal of reward after learning,

however, produced a decrease in the firing rate of dopamine neurons. Thus the
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activity of dopamine neurons not only encode immediate reward but also a pre-

diction of future reward [40]. More interestingly, the capability of encoding the

prediction of future reward and comparing it with actual reward received allows

the dopamine cells to encode a reward prediction error signal that in principle

can drive reinforcement learning. Further, the change in control policy ( namely,

sensorymotor mapping) that tries to maximize the expected sum of future reward

it is commonly thought to brought about by changes in the synaptic strength of

the cortico striatal synapses enabled by dopaminergic input into the striatum

[41].

Cerebral Cortex

GPi /SNr

Hyperdirect 
pathway

STN

Striatum

SNc

GPe

Thalamus

D1 D2

Direct 
pathway

Indirect 
pathway

Brain Stem, 
Spinal Cord

Cerebral Cortex

GPi /SNr

Hyperdirect 
pathway

STN

Striatum

SNc

GPe

Thalamus

D1 D2

Direct 
pathway

Indirect 
pathway

Brain Stem, 
Spinal Cord

Cerebral Cortex

GPi /SNr

Hyperdirect 
pathway

STN

Striatum

SNc

GPe

Thalamus

D1 D2

Direct 
pathway

Indirect 
pathway

Brain Stem, 
Spinal Cord

HemiballismusParkinsonismNormal

Figure 1.6: Neural circuit of the basal ganglia. STN represent subthalamic nu-
cleus; SNc represents substantia nigra pars compacta; SNr represents substantia
nigra pars reticulate; GPi represents an internal segment of globus pallidus; GPe
represents an external segment of globus pallidus; Red color represents inhibitory
connection; Green color represents the excitatory connection..

In addition to motor learning, the basal ganglia are a collection of smaller

and higher interconnected nuclei that are intimately associated with motor con-

trol. The subthalamic nucleus (STN) is an integral part of the indirect pathway
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involved in response inhibition and cognitive control. The striatum receives the

main input from the cerebral cortex and project to direct and indirect pathways,

both pathways work complimentary to each other. The outputs of substantia ni-

gra pars reticulata and an internal segment of globus pallidus are directed through

the thalamus to specific areas in the cerebral cortex as illustrated in Figure 1.6. In

addition to modulating synaptic strength, dopamine released from the substantia

nigra pars compacta differentially influences the balance of activity between the

direct and indirect pathways by inhibiting the indirect pathway via D2 dopamine

receptors and facilitating transmission in the direct pathway via D1 dopamine

receptors. High activity of the indirect pathway relative to the direct pathway

leads to hypokinetic state such as Parkinsonism (Figure 1.6). Similarly, lesions of

the subthalamic nucleus (STN) and an increase in activity of the direct pathway

relative to the indirect pathway causes hyperkinetic syndromes such as hemibal-

lismus and chorea as illustrated in Figure 1.6.

Interestingly long term change in the dopamine content due to loss of dopamin-

ergic neurons in the substantia nigra causes a Parkinson disease (PD) and restruc-

tures the circuitry [42, 43]. Parkinson disease patients show deficits in reinforce-

ment learning tasks, indicating that basal ganglia are responsible for reinforce-

ment learning. Consistent with the idea that the loss of dopamine as a conse-

quence of Parkinsons disease potentiates the indirect pathway [44], lesions and

high-frequency stimulation of the subthalamic nucleus both attenuate the symp-

toms of Parkinsons disease such as resting tremors. Nevertheless, whether deep

brain stimulation of the subthalamic nucleus modulates reinforcement learning is

not known.
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1.3 Independence and interdependence of su-

pervised and reinforcement motor learning

As explained earlier, reward prediction errors are at the heart of reinforcement

learning, while a sensory prediction error signal is necessary for supervised learn-

ing. In contrast, supervised learning that relies on an error in predicted sensory

feedback and reinforcement learning is thought to based on an error in predicted

reward function. The goal of reinforcement learning is to determine the optimal

value function to guide learning. Learning in reinforcement learning is typically

very slow, even for basic tasks, because the exploration of the environment is

necessary to achieve optimal policy. On the other hand, reinforcement learn-

ing requires relatively simple computations because reward functions experience

directly lead to changes in the control policy. In contrast, supervised learning

needs to update the forward model and then cause a change in the control policy.

Thus, in contrast to supervised learning, no washout effect is observed because of

the absence of any update in the internal model since only the control policy is

expected to adapt. Similarly, reinforcement learning also does not show any form

of generalization in learning, but the generalization is an important feature of

supervised motor learning [45]. Generalization allows motor learning in a specific

environment to extrapolate to an unfamiliar environment without any further

training. For example, a subject who learns to compensate for perturbation in

one direction will be able to generalize the perturbation in all other directions

[46, 47]. Reinforcement learning does not show generalization while supervised

learning does, which again suggest both are independent mechanism for motor

learning.

On the other hand, a recently discovered bidirectional anatomical pathway

between the cerebellum and basal ganglia [48, 49] suggests that these structures
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may not necessarily be independent information processing units as have been

typically assumed. In particular, it was shown [49] that the cerebellum sends a

strong di-synaptic projection to the striatum through the thalamus, while STN

sends a di-synaptic projection to the cerebellar cortex by way of the pontine

nuclei.Indeed, a functional prediction of such crosstalk is the presence of common

symptoms exhibited by diseases of the basal ganglia and cerebellum [50].

However, contrary to the conventional view that supervised learning is inde-

pendent of reinforcement signal growing evidence suggests that supervised learn-

ing involved a combination of reinforcement and supervised learning [51, 52]. A

recent study Galea et al. 2015 [53] has shown how graded reinforcement and

punishment can differentially modulate learning in a supervised learning task

(visuomotor rotation). In this study, graded reward feedback did not speed the

learning, but it increased the retention of learning and graded punishment accel-

erated learning but with poor retention of learning as illustrated in Figure 1.7.

In contrast, another recent study found binary reward did not affect supervised

learning [54]. These findings raise the possibility that multiple independent learn-

ing mechanisms may play a role in supervised learning and raise new questions

about the interaction between reinforcement and supervised learning. The first

aim of this thesis attempts to address these issues.

1.4 Motor learning and motor control

As explained earlier, internal models were proposed to understand how the motor

system can function reasonably well despite noise and inherent delays in sensory

feedback. Such internal models generate an error signal based on the difference

between predicted and actual sensory feedback and thus minimize error for op-

timal motor control. An additional feature of such internal models is the ability

of the error signal to modify the internal models or control policies allowing the
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Figure 1.7: Effect of reinforcement signal on supervised learning. The errors in
the pre-learning (baseline), visuomotor learning, and post-learning across three
groups. Red indicates reward group, which received a reward after the correct
trial, green indicates punishment group, which received punishment after the
wrong trial and blue indicates random group, which received reward and punish-
ment randomly across trials. (figure adapted from Galea et al. 2015 [53])

same representations to help in the motor control and motor learning. An in-

timate relation between motor learning and motor control is also supported by

neuropsychological, neuroimaging and neurophysiological studies showing shared

neural representations. Thus the cerebellum and the basal ganglia are implicated

in both motor learning and motor control. Likewise, deficits in these neural

structures also cause a shortfall in motor control function. For example, cerebel-

lum patients (ataxia diseases) have dis-coordinated movements and basal ganglia

patients with Parkinson disease have tremors or high stiffness.

1.4.1 Motor variability and motor learning

A particular unwanted attribute of motor control is a trial to trial variability. In

beginning of motor task motor variability is high, but as motor learning progress
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the motor variability reduced as the motor system learned the task as illustrated

in Figure 1.8. Note that as motor system learned the tasks and motor variability

reduced but it never goes to zero. The source of variability is thought to be the

inherently stochastic nature of the nervous system and the noise in the sensory,

motor or sensory-motor systems. It is widely believed that motor control tries

to minimize this variability to achieve movements accurately [55, 56]. On the

other hand, motor variability has also been shown to help in both types of motor

learning (reinforcement and supervised learning) [57, 58, 59]. As motor variability

increases in subjects, the amount of motor learning ability also increases. This

is shown in figure 1.9. There is a positive correlation between motor variability

and motor learning across subjects. For example, when the subject is trying to

find the toy with eyes closed; they begin by exploring the space of all possible

locations with a significant amount of variability in their movements. Once they

hit the toy, the subject changes his/her strategy to exploitation, in which the

same movements are repeated (Figure 1.10). In such context, motor variability is

believed to be a source of exploring in motor space as illustrated in the example.

Along the same lines, in songbirds, motor variability and motor learning abil-

ity are reduced by inactivating lateral magnocellular nucleus (LMAN) [60, 61].

Such experiments seem to suggest that motor variability is not just noise in the

system. These studies indicated variability might be a deliberate output of the

motor control, which is an essential feature for exploration of the task space to

find the optimal response. In contrast, other recent studies did not find any

clear relationship between motor variability and motor learning [62]. Thus the

relationship between motor variability help in motor learning remains unclear.

Exploring this relationship is a second aim of this work.
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Figure 1.8: The beginner vs. expert motor variability in motor learning. In
begging motor variability is high as illustrated in the green color scheme, but
as motor learning progress the motor variability reduced as the motor system
learned the task as shown in the red color scheme. Note that as motor system
learned the tasks, motor variability reduced but it never goes to zero.
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Figure 1.9: Motor variability helps in motor learning. (A) The errors in the pre-
learning (baseline) and force-field learning across groups (groups divided based
learning level). (B) Group by group comparison of motor learning. (C) Subject
by subject variability correlation with learning. (figure adapted from Wu et al.
2014 [59])
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Figure 1.10: Exploration vs exploitation in motor learning. Motor variability in
motor learning, the subject is trying to find the toy with eyes closed; the subject
begins by exploring the space of all possible locations, with higher motor variabil-
ities. Once they hit the toy, the subjects change their strategy to exploitation,
in which the same movement repeated. (figure adapted from David et al. 2014
[63])

1.5 Thesis objectives

The principal purpose of the thesis is to understand brain mechanisms and com-

putations underlying the mechanisms in supervised motor learning, its interaction

with reinforcement learning and study its relation to motor control/variability.

To address these issues, we have investigated factors influencing supervised mo-

tor learning such as neurological disease condition, the role of the reinforcement

signal, motor variability and motor redundancy.
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1.5.1 Role of basal ganglia in supervised learning

A common understanding is that cerebellum controls supervised learning and

basal ganglia control reinforcement learning. Contrary to this understanding,

we show a role of the basal ganglia in supervised learning (error-based motor

learning) by leveraging the performance of patients with Parkinsons disease and

cerebellar ataxia disease. We also demonstrate that reward, traditionally believed

to be a part of reinforcement learning, is also an essential component of supervised

learning. Furthermore, we have also tested patients with Parkinsons disease (PD)

who had undergone deep brain stimulation (DBS) of bilateral STN (sub-part of

basal ganglia) in a supervised learning task to understand the role of basal ganglia

in supervised learning.

1.5.2 Role of variability in supervised learning

Motor variability is the ubiquitous and unwanted property of the motor control,

which needs to be suppressed by practice. On the other hand, recent theories

of motor learning claim that motor variability facilities motor learning. In this

thesis, we demonstrate that motor variability does not facilitate supervised motor

learning. In an attempt to reconcile these apparently contradictory positions, we

have proposed that motor variability has two components: one caused by redun-

dancy (due to multiple degrees of freedom provided by the joints) and another

component that is random noise. In this work, we explored motor redundancy

component and investigated its significance and effect on supervised learning. We

demonstrate that a greater use of redundancy was correlated to faster learning

across subjects. We tested this hypothesis in dynamic perturbation learning and

kinematic perturbation learning. Furthermore, to identify the neural substrate

for exploration of redundancy in supervised learning, we have tested patients with

Parkinsons disease and cerebellar ataxia disease.
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1.6 Contributions of the thesis

The main contribution of the thesis are the following findings:

• Supervised motor learning is modulated by the presence/absence of dopamine

and deep brain stimulation in Parkinsons disease patients.

• Reinforcement given at the end of the trial is an essential component that

may modulate the gain of supervised motor learning.

• The motor variability component resulting from joint redundancy may as-

sist both dynamic and kinematic learning ability across healthy subjects

without affecting task-space variability.

• The differences in learning of novel dynamics by the dominant and non-

dominant hand in healthy subjects suggest that the nervous system actively

controls the redundancy.

• Differences between the correlation of redundancy and motor learning that

was selectively impaired in Parkinsons disease patients but not in cerebellar

impaired patients possibly points to a role of the basal ganglia in processing

the use of redundancy and exploration in motor learning.

1.7 Preview

The thesis contains 4 chapters: In chapter 1, the motivation and relevant litera-

ture on motor learning is presented and discussed in detail. Chapter 2 presents

the role of basal ganglia in supervised motor learning. In chapter 3, the role of

motor variability in supervised motor learning is presented. Finally, Chapter 4

presents the conclusions and presents the scope for future work.
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Chapter 2

Role of basal ganglia in

supervised learning

2.1 Introduction

Traditionally, supervised learning (error based) and reinforcement learning (re-

ward based) are thought to be anatomically and functionally separate mechanisms

[1, 32, 45, 64]. While the mechanisms underlying supervised learning is thought

to involve minimizing the differences between the predicted and actual sensory

feedback [5, 14, 17]; reinforcement learning is believed to occur by selecting the

motor commands that maximize reward or minimize punishment [59, 65, 66].

The supporting evidence for this hypothesis derives from a motor learning ex-

perimental study with visuomotor rotations. These experiments resulted in a

recalibration of proprioception for supervised learning but not for reinforcement

learning [51, 67]. Additionally, the retention of the learned motor skill appears

to be selectively stronger for reinforcement learning than supervised learning.

Supervised and reinforcement learning is also thought to have distinct anatom-

ical representations involving the cerebellum and the basal ganglia, respectively
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[1]. In support of this notion, patients with focal cerebellar damage show selec-

tive impairments in supervised learning [21, 22, 25]. However, they show little

impairment during reinforcement learning of the same task [66, 68]. Meanwhile,

Parkinsons disease (PD) patients having impairments in their basal ganglia (on

dopaminergic medication) show no impairment in supervised learning [27, 28].

The conventional view is that supervised learning is independent of reinforce-

ment learning. However, the existence of bidirectional anatomical pathways be-

tween the cerebellum and basal ganglia [48, 49] suggests that these structures

are not necessarily independent information processing units. In particular, it

has been shown [49] that the cerebellum sends a strong di-synaptic projection

to the striatum through the thalamus, while the subthalamic nucleus sends a di-

synaptic projection to the cerebellar cortex by way of the pontine nuclei. These

anatomical connections suggest that both are not independent of each other.

Consistent with this view it has been shown that PD patients without dopamin-

ergic medication also show impairment in supervised learning [69, 70, 71]. This is

in contrast to the finding that PD patients on dopaminergic medication show no

impairment in supervised learning [27, 28]. One possible hypothesis that could

explain this discrepancy is that reinforcement by dopamine differentially influ-

ences motor learning [53]. This leads to the hypothesis that the basal ganglia

might modulate the cerebellums sensitivity to errors, thus priming the cerebel-

lum to weight its predictions or to update its forward models based on predicted

reward.

To test this idea and better understand the role of basal ganglia in the mod-

ulation of supervised motor learning, we manipulated the extent of dopamine,

subthalamic nucleus, and reinforcement to study its effect on supervised learn-

ing. We tested PD patients with and without medication, with and without

reward, and with and without deep brain stimulation of the subthalamic nucleus.
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2.2 Materials and methods

In this section, the experimental procedure and experimental setup is discussed.

2.2.1 Subjects

A total of 116 (64 patients and 52 healthy) individuals participated in this study.

Patients were recruited from the neurology outpatient clinics and movement dis-

orders services of the National Institute of Mental Health & Neurosciences, Ban-

galore, India. For Experiment 1, we recruited 20 patients with autosomal dom-

inant cerebellar ataxia and 20 age-matched healthy controls. Assessment of the

severity of ataxia was done by the International Cooperative Ataxia Rating Scale

(ICARS) [72]. Further details about the ataxia patients characteristics and scores

are shown in Table (2.1). For Experiment 2 and Experiment 4, we recruited 32

patients with idiopathic Parkinsons disease (PD) and 32 age and gender matched

healthy controls. For Experiment 3, we recruited 12 idiopathic Parkinsons dis-

ease patients with bilateral STN deep brain stimulation (DBS). The diagnosis of

PD was made as per the UK brain bank criteria [73]. Motor symptoms of PD

were assessed by the section-III of the Unified Parkinsons Disease Rating Scale

(UPDRS-III) both during OFF-medication and ON-medication states. Further

details about the DBS patients characteristics and parameters of stimulation are

shown in Table (2.3) and details about the Parkinsons disease patients are listed

in Table (2.2) and Table (2.4). Mini-mental state examination (MMSE) [74] was

used to screen participants for cognitive impairment and patients with MMSE >

26 was set as an exclusion criterion. All participants had normal or corrected to

normal vision and no cognitive deficits. The handedness of subjects was tested

by the modified Edinburgh Handedness Index [75]. The study was approved by

the Indian Institute of Science ethics review board, and all of the participants

gave informed consent in accordance with the guidelines of the ethics committee.
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2.2.2 Experimental setup

Participants sat on a chair with their right hand placed on the front table as

shown in Figure 2.1A. They looked straight ahead onto a monitor (refresh rate

60 Hz) that displayed targets and the instantaneous hand cursor position while

they moved the cursor in a horizontal plane. The experiment was performed using

the Psychophysics Toolbox in MATLAB [76] that displayed visual stimuli, sam-

pled and stored the data and other behavioral parameters. Hand positions and

joint angles were recorded with a spatial resolution of 7.62 mm by using an elec-

tromagnetic position and orientation tracking device manufactured by Polhemus,

US (Model-LIBERTY).

2.2.3 Experimental paradigm

For all experiments, trials were divided into three phases, namely baseline or

pre-adaptation, adaptation, and post-adaptation. Each trial started with the

presentation of a square fixation box (1.5 cm × 1.5 cm) at the center of the

screen where the subject had to fixate the hand cursor. After successful fixa-

tion, a square target (1.5 cm × 1.5 cm) was displayed randomly in any one of

2 locations 20 cm away from the central fixation box. The subject moved their

hand to the target after the fixation box disappeared. All subjects performed

∼10 practice trials before the experimental session. Then subjects performed the

experimental paradigm with 100 trials per session, with a typical session lasting

for 15-20 minutes. Trials were aborted if a premature movement was made. Dur-

ing the visuomotor perturbation, the cursor movement was rotated according to

Equation (2.1),

Px

Py

 =

cos θ − sin θ

sin θ cos θ

px
py

 (2.1)
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where Px, Py correspond to the position of the cursor, px, py correspond to the

actual position of the hand and θ denotes the perturbation angle about the centre

of work space with theta equal to 45◦. This perturbation led to a trajectory error

that was gradually compensated over the course of many trials till the hand

trajectory straightened again.

2.2.4 Quantifying learning

The error was calculated as the maximum perpendicular distance of the hand

trajectory from the straight line joining the central fixation box to the target

location. The error, denoted by f(n), is related to the trial number by the

following equation,

f(n) = a exp(−β n) (2.2)

The above equation represents a first-order learning process with a being a con-

stant (which depends on the subject), n representing the trial number and β

represents the natural learning rate of a subject [17, 77, 78]. To compute the

population level learning in perturbation trials, errors were fitted with an expo-

nential fit using a robust least squares method.

2.2.5 Reaction time analysis

The psychophysics toolbox (MATLAB) and the position tracking system (Pol-

hemus) were interfaced in real time by triggering a pulse on the tracking system

after target onset. Reaction time (RT) was calculated as the difference between

movement onset and target onset (triggered pulse). An in-house developed code

detected movement onset in MATLAB. To remove outliers, we considered Re-

action time within 25th percentile - 1.5 times the inter-quartile range and 75th

percentile + 1.5 times the inter-quartile range.
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2.2.6 Statistical analysis

The data was assessed for normality using Lilliefors test. For pairwise com-

parisons between the groups, a two-tailed t-test was performed if the data was

normally distributed, otherwise Wilcoxon signed-rank test was used. Compar-

isons of two independent groups were made using a two-sample t-test. All the

correlational analyses were performed using the Pearsons correlation method.

Table 2.1: Demographics of cerebellar ataxia patients.

S. No Age (years) Age of onset Sex Diagnosis ICARS scores

AT1 19 18 M SCA 27
AT2 15 14 M SCA 2 40
AT3 42 38 M SCA 40
AT4 37 34 F SCA 1 25
AT5 23 20 M SCA 3 26
AT6 24 20 M SCA 2 47
AT7 43 42 M SCA 1 54
AT8 39 37 F SCA 32
AT9 72 68 M SCA 12 21
AT10 40 35 F SCA 1 39
AT11 44 40 F SCA 12 34
AT12 29 24 M SCA 58
AT13 26 20 F SCA 37
AT14 57 51 M SCA 30
AT15 24 19 M SCA 59
AT16 43 42 M SCA 1 48
AT17 39 32 F SCA 47
AT18 35 24 F SCA 2 40
AT19 21 18 M SCA 57
AT20 32 27 M SCA 1 41

AT = ataxia patients group; SCA = spinocerebellar ataxia types; ICARS =
International Cooperative Ataxia Rating Scale.
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Table 2.2: Demographics of Parkinsons disease patients

S. No Age Age of onset Sex H &Y Index
UPDRS scores

Drug-OFF Drug-ON

PD1 64 53 M 1.5 12 03
PD2 22 21 M 1.5 20 07
PD3 40 37 M 02 35 04
PD4 58 55 M 02 30 16
PD5 60 52 F 02 25 11
PD6 55 54.5 F 01 14 04
PD7 68 60 M 02 19 13
PD8 45 40 F 02 35 15
PD9 40 36 F 01 30 11
PD10 38 35.5 M 1.5 11 04
PD11 56 50 M 2.5 44 31
PD12 48 40 F 02 15 05
PD13 58 49 M 02 19 11
PD14 66 60 F 03 69 25
PD15 49 33 F 2.5 30 18
PD16 38 34 M 1.5 13 03
PD17 66 56 M 1.5 22 05
PD18 54 42 M 03 48 07
PD19 70 61.5 M 1.5 24 14
PD20 48 45 M 1.5 41 10

PD = Parkinson disease patient group; H & Y Index = Hoehn and Yahr scale;
UPDRS = Unified Parkinsons Disease Rating Scale. The drug-off state was
induced by withholding dopaminergic medication for at least 12 hours before
the test. The drug-ON state was the best possible improvement after taking a
supramaximal dose of Levodopa (usually 60-90 minutes after taking levodopa)

2.3 Results

In this section, we present role of basal ganglia in supervised learning by leveraging

the performance of human patients with Parkinsons disease and cerebellar ataxia

disease.
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Table 2.3: Demographics of Parkinsons disease patients with deep brain stimu-
lation.

S. No Age AO Sex
Voltage

PW Freq. H &Y
UPDRS

R L DBS-OFF DBS-ON

DB1 46 40 M 1.8 1.8 60 130 1.5 23 13
DB2 62 55 F 2.6 2.8 60 130 1.5 32 03
DB3 51 48 M 02 02 60 130 02 21 04
DB4 62 50 M 2 1.8 60 130 02 22 03
DB5 42 32 M 3.4 3.2 60 130 02 16 03
DB6 57 48 M 2.9 3.3 60 130 01 16 04
DB7 63 46 M 1.9 1.8 60 130 02 46 28
DB8 38 30 M 3.1 3.2 60 180 02 19 06
DB9 44 38 M 1.8 1.5 60 130 01 27 05
DB10 62 52 M 03 2.5 60 180 1.5 55 20
DB11 47 45 M 3.7 3.7 60 100 2.5 24 12
DB12 55 40 M 1.8 02 60 130 02 35 15

DB = deep brain stimulation patient group; AO = Age of onset; H & Y Index
= Hoehn and Yahr scale; UPDRS = Unified Parkinsons Disease Rating Scale.
To test the impact of STN stimulation only, all patients remained OFF
medication for a minimum period of 12 hours before the test.

2.3.1 Cerebellum disease patients in visuomotor adapta-

tion

To confirm the well-known role of the cerebellum in the supervised learning, we as-

sessed the differences in learning of autosomal dominant cerebellar ataxia patients

(n=20), and age-matched healthy control subjects group (n=20) in a standard

visuomotor rotation task (Figure 2.1A & 2.1B). Both groups performed point-

to-point reaching movements in visuomotor adaptation, along two directions pre-

sented in random order. In visuomotor adaptation experiment, the cursor was

rotated by 45 degrees from the original hand trajectory. The person could not see

his hand and only feedback was from the cursor location on screen. Overall, the

pattern of trajectories in the baseline condition (without the visuomotor pertur-
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Table 2.4: Demographics of Parkinsons disease patients without reinforcement

S. No Age Age of onset Sex H &Y Index
UPDRS scores

Drug-OFF Drug-ON

NR1 60 56 M 1.5 23 13
NR2 53 48 M 1.5 32 03
NR3 56 49 M 02 21 04
NR4 52 44 M 02 22 03
NR5 57 54 M 02 16 03
NR6 57 54 M 01 16 04
NR7 56 50 M 02 46 28
NR8 47 42 M 02 19 06
NR9 56 52 M 01 27 05
NR10 77 60 M 1.5 55 20
NR11 65 57 F 2.5 24 12
NR12 43 37 F 02 35 15

NR = Parkinson disease patients without reinforcement signal group; H & Y
Index = Hoehn and Yahr scale; UPDRS = Unified Parkinsons Disease Rating
Scale. The drug-off state was induced by withholding dopaminergic medication
for at least 12 hours before the test. The drug-ON state was the best possible
improvement after taking a supramaximal dose of Levodopa (usually 60-90
minutes after taking levodopa)

bation) showed nearly straight trajectory across both groups but showed strongly

curved trajectories in the presence of a visuomotor perturbation (Figure 2.1C &

2.1D). The curved trajectories gradually became straight with practice over the

course of about sixty trials in the case of the healthy control group but not in

the case of cerebellar ataxia group consistent with previous work (Figure 2.2A).

In addition, as a consequence of the absence of motor learning, cerebellar ataxia

patients group showed no washout effect in post-adaptation – washout effect is

the observed change of direction of errors in the opposite direction when the

visuo-motor perturbation is turned off. However, errors in the healthy control

group showed the characteristic washout effect. This washout error converged to

baseline levels typically within twenty trials. The reduction in maximum error as
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Figure 2.1: Experiment setup and design visuomotor adaptation: (A) Sub-
jects made point-to-point reaching movements to visual targets in 2 directions,
20 cm away from the central start point, in each trial. (B) Experiments were
divided into a pre-adaptation (baseline), adaptation (visuomotor rotation) and
post-adaptation (washout) epochs. (C) First five pre-adaptation trials from an
example subject, showing the baseline motor variability. (D) First ten visuomotor
adaptation trials from the same subject, showing the disturbed hand trajectory.
(E) First five post-adaptation trials from the same subject, indicating the washout
effect of adaptation.

given in equation 2.2 was used as a metric to quantify the learning rate for each

subject. We observed that the mean learning rate for the ataxia group (mean =

0.0071 ± 0.010) was significantly less than the mean learning rate for the control

group (mean = 0.023 ± 0.015) (Figure 2.2B; p = 3.3e-4, t (38) = 3.94). This is

consistent with the literature [21, 22, 25]. The difference in learning rate between

the cerebellar ataxia group and healthy control group indicates the vital role of

the cerebellum in supervised learning.
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Figure 2.2: Ataxia patients in visuomotor adaptation. (A) Maximum error in
pre-adaptation, visuomotor adaptation, and post-adaptation across Ataxia pa-
tients (n=20). Red indicates Ataxia patients and black indicates healthy controls.
(B) Learning differences in Ataxia patients (red) and healthy controls (black)
(n=20) reveal faster learning in healthy controls. Solid lines indicates mean and
error bars or shaded areas are SEM (∗P < 0.05; ∗ ∗ P < 0.005; ∗ ∗ ∗P < 0.0005).

2.3.2 Parkinsons disease patients in visuomotor adapta-

tion

Parkinsons disease (PD) is classically considered as a primary basal ganglia dis-

ease occurring due to death of dopaminergic neurons, and we used the perfor-

mance of PD patients relative to controls as a proxy of basal ganglia contribution

to supervised motor learning. We trained Parkinsons disease patients (n=20)

and age-matched healthy control subjects (n=20) on the same two directions

visuomotor rotation task as the cerebellar ataxia patients. To test the impact

of dopaminergic medication, all PD patients were tested in two sessions: OFF

medication and ON medication. PD-OFF medication was defined as being off

medication for 12 hours before the test, and PD-ON medication was defined as

being tested within 1 hour after medication. To avoid confounds due to the

transfer of learning between sessions, the order of testing between ON and OFF

medication were counterbalanced.
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Overall, the pattern of hand trajectories in the baseline condition showed

nearly straight trajectory across groups, and they show strongly curved trajec-

tories in the presence of a visuomotor perturbation (Figure 2.3A). The curved

trajectories gradually became straighter with practice, over the course of about

sixty trials, in the control group and PD-ON medication group but not in the case

of PD-OFF medication group. In addition to this, as a consequence of no motor

learning, the PD-OFF medication group showed no washout effect. In contrast,

the control and PD-ON medication groups showed a washout effect when the

learned visuomotor perturbation was turned off.

As before, the reduction in maximum error equation 2.2 was used as a metric

to quantify the learning rate for each subject. We observed that the mean learning

rate for the PD-OFF medication group (mean = 0.004 ± 0.010) was significantly

lesser than the mean learning rate for the PD-ON medication group (mean =

0.019 ± 0.007) (Figure 2.3B; p = 1.54e-07, t (19) = 8.04). We also observed no

difference in the mean learning rate between the PD-ON medication group and

the healthy control group (Figure 2.3B; p = 0.54, t (38) = 0.613).

2.3.3 Parkinsons disease patients in visuomotor adapta-

tion without reward

Although, the level of dopamine appeared to modulate the rate of learning in

what is traditionally thought to be an error based task, we examined whether this

modulation was a consequence of motivation provided by the auditory feedback

given to subjects at the end of each trial following successful completion of the trial

(i.e., the cursor reaching the target location). To test this hypothesis, we trained

a new set of PD patients (n=12) in the OFF and ON medication conditions to

do the same visuomotor rotation task but in the absence of auditory feedback.

Similar to the previous experiment, the pattern of trajectories in baseline
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Figure 2.3: Parkinsons disease patients in visuomotor adaptation (A) Maximum
error in pre-adaptation, visuomotor adaptation, and post-adaptation in Parkin-
sons disease patients with across medication differences (n=20). Red indicates
medication OFF; blue indicates medication ON, and black indicates healthy con-
trols. (B) Learning differences in the medication OFF (red) and medication ON
(blue) (n=20), reveal faster learning in the medication ON and also show no
differences between the medication ON and healthy controls.
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Figure 2.4: Parkinsons disease patients without reward in visuomotor adap-
tation (A) Maximum error in pre-adaptation, visuomotor adaptation, and post-
adaptation in Parkinsons disease patients across medicine differences absence of
auditory reward (n=12). Red indicates OFF-medication with no reward, blue in-
dicates ON-medication with no reward and black indicates healthy controls with
no reward. (B) Learning differences in the OFF-medication with no reward (red)
and ON-medication with no reward (blue) reveal no differences in medication-
ON and OFF-medication conditions and also reveal faster learning in the healthy
controls.
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condition showed nearly straight trajectories across groups but showed strongly

curved trajectories in the presence of a visuomotor perturbation (Figure 2.4A).

We observed that the mean learning rate for the PD-OFF medication without

reward group (mean = 0.009 ± 0.010) was similar to the mean learning rate of

the PD-ON medication without reward group (mean = 0.015 ± 0.008). Surpris-

ingly, we observed no difference in the mean learning rate between the PD-OFF

medication without reward group and PD-ON medication without reward group

(Figure 2.4B; p = 0.08, t (11) = -1.89), suggesting that reward is a critical com-

ponent which regulates supervised learning through basal ganglia.

To further test the role of the motivational influence of dopamine we also mea-

sured the reaction times (RTs) of subjects while they performed the visuomotor

adaptation task. As previous studies have suggested, there is a direct benefit of

reward on reaction times in non-human primates [8, 79, 80]. Consistent with this

notion we observed that during the learning phase, controls exhibited the smallest

RT (mean RT = 493.00 ± 100.72), followed by PD patients in medication- ON

condition (mean RT = 647.28 ± 219.18) and PD patients in medication- OFF

condition showed the longest RT (mean RT = 717.43 ± 249.0). Nevertheless, the

effect of RT was not directly related to learning per se since we did not detect

any consistent trend in learning among the patients with PD or in the control

subjects (Figure 2.5A & 2.5B). Interestingly, the same differential effect between

controls, PD with medication and without medication was observed in the ab-

sence of reward (mean RT = 532.22 ± 248.60 (controls), mean RT = 580.90 ±

219.15 (ON-medication) and mean RT = 663.78 ± 194.40 (OFF-medication)).

These results indicate that the differences in motor learning observed between

the groups with or without reward were not strictly due to reaction time.
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Figure 2.5: Parkinsons disease patients reaction time (RT) during visuomo-
tor adaptation (A) RT in pre-adaptation, visuomotor adaptation, and post-
adaptation in OFF-medication. Red indicates reward group and blue indicates
no reward group. (B) RT in pre-adaptation, visuomotor adaptation, and post-
adaptation in ON-medication. Red indicates reward group and blue indicates
no reward group. (C) RT in pre-adaptation, visuomotor adaptation, and post-
adaptation across Parkinsons disease patients under medication (n=20). Red
indicates OFF-medication; blue indicates ON-medication and black indicates
healthy controls. (D) RT in pre-adaptation, visuomotor adaptation, and post-
adaptation across Parkinsons disease patients ON and OFF medication conditions
in the absence of reward (n=12). Red indicates OFF-medication condition with
no reward; blue indicates ON-medication condition with no reward and black
indicates healthy controls with no reward.
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2.3.4 Parkinsons disease patients with deep brain stimu-

lation in visuomotor adaptation

Although the previous result indicates a role of dopamine in supervised learning,

dopamine per se is thought to manifest its effects indirectly by modulating the

activity of other nodes of the basal ganglia. To directly test the role of these

structures, we used deep brain stimulation (DBS) of the subthalamic nucleus

(STN) to manipulate the basal ganglia directly. We tested Parkinsons disease

patients with DBS electrodes placed bilaterally in the STN (n=12) on visuomotor

rotation. To verify the effect of subthalamic nucleus stimulation only, all DBS

patients remained OFF medication for 12 hours before the test. All patients with

DBS implanted were tested in two sessions, namely OFF-DBS and ON-DBS. The

orders of the two sessions were counterbalanced across subjects.

Once again to quantify the error, we used the maximum error along the tra-

jectory (Figure 2.6A). The reduction in maximum error equation 2.2 was used

as a metric to quantify the learning rate for each subject. We observed that

the mean learning rate for the OFF-DBS group (mean = -0.003 ± 0.009) was

significantly lesser than the mean learning rate for the ON-DBS group (mean

= 0.017 ± 0.011) (Figure 2.6B; p = 5.97e-06, t (11) = -8.07). In addition, the

OFF-DBS group showed no washout effect, indicating no learning. In contrast,

the ON-DBS group under L-DOPA medication showed a sound washout effect.

Furthermore, we found no differences between the reaction times of baseline and

perturbed conditions trails. Interestingly, we also found a strong positive correla-

tion between baseline stimulation voltage and learning rate (r = 0.74, p = 0.001).

The difference in the learning rate between the ON-DBS group and OFF-DBS

group indicates that there could be a pathway between the cerebellum and basal

ganglia presumably involving the STN that is essential for supervised learning.
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Figure 2.6: Parkinsons disease patients with subthalamic deep brain stimulation
(A) Maximum error during pre-adaptation (baseline), visuomotor adaptation,
and post-adaptation as a function of the trial number in PD patients, with and
without DBS relative to healthy controls. Red indicates OFF-DBS, blue indicates
ON-DBS and black indicates healthy controls. The learning curves are an average
across the population (n=12). The shaded area indicates the corresponding SEM
shown.(B) Learning rates in the OFF-DBS (red) and ON-DBS (blue) conditions
relative to healthy controls (black; n=12 for each group). (C) Mean population
RT in pre-adaptation, visuomotor adaptation, and post-adaptation epochs as a
function of the trial number in PD patients with and without DBS relative to
healthy controls. Red indicates DBS-OFF, blue indicates DBS-ON and black
indicates healthy controls. The shaded area indicates the corresponding SEM.
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Furthermore, subthalamic nucleus (STN), a component of basal ganglia is

thought to play a critical role in inhibiting pre-potent or ongoing actions [81, 82,

83]. It might be the case that improved learning by DBS could be due to a con-

sequence of better inhibitory control that allows the patients in DBS-ON state

to inhibit the pre-potent actions and learn new optimal actions better than the

patients in the OFF-DBS state. A proxy of such improved inhibitory control and

conflict is expected to result in an increase reaction time (RT) [84, 85]. Interest-

ingly, in the OFF-DBS state, we did find any evidence of such inhibitory/conflict

signals being reflected in the pattern of RT across learning. The mean RT in the

baseline period was relatively shorter compared to when the perturbation was in-

troduced and when conflict and inhibitory controls were expected to be greatest

(RT in the first ten perturbation trials, p = 0.005, t (11) = -3.46). Subsequently,

with time RT gradually decreased (linear regression for OFF-DBS, r = 0.64, p =

3.27e-08). Contrary to the conflict hypothesis this decrease in RT was not related

to learning, which was minimal in the OFF-DBS condition. Furthermore, we ob-

served that RT was faster in the DBS-ON condition relative to the OFF-DBS

condition and was fastest in the healthy control group that showed the highest

learning rate. Moreover, we found no systematic trend of decreasing RT with

trial number as learning proceeded for the DBS-ON and control groups (linear

regression for DBS-ON r = 0.02, p = 0.87, and for control r = 0.10, p = 0.42).

Also, there was no significant difference in RTs between the baseline epoch and

the learning epoch for ON-DBS and control conditions (Fig. 6C), indicating that

greater conflict was not necessarily imposed as a consequence of the visuomotor

adaptation.

2.3.5 Clinical correlates of motor learning

Although the cerebellum and basal ganglia are known to be involved in motor

learning, these same areas are also involved in motor control. To test whether
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differences in motor learning are a consequence of deficits in motor control, we

correlated the clinical scores, a proxy of deficits in motor control, in cerebellar and

PD disease patients with motor learning rate. It was observed that the score of the

International Cooperative Ataxia Rating Scale (ICARS), directly related to ataxia

disease state, was not correlated with motor learning (Figure 2.8A; r = 0.02, p

= 0.987). The score of the Unified Parkinson Disease Rating Scale (UPDRS),

related to Parkinson disease state, was also found to have no correlation with

learning (Figure 2.8B; r = 0.32, p = 0.165 (OFF medication) and r = 0.08, p

= 0.742 (ON medication)). Similarly with Parkinson disease patients without

reward (Figure 2.8C; r = 0.48, p = 0.110 (OFF medication No reward) and r

= 0.18, p = 0.576 (ON medication No reward)) no significant correlation was

observed. Interestingly, the score of the Unified Parkinson Disease Rating Scale

(UPDRS), was correlated with learning in the ON-DBS group (Figure 2.8D; r =

0.58, p = 0.049 (ON-DBS)) and not with the OFF-DBS group (Figure 2.8D; r =

0.32, p = 0.315 (OFF-DBS)). We also observed that, the differences in learning

rate for the PD no reward group (mean = 0.005 ± 0.009) was significantly less

than the differences in learning rate for the PD under medication with reward

group (mean = 0.016 ± 0.009) (Figure 2.7A; p = 0.003, t (30) = -3.21). We

also observed no difference in the mean learning rate between the PD under

medication group and PD DBS group. (Figure 2.7A; p = 0.19, t (30) = -1.33).

Similarly, we also correlated the differences between clinical scores with differences

in learning rate. We observed no correlation between differences in clinical scores

with differences in learning rate in any of the groups (Figure 2.7B).
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Figure 2.7: Learning differences in the Parkinsons disease patients (A) Learn-
ing differences without reward (red), with and without medication-patients (blue)
and with and without DBS-patients (black). (B) Correlation between the differ-
ences in UPDRS scores with the differences in learning rate between the Parkin-
sons disease patients shows no correlation.

2.4 Discussion

In this chapter, we have presented two significant observations. First, we demon-

strated how the presence and absence of dopamine influenced supervised learning

thereby implicating the role of basal ganglia in supervised learning. Secondly,

we also show that reinforcement at the end of the trial profoundly affected drug-

induced learning (dopaminergic) learning in PD patients. Taken together we

suggest that these results indicate a link between dopamine, reward in the mod-

ulation of supervised learning which is independent of reaction time, conflict and

disease severity.

2.4.1 Role of basal ganglia in supervised learning

We examined supervised learning using a well-studied visuomotor perturbation

(error-based task) with a few small modifications. Firstly, subjects had to learn

to compensate for a rotation of 45 degrees whereas in most previous work the
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Figure 2.8: Disease state and supervised learning (A) The comparison of Inter-
national Cooperative Ataxia Rating Scale (ICARS) with learning rate shows no
significant relationship between ICARS score and learning rate in ataxia patients.
(B) The comparison of Unified Parkinson Disease Rating Scale (UPDRS) with
learning rate shows no significant relationship between UPDRS score and learning
rate in Parkinsons disease patients and red indicates OFF-medication, blue indi-
cates ON-medication. (C) The comparison of Unified Parkinson Disease Rating
Scale (UPDRS) with learning rate shows no significant relationship between UP-
DRS score and learning rate – red indicates OFF medicine without reward, blue
indicates ON medicine without reward. (D) The comparison of Unified Parkinson
Disease Rating Scale (UPDRS) with learning rate shows a significant relation-
ship between UPDRS score and learning rate of Parkinsons disease patients with
ON-DBS but not in OFF-DBS.
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rotations are typically 30 degrees rotations. Secondly, the subjects made the

movements on a table top but observed the effects on the screen. Thus one could

argue that a larger error and the more complex motor to vision mapping may

have involved basal ganglia selectively [86]. This appears not to be the case as,

patients with cerebellar degenerative diseases also exhibited similar deficits indi-

cating that our task paradigm tapped into the implicit supervised learning [22, 23,

87]. Secondly, the pattern of learning deficits was not restricted to the initial com-

ponent of learning when the errors were larger but rather reflect a global decrease

in learning rate captured by the exponential fit. Previous works on patients with

Parkinsons disease, to identify the role of basal ganglia in modulating supervised

learning, have reported mixed results. While some studies showed no deficits in

supervised learning [27, 28, 70, 29], other studies showed impairment in learning

[69, 71]. The critical factor contributing to these differences, as revealed in our

results, was that the effect of ON-medication and OFF-medication conditions.

Performances were not compared using the same subjects in ON-medication and

OFF-medication conditions in these studies [70]. Taken together, our findings in-

dicate that the difference in learning rate between the OFF-medication group and

ON-medication group suggest that basal ganglia is a necessary neural structure

which participates in supervised learning.

2.4.2 Role of reinforcement in supervised learning

We propose that the ability to learn from errors is also dependent on the basal

ganglia, which is driven by reinforcement of successful actions. In all the studies

on supervised learning, reward reinforcement is inextricably embedded in the task

design [5, 8, 7]. The reward is typically an auditory tone (our task) or a visual dis-

play that occurs when subjects successively reach the target, and it takes the form

of a secondary reinforcement. Thus it is not entirely surprising that one should

see the influence of basal ganglia in supervised learning. Recently, studies using a
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reinforcement signal during a visuomotor rotation task have shown that a graded

reinforcement signal altered supervised learning [53] while a binary reinforcement

signal did not influence supervised learning [54]. Consistent with this result,

healthy controls did not show differences in learning with and without binary

reinforcement signal. However, we observed differences in the OFF-medication

and ON-medication groups in the presence of the reinforcement signal, indicating

that reinforcement and reward are essential components regulating learning.

The mechanism by which reward influences supervised learning is not clear.

One recent hypothesis advocates that rewards affect learning through dopamin-

ergic enhancement [53, 54], which results in better learning as well as better

retention or consolidation. In this study, we explicitly tested this hypothesis by

manipulating the levels of dopamine (ON versus OFF) and reinforcement. It

was observed in this study that an interaction between these two variables such

that the difference between OFF-medication and ON-medication in the presence

of reinforcement disappeared in the absence of reinforcement. These differences

in learning as a consequence of reinforcement did not appear to be a result of

decreased vigor since we obtained the same pattern of reaction times [88] and

disease severity (UPDRS) with and without reinforcement. Thus, these results

can be explained by gain hypothesis in which reward mediated at the end of the

completion of a successful trial causes dopamine release in the proportion that

changes the extent of learning occurring in the cerebellum.

2.4.3 Role of subthalamic nucleus in supervised learning

Dopamine induced changes in learning may manifest by modulating downstream

areas within the basal ganglia such as the subthalamic nucleus. One attractive

hypothesis by which the STN and the basal ganglia can play a direct role in

motor learning is by conflict resoltion and inhibitory control. STN is known to

be a critical nucleus in the basal ganglia which allows conflict resolution between
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multiple actions via inhibitory control of habitual responses, enabling the expres-

sion of novel behaviours [81, 82, 83, 89, 36]. This view provides an attractive

framework to understand the role of STN in the learning of new behaviours. In

support of this view, a recent study by Brown and colleagues [90] reported that

low-frequency beta power from the STN is correlated with performance error in a

visuomotor learning task. However, since this study did not assess motor learning

in the presence and absence of stimulation, the causal contribution of STN could

not be verified. Moreover, analogous to structures such as the medial prefrontal

cortex, which are implicated in executive control [91, 92, 93], it remains unclear

whether learning by STN can be driven by error and/or conflict signals. By

recording the same subjects in ON-DBS versus OFF-DBS conditions we show a

causal contribution of STN in supervised learning. While the RT during ON-DBS

was faster than OFF-DBS and is consistent with DBS having an inhibitory effect

on STN function causing greater impulsivity [94, 95, 96], the improved learning

was independent of changes in RT and contrary to predictions of STN acting via

conflict/inhibitory control.

The conjoint effects of increased learning without systematic changes in RT

with DBS suggest that STN plays a more direct role in supervised learning inde-

pendent of its role in conflcit and inhibition. Traditionally, error-based learning

is thought to be governed by cerebellum [22, 23, 97, 98]. On the other hand,

a recently discovered bidirectional anatomical pathway between the cerebellum

and basal ganglia [48, 49] suggests that these structures may not necessarily be

independent information processing units as have been typically assumed. In

particular, it was shown [49] that the cerebellum sends a strong di-synaptic pro-

jection to the striatum through the thalamus, while STN sends a di-synaptic

projection to the cerebellar cortex by way of the pontine nuclei. Indeed, a func-

tional prediction of such crosstalk is the presence of common symptoms exhibited
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by diseases of the basal ganglia and cerebellum [99]. The observation in our study

shows that the motor control deficits, as assessed by the UPDRS score, have a

significant negative correlation with learning during ON-DBS condition but not in

OFF-DBS condition. This supports a distinct role of STN in supervised learning

learning independent of its role in conflcit and inhibition.

Taken together, the findings of this chapter, are in line with the hypothesis

of bidirectional anatomical pathways between the cerebellum and basal ganglia

[48, 49], suggesting that these structures not be mutually exclusive information

processing units. In particular, it has been shown that the cerebellum sends a

strong disynaptic projection to the striatum through the thalamus, while the sub-

thalamic nucleus sends projection to the cerebellar cortex by way of the pontine

nuclei. Taken together, these results suggest that the basal ganglia modulate

supervised learning in the cerebellum.

2.5 Summary

It is commonly thought that supervised learning is mediated by the cerebellum

while reinforcement learning is mediated by the basal ganglia. In contrast to this

strict dichotomy, we demonstrate a role of the basal ganglia in supervised learning

(error-based motor learning) in patients with Parkinsons disease (PD) by com-

paring the degree of motor learning during medicine-OFF state and medicine-ON

state. We further show similar modulation of learning rates in the presence and

absence of subthalamic deep brain stimulation. We also report that reinforce-

ment is also an essential component of supervised learning by demonstrating the

absence of motor learning in patients with PD during the medicine-ON state rel-

ative to the medicine-OFF state in the absence of a reinforcement signal. Taken

together, these results suggest that the basal ganglia modulate the gain of super-

vised learning in the cerebellum based on the reinforcement received at the end
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of the trial.
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Chapter 3

Role of variability in supervised

learning

3.1 Introduction

As alluded to in the general introduction, the neural structures responsible for

motor learning are also responsible for motor control. Thus, the deficit in these

neural structures, as a consequence of disease also compromises motor perfor-

mance. For example, cerebellar patients produce dysmetric movements and fail

to coordinate multi-jointed movements (for example, ataxia); while subjects with

compromised basal ganglia circuitry ( for example, Parkinsons disease) also ex-

hibit dysmetric movements with bradykinesia. Typically, most of these motor

control disorders result in high motor variability [100, 101, 102]. As such, motor

variability is a fundamental feature of motor control and thought to be a conse-

quence of a stochastic nervous and muscular system and theories of motor control

propose that motor variability is noise that needs to be suppressed.

In recent years, accumulating evidence suggests that motor variability is not a

noise of system but purposefully generated to promote motor learning [57, 59, 63,
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103]. The basis of such findings is thought to hinge on the idea of reinforcement

learning [33, 104] that depends on the presence of variability that increases ex-

ploration; hence facilitating learning. Interestingly, such variability has also been

shown to help to learn during supervised error-based learning tasks, suggesting a

more general role of variability in motor learning as well as reiterating the tight

coupling between reinforcement and supervised learning which was the described

in the previous chapter. Nevertheless, at face value, such a relationship between

motor variability and motor learning is at odds with theories of motor control

that envision variability as noise that needs to be suppressed. A corollary of this

some hypothesis also raises the possibility that motor disorders which are charac-

terized by higher variability should show enhanced motor learning. Along those

lines, Therrien et al. 2016 [66] tested this hypothesis in patients with cerebel-

lar ataxia and suggested that motor variability has a tradeoff between variability

and learning. For a certain level motor variability helps in learning supporting its

role in exploration up to a limit, after which motor variability is just a noise and

does not promote learning. In contrast, a recent meta-analysis studied indicated

that motor variability does not facilities the motor learning [62]. In an attempt

to reconcile these apparently contradictory positions regarding the role of motor

variability in learning, we hypothesise that motor variability has two components

one caused by redundancy that perhaps could help in motor learning while the

other component, being random noise, would not contribute to motor learning.

This hypothesis that redundancy could aid in motor learning was based on

the observation that redundancy is a ubiquitous property that renders biological

systems robust to disruptions (and perturbations). Goal-directed movements also

display redundancy since a given movement, such as touching one’s nose, can be

made in many different ways with a different combination of joint angles in the

arm. Although redundancy generates flexibility, it also poses a fundamental prob-
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lem for the motor system since recruiting more joints and muscles than necessary

will increase variability, particularly if noisy muscles are recruited independently.

However, if redundancy is controlled in an intelligent manner, it is possible to

maintain acceptable levels of variability while maintaining a reasonable degree

of redundancy that allows flexibility in behavior. Consistent with this view, it

has been observed in a wide range of tasks [105, 106, 107, 108, 109, 110] that

variability is not eliminated, but optimized [111, 112, 113] to accumulate in a

task-relevant dimensions using minimum intervention principle [113]. Such vari-

ability that is a consequence of redundancy can be quantified as an uncontrolled

manifold [114, 115, 116] in which task independent variability is constrained to a

redundant subspace (or uncontrolled manifold).

While minimizing variability using redundancy is expected to improve task-

related performance, recent evidence suggests that motor variability paradoxically

helps in motor learning [57, 59, 63, 66, 103]. In this study, we tested whether

motor variability arising from joint redundancy plays a role in motor learning

and suggest a possible neural substrate. Furthermore, we explored a possible

mechanism for redundancy to contribute to motor learning.
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3.2 Materials and methods

In this section, the experimental procedure and experimental setup is discussed.

3.2.1 Subjects

All of the subjects were paid for participation and gave informed consent in ac-

cordance with the guidelines of the Indian Institute Science, ethics committee.

Seventy normal subject participated in study (aged 22-70 years, 42 male and 18

female). In experiment 1, 40 subjects (all right handed) performed visuo-motor

task and in experiment 2, 10 subjects (all right handed) performed generalized

visuo-motor task. In experiment 3, 10 subjects (6-right handed, 4-left handed

subjects) performed the force-field experiment first with their dominant and af-

ter gap of 5 days with non-dominant hands. The handedness of the subjects was

tested by modified Edinburgh Handedness Index [75]. We also analyzed the per-

formance of subjects from previous chapter, 20 patients with autosomal dominant

cerebellar ataxia and 20 idiopathic Parkinsons disease (PD) in this chapter.

3.2.2 Experimental setup

In experiments 1, subjects sat on a chair while the hand is placed on front table

as shown in Figure 3.1A. They looked straight on a monitor (refresh rate 60 Hz)

in which they saw the targets while they moved their hand; experiments were

conducted in a dark room. This experiment was performed using Psychophysics

Toolbox of MATLAB that displayed visual stimuli, sampled and stored the data

and other behavioral parameters. Hand positions and joint angles was recorded

(spatial resolution of 7.62 mm) using an electromagnetic position and orientation

tracking device (Polhemus, LIBERTY, USA).

All experiments were conducted in a dark room. Subjects sat on a chair while

their chins were supported by a chin rest and their heads were locked with head
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bars on both sides of their temple as shown in (Figure 3.1A). They looked down

on a semi-transparent mirror on which they saw the targets while they moved a

robotic arm handle (BKIN, Canada) in a horizontal plane below the plane of the

mirror. Targets were presented by an inverted monitor (refresh rate 60 Hz) above

the mirror setup which gave the impression that the targets appeared in a virtual

plane below the mirror aligned to the plane in which the robotic arm handle

moved. All experiments were performed using TEMPO/VIDEOSYNC software

(Reflective Computing, USA) that displayed visual stimuli, sampled and stored

the data and other behavioral parameters in real time at a resolution of 1.04

ms. Hand positions and joint angles was recorded (spatial resolution of 7.62 mm)

using an electromagnetic position and orientation tracking device (Polhemus,

LIBERTY, USA) interfacing with TEMPO in real time at 240 Hz.

3.2.3 Experimental paradigm

In experiments 1, trials were divided into three phases baseline or pre-adaptation,

adaptation and post-adaptation. All subjects performed ∼ 10 practice trials.

Subjects performed about 100 trials per session, with a typical session lasting

between 15 minutes. Each trial started with the presentation of a square fixation

box (1 cm) at the center of the screen where the subject had to fixate both

his hand. After successful fixation, a square target with a length of 1 cm was

displayed randomly in any one of 2 locations that uniformly spanned a circle of

20 cm radius around the central fixation box. The subject moved the hand to the

target only after the fixation box disappeared. Trials were aborted if a premature

movement was made. Auditory feedback was given when the subject performed

the particular trial correctly.

In all other experiments, trials were divided into three phases baseline or

pre-adaptation, adaptation and post-adaptation. All subjects performed ∼ 30

practice trials. Subjects performed about 400 trials per session, with a typical
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session lasting between 1.5 to 2 hours. Each trial started with the presentation

of a square fixation box (0.4 cm) at the center of the screen where the subject

had to fixate both his eye and the robotic end-effector. After successful fixation,

a square target with a length of 0.7 cm was displayed randomly in any one of

8 locations that uniformly spanned a circle of 15 cm radius around the central

fixation box. The subject moved the robotic end-effector to the target only after

the fixation box disappeared. Similar to experiment 1, trials were aborted if a

premature movement was made. Auditory feedback was given when the subject

performed the particular trial correctly.

Visuo-motor perturbation

During visuo-motor perturbation,as mentioned in Chapter 2, the movement is

rotated according to (3.1),

Px

Py

 =

cos θ − sin θ

sin θ cos θ

px
py

 (3.1)

where Px, Py correspond to the position of the cursor, px, py correspond to the

actual position of the hand and θ denotes the perturbation angle about the centre

of work space with θ equal to 45◦. This perturbation also led to a trajectory error

and to compensate the subjects altered their hand trajectory. With practice the

hand trajectory tended to become straight again.

Force-field perturbation

During force-field perturbation, the robot applied a viscous curl forces depending

on the instantaneous hand velocity as in (3.2),

Fx

Fy

 =

 0 −K

K 0

ẋ
ẏ

 (3.2)
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where Fx, Fy correspond to the forces exerted on the robotic arm, ẋ, ẏ correspond

to the velocity components of hand and K denotes the force perturbation coeffi-

cient along the orthogonal directions with K equal to 20 Ns/m. This force-field

perturbation disturbed the hand trajectory.

3.2.4 Quantification of learning

The error was calculated as the perpendicular distance of the hand trajectory at

peak velocity from the straight line joining the central fixation box to the target

location. To compute the learning in perturbation trials, as mentioned in Chapter

2, were fitted with an exponential fit using the robust least squares method,

f(n) = a exp(−β n) (3.3)

The use of an exponent fit is motivated by the standard learning rule which is

a first order process that depends on the current error. The goodness of fit for

the population learning curve for visuomotor learning (r2 = 0.95), for generalized

visuomotor learning (r2 = 0.90) and in force-field learning (r2 = 0.93). The

learning rate β was used a metric to quantify the learning rate for each subject.

Occasionally investigators have used the difference in error between first and

last trials [17] for quantification of learning. However, this approach is somewhat

flawed because it does not make use of the all the data points and would be

expected to be more influenced by noise. Some investigators have also used the

initial direction of the trajectory as an error measure. However, since in a viscous

force-field the initial velocity and therefore the force is zero, so this method is not

appropriate in our case.

In another approach to quantify learning rate, the mean trajectory in each of

the eight directions was computed and the deviation from the mean, at each point,

was obtained. The root mean square of the deviation was obtained for each trial.
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For the eight directions, least square linear fits were done and the finally, the mean

of the eight slopes is assumed to be the learning rate. The learning could also be

quantified as the area under the curve formed by the trajectory with the straight

line from the fixation point to the target as the base. However, a potential flaw

in these approaches is that error is calculated over the entire duration of the trial,

which comprises of both feed-forward and feedback components. From literature

on learning mechanisms, it is known that feed-forward and feed-back mechanism

are different [117, 118] and it is not clear how to combine both these mechanisms.

In light of the above discussion, we decided to use the error at peak velocity along

the trajectory. It may be mentioned that the error at the peak velocity is used

extensively in literature [13, 78, 119, 120].

3.2.5 Quantification of redundancy

To specify any point in 3D space, one need to specify the three position coor-

dinates and to additionally specify the orientation of the object three further

quantities are required. At the kinematic level, the human arm (excluding the

fingers) has nine degrees of freedom at the joints - two above shoulder (neck to

shoulder), three at the shoulder, two at the elbow and two at the wrist. This

makes the system redundant as there can be only a maximum of six equations

(from the specified position and orientation of the hand) in the nine joint vari-

ables and the redundant system of equations will have infinitely many solutions

for a given position and orientation of the hand. Similar redundancy occurs at

different levels in the neuromotor system – for example the elbow joint has six

different muscles for actuation and there can infinitely many ways to actuate the

muscles to achieve a desired elbow joint rotation.

While previous work has emphasized how such redundancy and the associ-

ated flexibility may play an important role in path planning, control of noise

and optimization of motion, whether and how redundancy might promote mo-
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tor learning has not been investigated. In this work, we hypothesis that motor

variability has two components: one caused by redundancy (due to multiple de-

grees of freedom provided by the joints) and another orthogonal component that

is random noise. In order to calculate the redundancy component (joint-space

variability) in different directions, we created a 2D forward kinematics model for

the human arm. The main justification of a 2D model is that the robot arm and

the wrist of the human gasping the robot arm moves only in the two dimensional

X–Y plane. From standard textbooks on robotics [ghosal2006robotics], the 2D

forward kinematics model can be derived as,x
y

 =

l1 cos(θ1) + l2 cos(θ2) + l3 cos(θ3) + l4 cos(θ4)

l1 sin(θ1) + l2 sin(θ2) + l3 sin(θ3) + l4 sin(θ4)

 (3.4)

where the joints rotations clavicle protraction-retraction (θ1), shoulder horizontal

abduction-adduction (θ2), elbow flexion-extension (θ3) and wrist medial-lateral

(θ4) (Figure 3.1C). In experiment 1, we also incorporated a fifth joint - index figure

abduction-adduction, and accordingly extended (3.4) to include an additional

joint rotation θ5 and an addition length l5. For each subject the lengths li, i =

1, ..., 5 were measured from the data obtained from the motion tracker. To identify

the accuracy of model, the measured end-point (x̄, ȳ) was compared with those

obtained from the model (x, y) and the difference was found to be negligible.

The distribution of redundancy component (joint-space variability) was com-

puted for baseline trials for each of the different directions at the maximum reach

velocity. Since the arm is redundant, we do not have a unique nominal θ vector

(for going from point A to B) from which we can subtract measured θ values to

get difference. We assume that the average is the nominal or the resolved unique

θ values. The mean joint configuration across trials, along each of the directions,

was computed at the maximum velocity v and is denoted by θ̄v. The deviation
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of the joint configuration for a trial k, ∆θk, is obtained by subtracting the joint

configuration at the maximum velocity, θvk, from the mean as below,

∆θk = θ̄v − θvk (3.5)

Based on the 2D forward kinematics model, the Jacobian matrix at peak velocity

was computed as

J(θ̄v) =

 ∂x∂θ1 ∂x∂θ2 ∂x∂θ3 ∂x∂θ4∂y

∂θ1

∂y

∂θ2

∂y

∂θ3

∂y

∂θ4

 (3.6)

where the elements of the Jacobian matrix are the partial derivatives of the

coordinates of the position of arm with respect to the joint angles in the mean

joint configuration. The null space of the Jacobian matrix represented the changes

of joint configurations that keep the position of arm on the mean position. The

joint configuration vector ξi lying in the null-space of the Jacobian matrix was

computed from,

J(θ̄v) ξi = 0 (3.7)

For each trial, the sum of the component of ∆θk along the null-space directions

is given by

θR =
m∑
i=1

〈∆θk, ξi〉 ξi, m = 2 or 3 (3.8)

We quantify redundancy as the sum of the squares of θR across all the trials

divided by the number of trials n. Mathematically, this is written as

N(J) =
n∑

i=1

(θR)2

n
(3.9)

In this work, the scalar N(J) is used as a measure of redundancy space.
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3.2.6 Task-space variability

We quantified the task-space variability from the hand trajectory when it reached

its peak velocity. The standard deviation of the perpendicular distance of this

point from the straight line joining the start and end of the trajectory was used

as the metric of task-space variability.

3.2.7 Statistical analysis

All the correlation analysis uses Pearsons correlation. For pairwise comparisons

between groups we first checked for normality in the data using Lilliefors test and

when it satisfied normality we did a pairwise two-tailed t-test.
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3.3 Results

We used two experimental setups shown in (Figure 3.1A). The subject moves the

end-effector of a robot manipulator or hand alone from an initial point to a task-

space target point. As shown in (Figure 3.1B), the experiment had three phases

a pre-adaptation baseline period, followed by a phase with either one of two kinds

of a perturbation: a visuo-motor (kinematic perturbation) or an applied viscous

curl force (dynamic perturbation); and finally a post-adaptation phase when the

perturbation was removed. We simultaneously measured the end point and joint

angles while subjects reached to the target during the baseline period as shown in

(Figure 3.1C). The map between the joint angles and the end point (x, y) point is

many-to-one, i.e., there is redundancy. The joint variability in the baseline period

was quantified into two components – the joint variability due to the redundancy

space termed as the null-space variability that did not affect end point and the

joint variability that caused changes in end point termed as task-space variability

(Figure 3.1D) respectively. In this work, we studied the effect of these two types

of variability on the learning of kinematic and dynamic perturbation. Addition-

ally, we studied the simple visuomotor adaptation and generalized visuomotor

adaptation. Furthermore, we studied force-field adaptation when the subject is

using the dominant and non-dominant hand. Our main hypothesis is that joint

redundancy helps in motor learning. To test this hypothesis we performed four

experiments involving the learning of kinematics, generalized kinematics, dynam-

ics and testing the differences between the dominant and non-dominant hand.

3.3.1 Motor variability in kinematic learning

We trained 40 subjects to learn point-to-point reaching movements using their

dominant hand, along 2 directions, in a visuo-motor perturbation which was set

using the Equation (3.1). In this experiment the cursor was rotated by 45◦ from
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Figure 3.1: Experiment setup and design for adaptation: (A) Subjects made
point-to-point reaching movements to visual targets in 1 out of 8 directions 15
cm away from the central start point in each trial. (B) Experiments were di-
vided into a pre-adaptation (baseline), adaptation and post-adaptation (washout)
epochs. Subjects adapted to a novel force-field (top panel) or a visuomotor rota-
tion (bottom panel) in separate experiments. (C) Trackers were used to measur-
ing joint rotation angles. (D) Illustration of null-space variability blue circle that
doesn’t affect task-space/end point variability, red circle affects task-space/end-
point variability.
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the hand trajectory (Figure 3.2A). The trajectory of the hand for a typical sub-

ject in the pre-adaptation (baseline) (Figure 3.2B), visuo-motor adaptation (Fig-

ure 3.2C) and post adaptation (Figure 3.2D) are shown. Overall, the pattern of

trajectories are consistent with previous work showing that while typical move-

ments follow a nearly straight trajectory in the baseline condition, they show

strong curved trajectories in the presence of a visuo-motor perturbation. The

curved trajectories gradually become straighter with practice over the course of

about sixty trials (Figure 3.2E). In addition, as a consequence of motor learning,

subjects showed a washout effect (post adaptation) where errors in trajectory

inverts in direction when the learnt visuo-motor perturbation is turned off. This

washout error converges to baseline levels typically with in twenty trials.

To quantify the error, we have used the error at peak velocity along the trajec-

tory. The reduction in peak velocity error (equation (3.3)) was used as a metric to

quantify the learning rate for each subject. To test whether the learning rate of a

subject could be predicted on the basis of motor redundancy exhibited during the

pre-adaptation (baseline period), we computed N(J) (equation (3.9)), the chosen

measure of variability due to redundancy space called null-space variability. We

found a strong positive correlation between baseline null-space variability and

learning rate in the visuo-motor (Figure 3.3C; r = 0.54, p = 0.0003). To increases

the robustness, we divide 40 subjects into two groups based on their learning rate

(above mean and below mean learning group) and a three-trial running mean

± SE (shading in SE) across group subjects are shown-red indicate above mean

group and blue indicate below mean group. In figure 3.3A it is very apparent that

above mean group decrease errors faster than the below mean group and reveal

differences in learning across groups. This is supported by the fitted exponential

β values and In support of the hypothesis the null-space variability is also accord-

ingly significantly different across the two groups as shown in (Figure 3.3A-B).
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hand trajectory. (D) First five post-adaptation trials from the same subject
showing the effect of adaptation. (E) Error at peak velocity in pre adaptation,
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3.3.2 Motor variability in generalized kinematic learning

In order to test whether redundancy could aid in learning generalized task (dif-

ficult), we next examined 10 subjects while they learnt point-to-point reaching

movements with the visuo-motor perturbation (equation (3.1)) along 8 directions

where in each case, the cursor was rotated by 45◦ from the hand trajectory (Fig-

ure 3.4A). The trajectory of the hand for a typical subject in the pre-adaptation

(baseline) (Figure 3.4B), visuo-motor adaptation (Figure 3.4C) and post adap-

tation (Figure 3.4D) are shown. The average behavior pooled across the 10 sub-

jects shows a similar learning pattern (Goodness of fit is r2 = 0.90, Figure 3.4F).

Again the learning rate in the visuo-motor perturbation and the null-space and

task-space variability in the pre-adaptation baseline period were computed. A

significant correlation between the null-space variability with learning rate was

observed (Figure 3.4H; r = 0.71, p = 0.021). Interestingly, we found no corre-

lation of the baseline task-space variability with the learning rate (Figure 3.4I);

r = 0.42, p = 0.22).

3.3.3 Motor variability in generalized dynamic learning

In order to test whether redundancy could aid in learning in other types of pertur-

bation, we trained 10 subjects to learn point-to-point reaching movements using

their dominant hand, along 8 directions, in a force-field which was set using the

force-field perturbation (equation (3.2)). In this experiment the perturbation was

proportional to the velocity of the hand but perpendicular to the hand movement

direction (Figure 3.5A). The trajectory of the hand for a typical subject in the

pre-adaptation (baseline)(Figure 3.5B), force-field adaptation (Figure 3.5C) and

post adaptation (Figure 3.5D) are shown. Similar to the visuo-motor perturba-

tion, consistent with literature, typical hand movements follow a straight trajec-

tory in the baseline condition and they show strong curved trajectories in the
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Figure 3.4: Joint redundancy predicts the learning rate in a generalized visuo-
motor adaptation task: (A) Experimental apparatus and illustration of the visuo-
motor rotation task. (B) First five of pre-adaptation (baseline) trials from a
subject showing motor variability in pre-adaptation. (C) First five of force field
adaptation trials from the same subject showing the disturbed hand trajectory.
(D) First five of post-adaptation trials from the same subject showing the ef-
fect of adaptation. (E) Error at peak velocity in pre-adaptation, adaptation and
post-adaptation from the same subject showing the progression of adaptation
(r2 = 0.40). (F) Eight-trial running mean SE across subjects (shading is SE).
Fitted exponential curves across subjects, significantly account for most of the
progression of errors in the adaptation (r2 = 0.90). (G) Normalized fitted expo-
nential curves, mean (solid), maximum and minimum (dashed) indicating learn-
ing rate variability across 10 subjects. (H) The comparison of baseline null-space
variability at maximum velocity with learning rate shows a significant positive
relationship between joint redundancy and motor learning. (I) The comparison
of baseline task-space variability at maximum velocity with learning rate shows
no significant relationship between variability and motor learning.
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presence of a viscous curl force field. The curved trajectories gradually become

straighter with practice over the course of about two hundred trials (Figure 3.5E).

In addition, as a consequence of motor learning, subjects showed a washout effect

(post adaptation) where errors in trajectory inverts in direction when the learnt

force field is turned off in the post adaptation period. This washout error con-

verges to baseline levels typically within a hundred trials. The average behavior

pooled across the 10 subjects shows a similar learning pattern (Goodness of fit is

r2 = 0.93, Figure 3.5F).

As mentioned, the reduction in peak velocity error (equation (3.3)) was used

as a metric to quantify the learning rate for each subject. The mean learning rate

was found to be 0.006± 0.002 for the dominant hand and 0.004± 0.001 for non-

dominant hand in the force-field adaptation period. To test whether the learning

rate of a subject, under a viscous perturbing force, could be predicted on the

basis of motor redundancy exhibited during the pre-adaptation (baseline period),

we again computed N(J) (equation (3.9)) as the measure of variability due to

redundancy space. We found a strong positive correlation between baseline null-

space variability and learning rate in the force-field (Figure 3.5G; r = 0.72, p =

0.018 (dominant hand), r = 0.67, p = 0.033 (non-dominant hand)). However, we

found poor correlation between the learning rate and the task-space variability

in the baseline period (Figure 3.5H; r = 0.14, p = 0.70 (dominant hand), r =

0.03, p = 0.92 (non-dominant hand)).

3.3.4 Actively linked joint redundancy and motor learn-

ing

Differences in the redundancy across subjects may reflect a difference in the

intrinsic biomechanics which may assist is learning. In contrast, differences

in the redundancy may also reflect the effect of neural control that assists in
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Figure 3.5: Joint redundancy predicts rate of learning in a force-field adaptation
task: (A) Experimental apparatus and illustration of the viscous curl force-field.
(B) First five of pre-adaptation (baseline) trials from a subject showing motor
variability in pre-adaptation. (C) First five of force field adaptation trials from
the same subject showing the disturbed hand trajectory. (D) First five of post-
adaptation trials from the same subject showing the effect of adaptation. (E)
Error at peak velocity in pre-adaptation, adaptation and post-adaptation from
the same subject showing the progression of adaptation (r2 = 0.38). (F) Eight-
trial running mean SE across subjects (shading is SE). Fitted exponential curves
across subjects significantly account for most of the progression of errors in the
adaptation (red indicates dominant hand (n = 10, r2 = 0.91), blue indicates non-
dominant hand (n = 10, r2 = 0.88). (G) Normalized fitted exponential curves
across hands mean (solid), maximum and minimum (dashed) indicating learning
rate variability and differences across hands learning. (H) Comparison of baseline
null-space variability at maximum velocity with learning rate shows positive rela-
tionship. (I) Comparison of baseline task-space variability at maximum velocity
with learning rate shows no significant relationship between variability and motor
learning.
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motor learning. To assess this we tested and compared the learning rate and

null space variability between the dominant and non-dominant hand in 10 sub-

jects, thereby normalizing any differences in redundancy due to the biomechanics.

We observed that the mean learning rate for the non-dominant hand (mean =

0.004±0.001) was significantly less than the mean learning rate for the dominant

hand (mean = 0.006± 0.002) (Figure 3.6A; p = 0.008, t(8) = 3.54). Interestingly,

the null-space variability was also lesser in the non-dominant hand (mean =

0.054± 0.036) compared to dominant hand (mean = 0.12± 0.066) (Figure 3.6B;

p = 0.035, t(8) = 2.54). However, there was no difference in the mean task-

space/end-point variability between the dominant and non-dominant hands, sug-

gesting that the task-space/end-point variability did not influence learning rate.

Further, we found a good correlation (Figure 3.6D; r = 0.84, p = 0.003) between

the difference between the learning rate and difference in null-space variability of

the dominant and non-dominant hand, suggesting that extent of difference in the

null-space variability could partly explain the difference in learning rate between

the two hands.

Furthermore, we also observed an outlier subject whose learning rate was

higher in the non-dominant hand compared to the dominant hand (marked as a

dotted line in Figure 3.6A-C and marked in blue in Figure 3.6D). Nevertheless,

even for this subject the null-space variability was greater in the non-dominant

hand compared to the dominant hand, in support of the hypothesis. Taken to-

gether these findings indicates that the difference in learning rate between the

dominant and non-dominant hand maybe a consequence of the greater redun-

dancy in the dominant hand acquired as a consequence of greater usage.

To provide further insights into how redundancy might help in motor learning,

we separated direction-wise errors with mean of five trails and fitted into ellipse

as illustrated in (Figure 3.7A). Furthermore, we computed the orientation of el-
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Figure 3.6: Learning differences between the dominant hand and non-dominant
hand: (A) Learning differences in the dominant hand (red) and non-dominant
hand (blue) (n=10), reveal faster learning in the dominant hand. (B) Baseline
null-space variability in the dominant and non-dominant hand reveal differences in
null-space variability between hands indicating reason for differences in learning
rate. (C) However, baseline task-space variability in the dominant hand and
non-dominant hand reveal no differences in task-space variability between hands.
(D) Comparison of the difference in null-space variability with the difference
in learning rate between the dominant hand and non-dominant hand shows a
significant positive relationship. The outlier subject data is shown as a dotted
line (5A-C) and in green dot (5D).
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lipse (angle of major axis) in starting of perturbation. We found that, orientation

of ellipse was constant throughout the subjects (mean = 126 ± 9.3), which sug-

gests that the same direction is difficult to learn in comparison to other directions

across subjects. However, when we analyzed the eccentricity of ellipse in baseline,

starting of perturbation and end of perturbation, we found significant differences

in eccentricity. We found higher eccentricity of ellipse in the starting of pertur-

bation in comparison of baseline and end of perturbation, which illustrated that

leaning level is different in different directions (Figure 3.7B; p = 0.02, t(9) = 3.6).

Similarly we also computed area of ellipse in baseline, starting of perturbation

and end of perturbation, we found higher area in the starting of perturbation

in comparison with area in the end of perturbation which is directly indicative

of learning (Figure 3.7C; p = 0.005, t(9) = 8.3). Furthermore, we divided trails

into block of 8 direction trails and fitted the ellipse in each block as illustrated

in figure 3.7D, which shows how the error are decreasing in each direction and

in end of perturbation ellipse become more closer to circle because eccentricity is

small. However, when we plotted the eccentricity and area of ellipse across sub-

jects (Figure 3.7C-D), we see drop in eccentricity and area as block progresses.

Decrease in area indicates the learning in subjects but decrease in eccentricity

of ellipse indicate that the brain is trying to remove the direction dependence

of error. In other words, the natural anisotropy of errors with direction is being

overcome during learning.

3.3.5 Neural substrates linking joint redundancy and mo-

tor learning

Since differences in the redundancy appear to reflect experience, we tested for

possible neural substrates that allow joint redundancy to facilitate motor learn-

ing. We computed the null-space variability and motor learning in ataxia pa-
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Figure 3.7: Joint redundancy and homogenization of workspace: (A) Represen-
tative subject directional error ellipse for the baseline (black), starting of pertur-
bation (red) and end of perturbation (blue). (B) Comparison of directional error
ellipse eccentricity in baseline (black), starting of perturbation (red) and end of
perturbation (blue) reveal higher eccentricity in the starting of perturbation. (C)
Comparison of directional error ellipse area in baseline (black), starting of per-
turbation (red) and end of perturbation (blue) reveal higher area in the starting
of perturbation. (D) Representative subject directional error ellipse progression
of toward more circular. (E) Mean SE across subjects (shading is SEM) showing
the progression of change in ellipse eccentricity indicative of homogenous in equal
in each direction. (F) Mean ± SE across subjects (shading is SEM) showing the
progression of change in ellipse area indicative of learning.
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tients and Parkinsons disease patients from the data presented and analyzed in

Chapter 2. When the kinematic perturbation was applied in patients with cere-

bellar ataxia, we observed a similar degree of exploration of redundancy and

also found a positive correlation between joint redundancy and motor learn-

ing (Figure 3.8A; r = 0.60, p = 0.005, n = 20), despite significantly reduced

motor learning compared to controls (p = 3.3e-4, t (38) = 3.94).However, if

we assume the dotted circle as an outlier in this analysis, The correlation be-

tween joint redundancy and motor learning is weak but still positively correlated

(r = 0.35, p = 0.14, n = 20). Patients with Parkinsons disease (PD) ON and

OFF medication also showed a similar degree of exploration of redundancy com-

pared to controls as well [F(2,77) = 0.83, p = 0.44], while motor learning was

only impaired in the OFF-medication condition compared to controls [F(2,77)

= 16.8, p = 8.8e-7]. Interestingly, in contrast to ataxic patients, PD patients

showed no significant correlation between joint redundancy and motor learning

(Figure 3.8C; OFF-Medicine, r = 0.34, p = 0.142, n = 19 and ON-Medicine,

r = 0.32, p = 0.166, n = 20). The results from both cerebellar and PD pa-

tients indicate that the degree of exploration of redundancy does not explain

the reduced motor learning in these patients. However, we did find interesting

differences between the correlation of redundancy and motor learning that was

selectively impaired in PD patients but not cerebellar impaired patients, possibly

pointing to a role of the basal ganglia in enabling the exploration of redundancy.
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Figure 3.8: Joint redundancy in a cerebellum and basal ganglia disease patients:
(A) Comparison of ataxia patients at baseline null-space variability at maximum
error with learning rate shows positive relationship. (B) Comparison age matched
healthy subjects at baseline null-space variability at maximum error with learn-
ing rate shows significant relationship between variability and motor learning.
(C) Comparison of Parkinsons disease patients at baseline null-space variability
at maximum error with learning rate shows no significant relationship between
variability and motor learning (red indicates OFF-medicine, blue indicates ON-
medicine). (D) Comparison age matched healthy subjects at baseline null-space
variability at maximum error with learning rate shows a significant relationship
between variability and motor learning.
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3.4 Discussion

In contrast to previous work that has studied joint redundancy and learning in

isolation, this is the first study undertaken to test the relationship between these

two variables under the assumption that the extra degrees of freedom conferred

by the arm is used by the motor system to facilitate learning. We have shown

that variability in reaching a target in task-space has low correlation with learning

during perturbations, whereas the variability in the null-space, resulting from the

redundancy in the human arm, aids in learning. We interpret these results as

indicating that exploration of redundancy aids in motor learning when a force-

field or a visuo-motor rotation perturbation is present.

3.4.1 Joint redundancy

The uncontrolled manifold hypothesis (UCM) that has its origin in the initial

observations by Bernstein [121] is the dominant framework to understand and

quantify joint space redundancy [114, 115, 116]. Such redundancy is now es-

tablished as a ubiquitous feature of behavior observed across a variety of tasks

[105, 106, 107, 108, 109, 110]. In the current study we followed the UCM frame-

work to quantify joint space redundancy. However, unlike previous work, we

quantified redundancy in individual subjects as opposed to measuring the group

response and observed large variability, suggesting that redundancy might be an

idiosyncratic feature that is unique to each subject. In addition, unlike past work

where redundancy was quantified at the maximum peak velocity or at the target

location, we restricted our computation to the former in case of visuo-motor per-

turbations. This was done because task-space variability is known to be highest

at the maximum velocity of the trajectory and smallest at the end point (target),

particularly when the targets are small. Thus, quantifying redundancy at the

peak velocity is better suited to reveal the full scale of variability across subjects
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which are essential to understand its bearing on motor learning.

Previous work has suggested that the degree of redundancy can be task spe-

cific and can be optimized such that motor system obeys the principle of minimum

intervention in which the brain only controls task relevant variability but does not

control task irrelevant or redundant variability. Although we did not explicitly

study the control of redundant variability, we did observe interesting task specific

differences indicating that redundancy or task irrelevant variability also maybe

actively controlled and is not merely epiphenomena of having more degrees of

freedom than required for the task. For example, in our pool of subjects we

observed that redundant variability was on average greater in the dynamics con-

dition (mean=0.11±0.069) than in the kinematic condition (mean= 0.04±0.022)

even in the pre-adaptation period when the reaching task was identical. We be-

lieve that this difference may reflect the additional constraint of subjects having

to follow the incremental cursor movements along trajectory in the kinematic

condition, thereby containing the available redundancy. In the force-field exper-

iments, the hand motion was considerably longer thereby allowing redundancy

to show its effects. Our results also showed a significantly larger redundancy

in the dominant hand in comparison to the non-dominant hand despite being

bio-mechanically similar [122, 123] and performing the same task. The larger

redundancy seen in the dominant hand provides a natural explanation of why

learning might be more potent in the dominant hand and reaffirms the belief

that redundancy not only reflects the bio-mechanical characteristics of the arm

but may reflect active control from the brain.

3.4.2 Dynamic and kinematic learning

To study motor learning we followed previous work that has tested the ability

of subjects to implicitly adapt their motor behavior in presence of dynamic and

kinematic perturbations [8, 13, 124, 125]. In our learning paradigm subjects
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learnt the perturbations while making movements in two directions and also to

all 8 directions, picked at random. Hence, unlike some learning paradigms that

emphasize specific learning in one direction our learning is expected to generalize

across directions. This motivated the use of single exponential fit pooled across all

directions to study the average rate of learning as a single variable even though our

data suggest the presence of fast and slow learning phase that has been reported

in the literature [125]. In future work we hope to study direction-specific motor

learning to test whether joint redundancy better correlates with the fast versus

slow learning phase.

Nevertheless, our results revealed learning rates that are comparable to the

literature [8, 13, 14, 17]. We also observed that kinematic learning (mean=

0.007 ± 0.001) was faster than dynamic learning (mean= 0.006 ± 0.002), which

might be idiosyncratic to the subjects who performed the respective experiments.

However, the data also revealed novel facets of motor learning not reported earlier

to the best of our knowledge. First, learning in the dominant hand was signif-

icantly faster than the non-dominant hand. Second, trends indicate that some

directions appear to be easier to learn, and like joint redundancy there is a large

subject specific variability in the data, whose implications will be discussed in

the next section.

3.4.3 Relating joint redundancy and motor learning

The strong subject wise correlations observed in both the dynamic and kine-

matic learning tasks support the hypothesis that joint redundancy supports mo-

tor learning. Although our data is fundamentally correlative in nature, we were

able to exploit a novel feature in our experiment that involved the use of the

dominant and non-dominant hand that resulted in differences in learning rates

and redundancy. Lending further credence to the hypothesis, we found that the

smaller redundancy in the non-dominant hand was associated with slower learn-
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ing. Moreover, the differences in learning and redundancy were also correlated

(Figure 3.6D;r = 0.84, p = 0.003). This notwithstanding, we do not claim that

redundancy is the sole source of motor learning. This can be seen in kinematic

and dynamic learning tasks where despite smaller redundancy in kinematic task

compared to the dynamic task, the learning rate is higher during the former.

This is likely to reflect differences in the mechanisms involved in learning these

two perturbations and they may involve the learning of different internal models

[17] with joint redundancy being a common factor that confers greater flexibility

to explore motor space. Additionally, we also observed differences in the degree

of redundancy and learning across directions. While these differences were not

statistically significant (they were also poorly correlated), these results may sug-

gest that redundancy not only possesses an active component that correlates with

learning but also a passive component that reflects differences in the biomechan-

ics.

Finally, we only observed strong correlations between joint redundancy and

motor learning but not with task-space variability. These results, suggest that

the minimum intervention model or the UCM framework needs to be extended to

allow for active exploration of task relevant variability as well as joint redundancy

[103]. Although it is not still mechanistically clear how joint space redundancy fa-

cilitates motor learning, we suggest that such active exploration of task irrelevant

space maybe essential to motor learning, while simultaneously ensuring optimal

motor performance by minimizing task space variability. In contrast, recent work

by Wu et. al. [59] using both reinforcement learning and error based supervised

learning emphasize the selective role of task relevant variability in motor learning.
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3.4.4 Neural basic for linking joint redundancy and motor

learning

To identify, the neural substrate responsible for potentially linking null-space vari-

ability and motor learning, we tested patients with impaired cerebellar (Ataxia)

and basal ganglia (Parkinsons disease) function. The results from both cerebel-

lar and PD patients indicate that the degree of exploration of redundancy does

not explain the reduced motor learning in these patients. However, we did find

interesting differences between the correlation of redundancy and motor learning

that was selectively impaired in PD patients but not cerebellar impaired patients,

possibly pointing to a role of the basal ganglia in allowing for the use of explo-

ration in motor learning. Further research would be required to reconcile these

points of view.

3.5 Summary

In this work, we explore motor variability and investigate its effect on super-

vised motor learning. We propose that the motor variability that arises from

redundancy leads to faster learning across subjects. We observed this pattern in

subjects learning novel dynamics and kinematics learning. Interestingly, we also

observed differences in the redundancy between the dominant and non-dominant

hand that explain differences in learning of novel dynamics, suggesting that re-

dundancy maybe actively controlled by the nervous system. The results from

ataxia and Parkinsons disease patients indicate that the basal ganglia maybe in-

volved in the exploration of redundancy in motor learning. Taken together, these

results provide support for the hypothesis that redundancy aids in motor learning

and that the redundant component of motor variability is not noise.
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Chapter 4

Conclusions

The key contributions of this thesis are in the area of supervised motor learning.

The purpose of the thesis is to understand brain mechanisms and computations

underlying supervised motor learning, its interaction with reinforcement learning

and study its relation to motor variability. To address these issues, we have

investigated factors influencing supervised motor learning such as neurological

disease condition, the role of the reinforcement signal, motor variability and motor

redundancy.

This thesis addressed two main questions:

• What is the role of basal ganglia in supervised motor learning?

• What is the role of motor variability in supervised motor learning?

4.1 What is the role of basal ganglia in super-

vised motor learning?

In this study, we made two significant observations. First, we demonstrated how

the presence and absence of dopamine and STN stimulation influenced supervised
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learning thereby implicating the role of basal ganglia in supervised learning. Sec-

ond, we also showed that reinforcement at the end of the trial profoundly affected

drug-induced (dopaminergic) learning in PD patients. The data and results ob-

tained suggests, that the ability to learn from errors is also dependent on the

basal ganglia and is driven by reinforcement of successful actions. Our data is

best explained by a gain hypothesis in which, reward mediated at the end of a

successful trial releases dopamine in the proportion that changes the extent of

learning occurring in the cerebellum.

A potential unexplored implication of this finding is that reinforcement of cor-

rective processes may also a play a role in motor learning. This aspect hitherto

has been overlooked in computational models of supervised learning which has

instead focused on the sensory error per se. In this work, we could not distinguish

between error and error correction induced learning as all trials that produced

errors automatically gave rise to successful error corrections in controls as well as

patients. A caveat in our interpretation is, however, the surprising finding that

the presence and absence of reinforcement appeared to have a profound effect

on learning in PD patients while learning was unaffected in controls. Although

we currently are unable to explain this finding in a straightforward manner, this

apparent discrepancy only reinforces the complexities of attempting to infer brain

function by observing the lack of it in patients with disease conditions. Given

the plasticity that exists in the brain, adaptive changes are likely to reconfig-

ure brain circuitry and function in patients with respect to controls rendering

interpretations to be used with caution. Nevertheless, it is important to note

that our main conclusions are based on comparisons between the same patients

in different states (ON and OFF dopamine), and therefore our conclusions are

justified. Another noteworthy, finding is the use of DBS patients to causally ma-

nipulate basal ganglia output in a more direct fashion than has been done before.
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Taken together, these studies point to a more direct role of the basal ganglia and

dopamine in modulating supervised learning.

Interestingly, the improvement of learning was independent of changes in re-

action time (RT), suggesting that the STN may contribute to motor learning via

a separate mechanism independent of inhibitory control. Thus we suggest that

improvement in supervised learning occurs independently of executive processes

and supervisory processes that involve more explicit cognitive strategies. While

these data implicate basal ganglia circuitry (the STN) and dopamine, the detailed

mechanisms that modulate motor learning are not clear and require additional

experiments. In particular, the role of stimulation at subthalamic nucleus is not

clear; does STN-DBS causes a dopamine release or does STN-DBS balance out

the activity of the direct and indirect pathway in an impaired basal ganglia? In

future, one can test while performing supervised learning task and DBS-OFF

or DBS-ON stimulation in between the experiment. Taken together, these re-

sults indicate a link connecting reinforcement, dopamine and basal ganglia in the

modulation of supervised learning.

4.2 What is the role of motor variability in su-

pervised motor learning?

A fundamental concept in reinforcement learning theory is that the learning sys-

tem must both explore the environment to gain better knowledge about it and

exploit current knowledge. In line with this view, recent work claims that motor

variability helps in motor learning. In contrast, theories of motor control propose

that variability is noise that needs to suppress. We attempt to provide a frame-

work to reconcile these apparently contradictory positions. In this study, our data

and results suggest that motor variability has two components a part arising out

of the redundancy and the other related to task-space variability. We show that
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the motor variability component resulting from the redundancy determines learn-

ing ability across subjects without affecting end point. Although the results are

fundamentally correlational, we also tested dominant and non-dominant hand

because biomechanically both are thought to be similar. Interestingly the dom-

inant and non-dominant hand showed differences in redundancy that explained

the differences in the learning rate and suggest the possibility that the brain may

actively control redundancy and enhance motor learning.

Although the mechanistic basis of how redundancy helps in motor learning is

not clear, we surmise that the increased flexibility afforded by joint redundancy

helps overcome the consequences of perturbations, resulting in faster learning.

Perhaps, the increased redundancy allows more efficient mappings between neural

activation and behavioral states, allowing different motor states to exist or be

traversed with fewer changes in neural space.

To identify, the neural substrate responsible for potentially linking null-space

variability and motor learning, we also tested patients with impaired cerebellar

(Ataxia) and basal ganglia (Parkinsons disease) function. While the results from

both cerebellar and Parkinsons disease patients indicate that the degree of explo-

ration of redundancy did not explain the reduced motor learning in these patients,

we did find interesting differences between the correlation of redundancy and mo-

tor learning in Parkinsons disease patients but not cerebellar impaired patients,

possibly pointing to a role of the basal ganglia in enabling the use of exploration

in motor learning.

Although in this study null-space variability was computed in joint space, the

neuro-motor system has redundancy even at the level of muscles. In future, one

can test the significance and role of muscle redundancy in motor learning. Fur-

thermore, null-space variability was computed at peak velocity in the trajectory.

In future, one can ask, how and which part of a feed forward and feedback con-

82



trol null-space variability contribute. One can also investigate the unaddressed

question of how null-space variability influences reinforcement motor learning.
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