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Abstract

Endoscopy is a procedure by which a long flexible device called the ‘endoscope’ is inserted

into a patient’s gastro-intestinal(GI) tract primarily for diagnosis. An endoscope is typically

equipped with a camera, fiber-optic lighting system and nozzle for spraying water or pump-

ing air. Most commercial endoscopes are also equipped with a catheter channel for passing

instruments (catheters) for specific treatments and diagnostic procedures. The thesis aims

at addressing two common issues faced by endoscopists: 1) Actuation and positioning of the

catheter tip at a desired location while maintaining a stationary camera focus and 2) Manoeu-

vring the endoscope inside the stomach while avoiding the curling of scope and perforation of

tissue walls. Efficient methods to solve these problems could reduce the procedure time and

hence, overall discomfort experienced by the patients.

In order to address the first problem, a flexible end-effector for independently actuating the

catheter is developed and analysed. The design uses miniaturized pneumatic artificial mus-

cles (MPAMs) for actuating the end-effector. For analysis and implementation, a mathematical

model which accurately predicts the pressure-deformation characteristics of MPAM is necessary

and hence, a detailed survey on existing models for PAMs as well as MPAMs was conducted.

Comparison between static characteristics of PAMs obtained from different phenomenological

models in the literature and experiments conducted on the in-house fabricated MPAMs show

that the existing models are either inaccurate or inconsistent with changes in fabrication param-

eters of MPAMs. Hence, a new and improved mathematical model for the pressure-deformation

characteristics of MPAM is derived. For MPAMs with less than 2 mm diameter and lengths

ranging from 40 mm to 70 mm, it is shown that the developed model could consistently predict

the deformation characteristics of the prototype with less than 5% error.

An end-effector prototype which uses three MPAMs for actuation is fabricated and tested.

The prototype which is 55 mm long with an outer diameter of 8 mm could deflect a commercial

forceps catheter tip by about 20 mm in different directions. An iterative scheme for the forward

kinematics of end-effector which takes into account the static characteristics of MPAMs is also

developed. The forward kinematics model could predict the final pose of the end-effector with
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a maximum error of 2 mm at the tip. An inverse kinematic strategy, using the projection of

the workspace of the end-effector is developed and the end-effector actuation is implemented in

real-time, taking input from a thumb-stick.

The second problem faced in endoscopy is partially addressed by proposing the use of a

multi-segmented continuum endoscopic robot. To this end, a new optimization based approach

to solve forward kinematics of a single segment of the robot is presented at first. Actuation of

the continuum robot in 2D plane is mathematically proven to provide the exact configuration as

that obtained from differential geometry based methods. Simulations conducted with different

number of segments also validate the same, barring the cumulative errors arising from the

numerical solution procedure. The method is extended to 3D and is also verified using numerical

simulations. For the multi-segmented robot, a motion planning algorithm to confine the travel

of the robot within the GI tract is developed. Different methods to represent ducts in 2D and

3D are discussed and a tractrix based optimization scheme is developed for each representations.

Motion of an endoscope through GI tract is simulated using a GI tract profile obtained from

the CT scan data of human viscus. The proposed method is shown to confine the movement

of the endoscope within the tract, while emulating realism.
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Chapter 1

Introduction

1.1 Motivation

According to the paper by Spaner and Warnock [1], the concept of using mechanical means to

visualize interior organs of a human body started as early as the 10th century A.D. and the

earliest device was arguably the invention by an Arab physician, Albukasim where reflected

light is used to view human cervix. Little progress was made from this initial concept till the

introduction of a light transmitting device –“Lichtleiter” by Italian-German physician Philip

Bozzini in 1805 which kick started the evolution of the ‘endoscope’—an instrument used for

examining the interior of hollow viscus (see [2], Fig. 1.1) . The term ‘endoscopy’ would later be

referred to the study performed using endoscopes. The endoscopes fabricated in the early 18th

century consisted of light chambers which were illuminated using wax candles or burning con-

tinuous wicks. From the light chambers, a tube filled with prisms or mirrors was introduced to

shallow orifices in body such as urethra and urinary bladder. The first esophagoscopy procedure

was conducted in 1868 by German physician Kussmaul by overcoming the difficulty of manoeu-

vering the scope through the neck by appropriately positioning the patient’s head. Later, the

illumination method was improvised using electrically heated platinum wire while cooling the

surroundings with a continuous flow of cold water. With the invention of Edison’s incandescent

electric bulb, straight rigid tubes with light bulb at the tip was developed. Straight tubes were

quite popular and were in use till the second half of the 20th century till the development of

optical fiber cables. As the procedure became more popular afterwards, specific terms such as

bronchoscopy, rhinoscopy, cystoscopy and gynoscopy evolved for inspecting distinct body parts

and the term endoscopy became largely associated to inspecting the gastrointestinal(GI) tract.

Through the hundred years from its invention, the endoscope has undergone many tech-

nological advancements in terms of lighting and visualization. As opposed to its predecessors,
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Figure 1.1: Bozzini’s Lichtleiter [3]

a modern endoscope is a single flexible tube, about 1–2 meters long, with diameters ranging

from 9 mm to 12 mm (see Fig. 1.2). A commercial endoscope is equipped with a camera which

provides real-time visual feedback from the point of view of endoscope tip and a LED based

lighting system for illumination. A nozzle is also present which could spray a stream of water

and blow air so as to clean the camera lens and the tissue under observation. The air pump

which uses carbon dioxide is also used to inflate sections of the GI tract whenever required [4].

One or two thumb wheels attached at the holding end of the scope can be operated so as to

actuate the distal end of the endoscope (about 10 cm length from the tip) in vertical as well as

horizontal directions. This way, it is possible to orient the camera to a desired location for better

perspective. The thumb wheels also act as a means to steer the distal part of endoscope aiding

the manoeuvrability. Apart from these basic components, most of the commercial endoscopes

also contain one or more channels through its length whereby specific instruments–also called

catheters– can be inserted. The catheters are long flexible mechanisms of about 2.5 mm outer

diameter which can be inserted from the holding end of the endoscope and can pass through the

catheter channel. The mechanism at the distal end of catheter protrudes from the distal tip of

endoscope and based on the mechanism, different procedures can be performed such as remov-

ing foreign bodies from the tract, collection of tissue samples and treatments such as ablasion,

ligation, stenting etc.(see Fig. 1.3). With the developement of different catheters, endoscopes

have evolved from using the basic gripping tool for removing foreign objects in the tract or

for collecting samples for biopsy, to state-of-the-art techniques such as endoscopic ultrasound
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(a) Endoscope by Olympus [5]

(b) Distal end of an endoscope [5]

Figure 1.2: Commercial endoscope

where the doctors can visualize areas in the body which are otherwise anatomically difficult to

access without surgery.

The motivation for the work presented in this thesis comes from partially addressing two

issues faced by doctors while performing endoscopy.

1. When the distal end of an endoscope is deflected using the thumb wheels, not only the

camera, but the tip of the catheter also deflects along with it. Hence every time a

catheter has to be positioned at a required position and orientation, the camera focus

will change. The motion dependency between the camera and the catheter tip makes the

precise positioning of catheter non-trivial and sometimes difficult, especially when there

are more than one catheters deployed at the same time (see Fig. 1.4(a)).

2. Another challenge in endoscopy is manoeuvring the scope in the stomach region. While

the forward feed is provided by manually pushing the tube from the dorsal end, sometimes

the scope has to be twisted from the holding end in order to guide the tip for motion

in transverse direction [9]. This procedure is usually difficult and non-trivial task even

for experienced endoscopists (see Fig. 1.4(b)). Since the guidance of scope is provided

only by the curvature of the walls, it is very common that the distal section of the scope

coils itself inside the stomach when reaching for the intestine section1(see Fig. 1.4(c)).

1Identifying the starting end of intestine is itself a challenging task and the accuracy mostly depends on
the doctor’s experience. Once the intestine is identified, the doctors hook the endoscope tip at the entry of the
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(a) Endoloop by Ethicon [6]

(b) Stents by Barxx [7]

(c) Ablasion catheter by Pen-
tax Medical [8]

Figure 1.3: Different catheters used in endoscopic procedures

(a) Manipulating multiple
catheters

(b) Doctor contorting to
control the scope orientation (c) Manipulation through

stomach [9]

Figure 1.4: Difficulties associated with endoscopy

Uncontrolled manoeuvring could also lead to perforation of the walls of the GI tract [10].

An endoscope design which addresses these limitations will reduce the procedure time and

hence, the discomfort experienced by the patients.

The first difficulty can be addressed by providing some means to actuate the distal tip of the

catheter independent of the camera. A miniaturized end-effector integrated to the endoscope

tip which can be actuated from the holding end of the scope will enable the endoscopists to

manipulate the catheter tip without altering the camera focus. Since the camera is usually

positioned at around 50 mm from the region under inspection, the length of such an end-

effector may be limited to less than 50 mm. Considering the size of the endoscope, the actuator

along with the catheter should be less than about 8 mm in diameter. Also, flexible mechanisms

intestine–locking the scope– and pull the scope in order to shorten its working length and also to straighten it.
Unless this procedure is carried out, the scope curls inside the stomach on further pushing.
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may be preferred over rigid systems so as to avoid the end-effector scratching the tissues and

causing perforation.

Conventional actuation techniques are not quite suitable in actuating endoscopic catheters

since both precise control and flexibility are desired at a miniature size. At present, the tip

of endoscope is moved by pulling a set of cables (tendons), which actuate a series of universal

joints [11]. This technique is made use of in a few NOTES (Natural Orifice Translumenal

Endoscopic Surgery) platforms [12]. The main disadvantage of actuating the end-effector with

cables is that the end-effector becomes stiff in the actuated state and compliance has to be

actively controlled [13]. The use of micro-motors is ruled out since it increases the weight

at the tip of endoscope apart from making the end of the scope rigid. Shape memory alloy

(SMA) wires have the required flexibility and precise positioning capability ( [14], [15], [16]).

However, the response time of SMA wires for heating and cooling could be of the order of a

few seconds which would make the procedure lengthier. Also, the temperature increase due to

heating of SMA wires for their actuation is not desirable. These reasons demand the use of

unconventional actuating mechanisms in the end-effector. Soft actuators pose a good candidate

for this application since the actuator could be non-stiff in the un-actuated state and compliant

in the actuated state [17]. Soft actuators have definite advantages over rigid manipulators

working in unstructured, cluttered and fragile environments which have made them a fast

growing topic in robotics research. Detailed review on different soft robotics actuators can be

found in references [18], [19], [20] and [21].

In 1958, Richard H. Gaylord patented a ‘Fluid Actuated Stroking Device’ which is ‘an

expansible chamber device comprising a bladder confined within a braided sheath...adapted

to be energized by a fluid’ [22]. The bladder which is sealed on one end is made of flexible

material and the braided sheath is usually woven using in-extensible fibers. The device, which

is essentially a linear actuator has an interesting property that if the angle at which the outer

sheath is braided differs from a particular locking angle, the device contracts or expands upon

pressurization of the fluid contained in the bladder. This invention gained popular attention

when it was later used by McKibben in a design of orthotic wheelchair [23]. Due to the

similarity of this flexible actuator with biological muscles, the device is often identified by

the name ‘McKibben Muscles’ or ‘Fluidic Artificial Muscles (FAMs)’. For several years, these

muscles did not achieve much commercial success probably due to the bulky accessories which

are required to energize the system or due to the faster progress in the development of electric

motors and other actuators. More recently since the 1980s, the actuators have regained its

commercial and academic attention due to its unique advantages. The FAMs which make use

of pressurized air are also called ‘Pneumatic Artificial Muscles (PAMs)’ and are now extensively
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Figure 1.5: (a) Actuation of PAM [25] (b) PAMs used in a robot arm [26]

studied by engineers especially in the field of bio-inspired and medical robotics (Figure 1.5).

In [24], the authors have listed in detail, the major developments towards the evolution of

Pneumatic Artificial Muscles.

Among the different types of conventional actuating mechanisms such as electric motors,

pneumatic pistons, shape memory alloys etc. as well as the other flexible actuators used in

robots [27], artificial muscles stand out due to their following advantages:

• High power to weight ratio: The earliest commercial PAM called ‘Rubbertuator’ by

Bridgestone corporation and Hitachi weighed about 6 kg and could lift a mass of ap-

proximately 2 kg (refer [28], [29]). At present, the PAMs manufactured by companies like

Festo [26] has a lifting force of 6000 N while weighing only about 800 grams.

• Flexibility and compliance: An unpressurized PAM exhibits the same flexibility as that of

the bladder but it becomes stiff while remaining reasonably compliant upon pressurization.

This compliance is a necessity for the development of medical devices such as minimal

invasive surgical tools ( [30], [31], [32]) and rehabilitation robots (refer [28], [33], [34]).

• Compatibility with human environment: The primary actuation mechanism of PAM is

pressurized air or pressurized inert gas. Hence, it is safer compared to other devices which

use electricity, heat or chemically active substances. The only practical safety concern

regarding PAM could be the rupture of inner bladder under high pressure. However, by

controlling volume flow rate of air into PAMs, this issue can be addressed.

• Low cost in fabrication: A simple PAM could be fabricated from inexpensive off-the-shelf

materials. Hence the manufacturing cost of PAMs is very low compared to other actuators
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in the same functionality regime. However, it may be noted that PAMs require pneumatic

circuitry which increases the initial cost.

Due to the above mentioned advantages, PAMs have found many applications in the robotic

industry. A detailed survey on robots which make use of PAMs spanning the domains such as

biologically inspired robots, rehabilitation devices, industrial robots, exoskeletons and aerospace

applications can be found in [35]. Particularly interesting are the miniaturized versions of PAMs,

also called MPAMs, where the diameter is less than 5 mm. Due to the small size, these actuators

are used in different applications such as wearable hand exoskeletons [36], cardiac compression

devices [37], tool manipulation in surgical devices ([38], [39], [31]) etc. Miniaturized PAMs of

diameter less than 2 mm can be bundled into an organized muscle structure for lifting heavy

loads. An advantage of using multiple PAMs as bundle or in parallel is the ability to recruit

selected muscles as per the load requirement. The variable recruitment technique of muscle

bundles is more energy efficient compared to a single muscle of equivalent capacity and are

studied in references [40], [41], [42], [43] and [44]. It is shown in [45] that bundling MPAMs

exhibit better contraction ratio compared to a single muscle of same diameter. By adjusting

the braiding characteristics of PAM or by clubbing two PAMs with different characteristics,

the PAM could generate a moment resulting in bending actuators (refer [46], [47], [48]). These

references suggest that a flexible end-effector designed with MPAMs as their main actuation

technique could prove to be an effective means to address the problem of independent actuation

of catheter.

The second problem of maneuverability of endoscope can be addressed by converting the

entire length of the scope as a redundant serial robot and actively controlling the configuration of

the robot while the endoscopic robot travels through the GI tract. The concept of robot assisted

medical procedures such as in robotic surgery [49] is gaining high momentum since they provide

stable control with less error and high repeatability [50]. Apart from surgical robotics, hyper-

redundant robots also find their application in search and rescue operations, industrial pipeline

inspections and also in bio-inspired robotics and hence, considerable efforts are being made

towards the research and improvement of the same (please see [51], [52], [53], [54], [55], [56], [57]

and [58]). A hyper-redundant endoscopic robot could be designed as a set of rigid links actuated

using motors as is the case of a snake like robot [59], as a multi-segmented continuum robot [60]

or a concentric tube design [61], [62]. The major challenge in the first two cases is in conforming

the dimensions of the robot to the dimensions of a commercial endoscope and in incorporating

a large number of joints within the given length of an endoscope. The limitation is more

prominent in case of motor-actuated robot compared to continuum robot. In case of concentric

tube design, different pre-formed concentric tubes are telescopically actuated and hence, the
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Figure 1.6: Elephant trunk robot [65]

actuated configuration of the robot depends on the manner in which the tubes are deformed and

hence limits the dexterity. In an application point of view, out of the different robot designs,

continuum robot seems to be the best choice for the application in hand since the robot will be

lighter in weight and flexible, which are desirable properties for an endoscope.

Continuum robots are generally serial robots which use flexible links instead of rigid links

which make it ideal for the fabrication of endoscopic robot. Since the degree of freedom of

such robots are infinite, they possess all the advantages of a hyper-redundant robot. A detailed

review on the design, history and applications of continuum robots can be found in [63] and [64].

One of the earliest continuum robot developed was the Rice/Clemson ‘elephant-trunk’ robot

shown in [65] (refer Fig. 1.6). The robot which resembles a spinal column structure consists of

a flexible backbone whose pose can be adjusted by pulling a set of cables attached to it. The

robot is made of multiple segments and each segment can be actuated using a set of four cables

which are placed 90◦ apart from each other. Guide disk attached at regular intervals on the

backbone routes the cables (tendons) from the base of the robot till the tip of the segment so

that the separation between the cables are maintained. By pulling the cable pairs attached to

a segment, the segment can be actuated, which assumes the configuration of an arc of a circle.

By actuating multiple segments, the continuum robot can take different configurations in 3D.

Detailed analysis of the workspace of the robot can be found in [66]. It is also possible to

generate special configurations for the actuated continuum robot by varying the tendon routing

as shown in [67]. Many advanced flexible robots are modifications of this original concept, with

difference mostly in the actuation mechanism (such as pneumatic [26], SMA wires [68]) or the

type of backbone (such as serially connected universal joints ([67], [69]), flexible continuous

beam [70] or rigid rods connected using compliant joints [71]). While the continuum robots are

generally fabricated with segments of equal length, in [72], the authors describe analysis and

experiment on robot with varying lengths of segments.
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In case of hyper-redundant robots, there are theoretically infinite possibilities to achieve a

particular position and orientation of its end-effector. The additional degrees of freedom of a

hyper-redundant endoscopic robot can be effectively used in manipulation through GI tract,

since it is possible to select a configuration which is confined to the tract without altering the tip

position. Identifying a suitable configuration from the many possible configurations, given the

position and orientation of the tip constitutes the redundancy resolution of the hyper-redundant

robot. For an endoscopic robot, the path through which the tip of the robot has to move can

be set as the medial axis of the GI tract. If the path followed by the tip is predetermined, then

the redundancy resolution problem also constitutes the motion planning of the robot.

The initial focus of researchers on addressing redundancy resolution problem was to solve

the equation relating the end-effector velocity ϑ̇, to the joint rates ϕ̇, i.e, ϑ̇ = J (ϕ) ϕ̇ where J is

the manipulator Jacobian matrix. Primary idea of inverse kinematics is to invert the Jacobian

using Moore-Penrose inverse (pseudo inverse) [73]. While this method results in kinematic

singularities, methods such as extended Jacobian ([74], [75]) and task prioritized augmented

Jacobian [76] are aimed to avoid these singularities and also obtain solutions to inverse kinematic

problem by specifying a velocity component at the singular configuration depending on the task

at hand. Since the major advantage of using a hyper-redundant robot is to facilitate motion

avoiding obstacles and movement in confined spaces, many researchers have worked on this

particular task using above mentioned techniques [77]. However, even though the methods

avoid singularities in the manipulator Jacobian, it could generate other forms of singularities and

also, the method becomes computationally complex for large number of joints [78]. Many other

redundancy resolution methods including variational approach, geometric approach, neural

networks and fuzzy logic can also be found in the literature ([79], [80], [81], [82]).

In reference [53], obstacle avoidance problem for hyper-redundant manipulator is carried out

by fitting a curve through the joints of manipulator and planning the path for this ‘backbone

curve’ which avoids obstacles. Finding the pose of the backbone curve directly gives the co-

ordinates of the joints. Hence, in case of obstacle cluttered environments, planning the path

of the end-effector which avoids the obstacles will result in redundancy resolution since the

trajectory itself forms the backbone curve of the manipulator ( see [83], [84], [85], [86]). Even

though the backbone curve approach is very simple, end-effector trajectory with many closely

spaced kinks may sometimes produce undesirably high accelerations at the joints. The motion

will also look un-natural. In reference [87], the authors proposed a tractrix based redundancy

resolving algorithm which produces natural looking motion of hyper-redundant robot. It is

also shown in [88] that the same can be achieved by minimizing the subsequent motion of the

links, given the displacement of the head (end-effector). The tractrix based solution also has
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an interesting characteristic that the motion attenuates from the head to the tail(base) of the

entire manipulator. For obstacles represented by simple analytical shapes, it is shown in [89]

that the algorithm can be effectively used for obstacle avoidance as well.

1.2 Contributions of the thesis

The thesis aims to partially address the two challenges faced by endoscopists:1) Positioning

the catheter tip at a desired location while maintaining a stationary camera focus and 2)

Controllable manoeuvring of the endoscope inside the stomach. To this end, the following are

the major contributions from this thesis:

1. A survey on mathematical model for statics of PAMs

In this work, miniaturized pneumatic artifical muscles are used for actuating a novel

end-effector which can impart independent catheter motion. Many researchers have at-

tempted to capture the accurate description of the physics of PAMs which made available

a variety of modeling techniques in literature, some of which, even though are not ex-

act representation of the physical phenomena, seem to suit the purpose of application

in PAM enabled robots and mechanisms. A thorough survey and documentation of the

static modeling considerations for PAM , from the first model mentioned in Gaylord’s

patent, to the recent models in the literature have been carried out in this thesis.

2. A new model for miniaturized PAMs.

A miniaturized pneumatic artificial muscle of outer diameter less than 2 mm is fabricated

and tested in-house. Since the existing static models available for pressure-deformation

relationship of pneumatic muscles do not conform to the experimentally obtained char-

acteristics of the fabricated MPAM, a new static model for miniaturized PAMs built on

the framework of inflation of a linear elastic cylindrical tube is developed. The developed

model shows better consistency with the physics of MPAM and hence, the model as well

as the modelling strategy opens up a new and different approach in modelling statics of

miniaturized PAMs.

3. A novel flexible end-effector for actuating endoscopic catheters

Using three MPAMs, a flexible end-effector which can actuate the tip of an endoscopic

catheter is designed, fabricated and tested. The 55 mm long end-effector prototype could

deflect the tip of a commercial forceps tool by more than 20 mm in all directions. A

controller is developed and implemented for real-time actuation of the end-effector and
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is shown that it is possible to arbitrarily position the end-effector tip by actuating a

thumbstick.

4. Forward kinematics using optimization methods

A new optimization based forward kinematics approach is developed using discretization

of the entire length of the end-effector and identifying the configuration of segments

by comparing them with 4-bar parallel mechanisms. Since MPAM-based end-effector

cannot afford the use of guiding discs, the existing theoretical kinematic analyses in the

literature were not applicable to the fabricated actuator and the developed model shows

good agreement with the experimental results. By changing the minimization function,

the same approach could also be used for continuum robots with guiding discs, which is

mathematically proved.

5. Motion planning of hyper-redundant robot in confined spaces

Different strategies to represent ducts in 2D as well as 3D are discussed. For each

stratagem, tractrix based optimization algorithm for redundancy resolution of a hyper-

redundant robot, which adheres to the constraint of confinement within the duct is de-

veloped. A simulation of motion of endoscope through GI tract is carried out using a

model obtained from human CT scan data. The solution based on the derived approach

generates a natural-like motion of the robot while travelling through the duct.

1.3 Preview of the thesis

The thesis focuses on two topics which are discussed in detail: 1) The development and analysis

of miniaturized pneumatic artificial muscles and a novel endoscopic end-effector. 2) Motion

planning of a cable-driven hyper-redundant continuum endoscopic robot. For the first topic,

since it is essential to understand the pressure-deformation characteristics of MPAMs for their

implementation in an end-effector, and thereby facilitating end-effector control, chapters 2 and 3

are dedicated for this purpose. In chapter 2, a detailed literature review on the static modelling

of pneumatic artificial muscles is presented. Due to the incongruence between the experimental

results and theoretical results from existing models for statics of MPAM, a new and improved

model is developed in chapter 3. The model is found to be more accurate and consistent

compared to the existing models in literature. This chapter also discusses the fabrication

characteristics as well as the experimental set-up used for the study. Once the MPAMs are

characterized, they are employed in a novel design of end-effector for actuating endoscopic

catheters. Details of the design and fabrication of the end-effector are discussed in chapter 4.
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The chapter also discusses the formulation of a new model for the forward kinematics of the

end-effector as well as the validation of the theoretical model using experiments. In chapter 5,

the second topic of motion planning of endoscopic robots is discussed in detail. The kinematic

analysis of a continuum endoscopic robot is carried out using two study modules. Firstly, a new

formulation to describe the forward kinematics of a single segment of cable driven continuum

robots is developed and is proven to be in accordance with the solutions found in the literature.

Secondly, a novel approach in resolving the redundancy of the multi-segmented continuum robot

is developed, with the motion planned such that it is always confined to the interior of the GI

tract. A motion simulation conducted on the GI tract profile obtained from an actual human

CT scan data is also presented in this chapter. Finally, in chapter 6, conclusions of this thesis

as well as the scope for future studies are presented.
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Chapter 2

A survey on static modelling of

pneumatic artificial muscles

2.1 Introduction

In order to understand the behaviour and influence of MPAM employed in a robot, it is imper-

ative that accurate mathematical description of underlying mechanics is formulated. However,

due to the complex interaction of forces in a PAM, this task is not trivial. Nonetheless, many

attempts have been made in this regard due to two reasons. Firstly, a mathematical model

would help to improve the control system of robots, especially in implementing model based

control systems (see [90], [91], [92]). In such cases however, it is desired to have an easily

implementable and computationally efficient model to improve the response of the controller.

Secondly, a model with sufficient parameters helps to efficiently choose or fabricate an actuator

with optimized qualities intended for a particular task. In this case, an accurate model which

describes the mechanics of PAM based on actuator dimensions, braiding characteristics, mate-

rial properties etc. is preferred. Like any other pneumatic systems, PAM exhibits hysteresis

which is a major hindrance in modeling statics and dynamics of PAM. Due to static frictional

forces and nonlinearity in the material of the bladder, a quasi-static contraction (or elongation)

of PAM shows different curves for force vs length and pressure vs length plots for compression

as well as decompression of air. In force modeling methods, this additional frictional force is

generally added (or subtracted) from a mean curve for contraction (and elongation) of PAM.

This frictional force, as may be seen in the later sections of this chapter, are mostly empirically

calculated. For modelling the dynamics of PAM, the rate of change of state of PAM is related

to the change in input parameters where kinetic friction is also included in the model.

In the review paper by Tondu [93], the author meticulously reviewed the major static and
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dynamic modeling improvements carried out by well-known researchers in the field. Starting

from the simple and one of the earliest static model proposed by Schulte [94], the author

carefully addressed different physical considerations which could improve the basic model such

as the inclusion of material properties, non-cylindrical end-effects, representation of PAM as a

fiber-reinforced membrane model as well as muscle hysteresis. The author lists the necessary

considerations, reasonable assumptions as well as precautions to be taken in deriving the static

and dynamic formulae representing the actuation of PAM. However, since the objective of

Tondu’s paper is to identify accurate means to describe the physics of PAM, a few models in

the literature which rely on empirical formulations as well as the models which provide only

minor improvements from the standard equations are not detailed in Tondu’s article. In this

chapter, a thorough review of models which are not mentioned in Tondu’s paper is presented.

2.2 Review of static modeling of PAMs

In this section, models used by different research teams to describe the statics of PAM are intro-

duced. Many models which assume quasi-static motion do not consider hysteresis into account

since accurate phenomenological description of hysteresis is not yet available and many control

system strategies use the mean value between contraction and extension profiles ([90], [95], [96]).

As described before, in case of force balance formulations, these hysteresis forces can be added

(or subtracted) in case the hysteresis effect is non-negligible. Also, extensile PAMs are not

commonly used compared to the contractile PAMs since additional arrangements are required

to avoid the buckling effect. In reference [97] the authors compare the performance differences

between contractile and extensile muscles. It is shown that the derived mathematical models

are valid for extensile muscles as well. Hence, most models stated here will assume the pri-

mary actuation mode of PAMs as contractile. Finally a few fundamental models mentioned in

Tondu’s paper are also discussed here for completeness.

The following nomenclature will be used in the rest of this chapter, unless stated otherwise

(refer Fig. 2.1):

l0, r0 and t0 represent the length, outer radius and thickness of the bladder before defor-

mation, respectively. After deformation, these quantities change to l, r and t. The quantity

ri = r0 − t0 represents the initial inner radius of the bladder. Initial and final winding angle

of braid are denoted as θ0 and θ, respectively. The symbol N , m and b represent the number

of turns of the braid along the length, number of strands of braid as well as the length of a

single braid strand, respectively. The symbol Pi represents the input pressure and ε =
l0 − l
l0

represents the strain in the bladder along the axial direction. Notations F and κ will be used

to represent force and constants in general.
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Figure 2.1: MPAM nomenclature

If it is assumed that the PAM remains cylindrical after deformation i.e., if the tapering

effects at the ends are not considered, we can write the following equations [98]

l0 = b cos θ0, 2πr0N = b sin θ0 (2.1)

l = b cos θ, 2πrN = b sin θ (2.2)

In the above equations, it is assumed that the braid is in contact with the outer surface of the

tube at all times and the thickness of the braid is neglected. It is also assumed that the braid

material is inextensible.
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2.2.1 Basic modeling strategies

The earliest mathematical model which takes into account the mechanics of a PAM can be

found in Gaylord’s patent [22]. For static equilibrium of the compressed muscle, the energy

provided by the applied pressure (Pi dV ) must be balanced by the work done by the PAM

which is carrying the load applied at the tip to a particular distance (F dz). By expressing the

change in volume enclosed by the braided sheath dV and the displacement of the PAM tip dz

in terms of the angle of winding, the energy balance formula yield the following expression for

force:

F
(1)
Gaylord =

b2

4πN2
Pi
(
3 cos2 θ − 1

)
(2.3)

In the above equation, the initial cylindrical shape of the bladder is assumed to stay cylindrical

even after deformation and the simple kinematic equations of the braid given by (2.1) and (2.2)

are used. The above relation gives the value of final braid angle θ for the applied pressure and

axial loading from which we can find the final length of PAM using equation (2.2). The limiting

value of braid angle (and hence, the length) for which the force exerted is maximum can be

found by differentiating the above equation with respect to θ and setting to zero. The value

θlimit = 54.7◦( 54◦44′) hence becomes a locking angle for deformation of PAM. In other words,

a PAM wound with a braid at any initial winding angle will theoretically approach this locking

angle with an increase in pressure. This model is also found in the literature in its alternate

form,

F
(2)
Gaylord = πr2

0Pi
[
q1 (1− ε)2 − q2

]
(2.4)

q1 =
3

tan2 θ0

, q2 =
1

sin2 θ0

which shows the primary behaviour of PAM as a non-linear spring. In this simplistic and first

approximation of PAM statics, the volume occupied by air inside the bladder is assumed to

be the same as the volume enclosed by the braided sheath. However, this assumption is an

over-estimation of pressure energy since the the volume of air inside the bladder is only the

volume enclosed by the cylinder formed by its inner radius. In [98], Chou gives an expression

for the force taking into account the thickness of bladder:

F
(1)
Chou =

b2

4πN2
Pi
(
3 cos2 θ − 1

)
+ πPi

[
bt0
Nπ

(
2 sin θ − 1

sin θ

)
− t20

]
(2.5)
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The experimental comparisons shown in Chou’s paper suggest that even though the model is

derived based on simplified assumptions, this is a good first approximation. In the coming

years, researchers mostly improvised on this basic model by adding correction factors, relaxing

the modelling assumptions or by adding force terms arising from other physical phenomena

contributing to the statics of a PAM.

2.2.2 Correction factors for Gaylord’s model

Gaylord’s model assumes the initial cylindrical shape of the PAM to remain cylindrical even

after deformation. However, since one end of the PAM is connected to the pressure inlet system

and the free end is always sealed, the radial expansion of bladder will be non-uniform. In the

clamped ends, the radius of bladder will be the initial radius after deformation. Hence, on

either ends of a PAM, the cylinder takes approximately, the shape of a conical frustum. In [99],

Tondu modified the basic equation by Gaylord to include a factor ‘kε’ which was intended to

account for this non cylindrical tip effects. The force was given as

F = πr2
0Pi
[
q1 (1− kεε)2 − q2

]
(2.6)

In their work, to match the experimental results, the factor kε is chosen as kε = κ1e
−Pi + κ2,

where the constants κ1 and κ2 are experimentally calculated. In another work by Itto and

Kogiso [100], the value of kε is chosen as kε = κ1e
κ2Pi + κ3 to add more flexibility. In Tondu’s

model, static frictional force is also included to improve the static characteristics:

Ffstat = µsPi

(
S

(1)
contact

S
(1)
scale

)
(2.7)

where S
(1)
contact = 2πr0l0

sin θ0

(1− kεε)
√

1− cos2 θ0(1− kεε)2

is the contact surface between the strands of the braid, µs is the coefficient of friction between

the braid strands and S
(1)
scale is a correction factor for the surface area of contact S

(1)
contact, since

the formulation of the contact surface area assumes flat strands of braid. Taking into account

these considerations, the force is given as

FTondu = πr2
0Pi
[
q1 (1− kεε)2 − q2

]
± µsPi

[
S

(1)
contact

S
(1)
scale

]
(2.8)

where the quantity S
(1)
scale is experimentally determined. This model is applied in many works

such as in the control system design of a multi joint arm in [95] as well as in variable recruitment

17



CHAPTER 2. A SURVEY ON STATIC MODELLING OF PNEUMATIC ARTIFICIAL
MUSCLES

of PAM bundles in [41] and [44].

An improvement in Tondu’s model was proposed by Davis and Caldwell [101], by including

a more detailed derivation for the surface area of contact between the braid strands. For a PAM

of given dimensions and braiding pattern, the surface area is defined in terms of the minimum

angle of winding possible in the stretched state (θmin):

S
(2)
contact =

b2 sin θmin cos θmin

N sin θ cos θ
(2.9)

where

θmin =
1

2
sin−1

(
rnm

πr0

)
, (2.10)

with rn denoting half the diameter of a single strand. Since the contact area calculated in the

above equations is also that of flat strands, a scaling factor is used just like in [99]. However,

while the scaling factor is empirically determined by Tondu, an attempt to quantify this factor

can be found in their work, and the scaling factor is taken as the ratio of surface areas formed by

two flat strands in contact to two spheres in contact. The contact between spheres is calculated

using Hertz’s contact theory and the final scaling factor is given as:

S
(2)
scale =

rn

1.442
[
Pir3

n
(1−ν2n)
En

] 1
3

(2.11)

where νn and En represent Poisson’s ratio and Young’s modulus of the braid strand, respec-

tively. The modified expression for force takes the form:

FDavis = πr2
0Pi
[
q1 (1− kεε)2 − q2

]
± µsPi

[
S

(2)
contact

S
(2)
scale

]
(2.12)

While Tondu added the correction factor term in the form of kε in Gaylord’s equation,

in [42], another correction term is added by Meller et al. The expression for force takes the

form:

FMeller = πr2
0Pik

(1)
f

[
q1

(
1− k(1)

ε ε
)2 − q2

]
(2.13)

where the the newly added correction terms k
(1)
f as well as k

(1)
ε are both determined as functions
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of input pressure as

k
(1)
f = k

(1)
f(Pi)

=
Fmeas,max(Pi)

πr2
0Pi (q1 − q2)

, k(1)
ε = k

(1)
ε(Pi)

=
1

εmeas,max(Pi)

(
1− 1√

3 cos θ0

)
The quantities Fmeas,max = κ1Pi + κ2 and εmeas,max = κ3ln(Pi) are calculated using curve fit on

experimental data. This model is applied in the analysis of a climbing robot actuated using

FAM in the work of Chapman et al. [102].

While the factors Fmeas,max and εmeas,max contributed by Meller are empirical functions, in

[103], Andrikopoulos et al. used constant values to these functions for simplicity. The expression

for the force is given as

F
(1)
Andrikopoulos = πr2

0Pik
(2)
f

[
q1

(
1− k(2)

ε ε
)2 − q2

]
(2.14)

where the factors k
(2)
f and k

(2)
ε are not functions of pressure, but take the values

k
(2)
f =

Fmax

πr2
0Ptest (q1 − q2)

, k(2)
ε =

l0
xmax

(
1−

√
q2/q1

)
To get the values of constants, a test pressure Ptest is applied with zero end load to get the

displacement l0 − l = xmax. Then Fmax is the value of end force which will pull the actuator

back to zero displacement position. Both quantities are experimentally determined.

2.2.3 Inclusion of material properties for bladder: linear elastic

model

The earliest model which takes into account the material property of the bladder and thickness

of the tube is probably that of Schulte [94] mentioned in the appendix of National Research

Council’s report on the application of external power in prosthetics and orthotics. The force

according to this work is given by

FSchulte =
b2

4πN2
Pi
(
3 cos2 θ − 1

)
+
bE

N

[
l0 sin θ − cos2 θ

sin θ

(
b

N
sin θ − 2πr0

)]
(2.15)

− l0b
N

(Pi − Pu) (µs + µst) sin θ

The first term on the right hand side of the equation (2.15) represents the original pull equation

by Gaylord. The second term is the resultant of considering the material properties of the

bladder– the constant E being the Young’s modulus of bladder material. The third term
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represents the friction force where Pu is the pressure required to inflate the unconstrained inner

tube to a diameter equivalent to the device diameter at any value of θ. The constant µst is the

coefficient of friction between the braid and the tube. Many researchers have used this model

in their study (see, for example, [104]) in a different form:

FFerraresi =
Pi

4πN2
(3l2 − b2)− Et0l

(
1

N
√
l2 − b2

− 1

2πN2ri

)
+ EA

(
l

l0

)
(2.16)

where A is the cross sectional area of the cylinder.

This model by Ferraresi can also be seen in another format in the works of Kothera et

al. [105]. The model derived in their paper, using force balance techniques, is essentially Chou’s

model which accounts for the thickness of bladder and Schulte’s model which considers its linear

elasticity. The force according to Kothera et al. is taken as

F
(1)
Kothera =

Pi
4πN2

(
3l2 − b2

)
+ Pi

(
Vb
l
− tl2

2πrN2

)
+ EVb

(
1

l0
− 1

l

)
(2.17)

+
El

2πrN2
(tl − t0l0)

From the experimental data shown in the works of Kothera et al, it is observed that mod-

elling bladder as linear elastic material, even though simplistic, is fairly accurate. This is an

interesting observation since this shows that the PAM operation is limited to within the linear

regime of deformation of bladders which otherwise usually belong to hyper-elastic material cate-

gory. Since determining accurate values for constants in non-linear models often require precise

experimentation, linear material model may suffice for PAMs undergoing small deformation.

However, if the material properties can be accurately described and if extensive computation

can be afforded, then non-linear material modelling may provide better accuracy.

2.2.4 Inclusion of material properties for bladder: non-linear elastic

model

If the bladder material is considered non-linear elastic, then obtaining analytical expressions of

force using force-balancing techniques is difficult (if not impossible). The stress components are

obtained from strain energy density functions and are directly used in the balance equations. In

reference [106], the authors used a non-linear Mooney-Rivlin material ([107], [108]) to account

for the elastic properties of the bladder. The strain energy density of a Mooney-Rivlin material
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takes the form:

W = C10

(
λ2

1 + λ2
2 + λ2

3 − 3
)

+ C01

(
1

λ2
1

+
1

λ2
2

+
1

λ2
3

− 3

)
(2.18)

where λ1 =
l

l0
, λ2 =

2r − t
2r0 − t0

, λ3 =
t

t0
(2.19)

are the three stretch ratios. It may be noted that the median diameter is used in this formulation

and the thickness is accounted for, unlike in the model used in [109], where the stretch ratios

were defined assuming an incompressible material model and is given by

λ1 =
l

l0
, λ2 =

r

r0

, λ3 =
1

λ1λ2

(2.20)

The final expression for force is derived from the energy balance equation can be written as

FDelson = Pi
dV

dl
+ Vb

dW

dl
(2.21)

and πlt(2r − t) = πl0t0(2r0 − t0)

where V = πr2l is the volume occupied by the device and Vb = πlt(2r−t) represents the volume

of the bladder. Since the above equation cannot be directly integrated, a numerical integration

scheme may be required for the solution.

The Mooney-Rivlin material model can also be found in [105] where an energy balance

method is used to derive the following expression for force:

F
(2)
Kothera =

Pi
4N2π

(
3l2 − b2

)
− Vb

(
2C10

[
λ1
dλ1

dl
+ λ2

dλ2

dl
+ λ3

dλ3

dl

]
+

2C01

[
λ1(λ2

2 + λ2
3)
dλ1

dl
+ λ2(λ2

3 + λ2
1)
dλ2

dl
+ λ3(λ2

1 + λ2
2)
dλ3

dl

])
− P 2

i b
3l

4π2mrnEbN4
(2.22)

where the quantity Eb is the Young’s modulus of braiding material. An application of this model

can be seen in the works of Wereley’s team [110] where PAM is used to produce large trailing

edge flap in a helicopter. To this model, a friction force of the form Ff = −µfFKotherasgn(v) is

added to Kothera’s model where v is the tip velocity of PAM and the constant µf (which is not

the coefficient of friction) is found out from experiments. It is worth noting that the authors

suggest the use of derivations using force balance method compared to energy balance method

since the former was shown to have a better performance compared to the latter [105].
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In reference [111], a neo-Hookean material [112] is assumed for the bladder which gives the

strain energy density in terms of the stretch ratios as

W =
E

6

(
λ2

1 + λ2
2 + λ2

3 − 3
)

(2.23)

Due to the relative simplicity in the material definition as opposed to the Mooney-Rivlin model,

the authors could derive analytical expression for pressure in terms of deformation as

Pi =
E

3

(
r2

0

r2
i

− 1

)
λ

8
1 cos4 θ0 cos 2θ0 − 2λ6

1 cos2 θ0 cos 2θ0

+λ4
1 cos 2θ0 + 2λ2

1 cos2 θ0 cos 2θ0

− cos 2θ0 − 2λ2
1 cos6 θ0 + cos4 θ0


λ3

1 (1− 5λ2
1 cos2 θ0 + 7λ4

1 cos4 θ0 − 3λ6
1 cos6 θ0)

(2.24)

From the above equation, for a given value of input pressure, the axial stretch ratio is calcu-

lated numerically. This is then used in the calculation of the force using the following force

formulation:

FTrivedi = πE
(
r2

0 − r2
i

)
(λ1 − 1) (2.25)

The above expression however, makes the assumption that the material is linear elastic in the

axial direction, which is inconsistent with the initial assumption for deriving the expression for

pressure.

Another description of static model considering Mooney-Rivlin material model can be found

in [113] by Wang et al. In their model, the Hoop’s force Fz and axial force Fθ acting on bladder

during inflation are found analytically in terms of λ1 and Pi. These values in conjunction with

the static force balance equations from braid, gives the final expression for blocked force (applied

load) as

FWang = Fz − Piπr2
i −

Piril
2 − Fθl2

2πN2r2
o

(2.26)

2.2.5 End-effects consideration

In the models described so far, the correction factor kε was used to take care of the effects of

non-cylindrical ends. A few researchers have attempted to quantify this effect hoping to obtain

better static characteristics of PAM. For example, in [114], the model developed considers the

end-effect of PAM with ends modeled as conical frustums. The mathematical model derived
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takes the form:

FDoumit = m


(
Pi(r−t0−2rn)−σ1t0

mN sin θ

)
lcyl

+

(
Pi(r+rc−2t0−2rn) cosβ−2σ1t0

mN sin( θ+θc2 )

)
lcone

−Pi(r−2rn−t0)2

2mr cos θ
l
N

tan θ

 cos β cos θc − PS(2)
contactµs (2.27)

The first term in the expression refers to the model taking into account the characteristics of

conical ends while the second term is the frictional force component (σ1 is the Hoop’s stress

on the bladder). The symbol lcyl refers to the length of cylindrical section of PAM, lcone refers

to the slant length of conical frustum at the ends and rc refers to the radius at the clamped

end of the PAM. The quantity S
(2)
contact is the effective area of contact between braids which

is calculated by assuming the contact to be same as the contact between two cylinders and

applying Hertz’s contact theory. The validity and propriety of this assumption is, however,

criticized in Tondu’s review paper [93].

A more involved formulation for end tapering can be found in [90] where the force model

used is the same as the one suggested by Ferraresi and found in [115] and [105]. At the

ends, the bladder is assumed to take the shape of a section of elliptic toroid instead of conical

frustum. The section of ellipse from π/3 radians to π/2 radians measured from the major axis

is assumed to be the shape of PAM at the clamped ends. An expression relating the deformed

radius of PAM with the eccentricity of ellipsoid is derived. Making use of this expression, a

theoretical estimate for the length of a single strand of braid is formulated. By reducing the

error between the actual length of braid strand and numerically calculated value of the same

for a given contracted length, the radius profile of deformed PAM is estimated. The obtained

radius profile f(z) at the outer surface is assumed to differ from the profile at the inner surface

g(z) by a constant thickness t. Then using incompressibility condition (the volume of bladder

at rest and volume of bladder after deformation is same) the error between the initial and final

volume is set to zero. This gave the final value of thickness of bladder and hence, the deformed

shape of PAM. The estimate of thickness predicted from this approximation is compared with

the models assuming fully cylindrical tips and is shown to have better conformation with results

at higher contraction–where the end-effect is prominent.

2.2.6 Bladder as a thin walled tube

A few modeling attempts considering the bladder as a thin walled tube can also be found in

the literature. In reference [116], the authors use large deformation theory on the deflation

of a fiber-reinforced thin cylinder to determine the statics of PAM ([117], [118]). To reflect
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the embedding of the nylon braiding cords, the stress resultant of thin cylinder is resolved as

σα = σ1
α + σ11

α where σ1
α is stress component due to deformation of bladder while σ11

α is the

stress component due to the braid strands. The solution procedure consists of guessing an

initial value of the transverse stretch ratio λ2 and iteratively adjusting the guess by comparing

the value of initial length of tube obtained from formulation with the actual initial length. The

closest choice of λ2 will eventually predict the shape of outer surface of actuator and hence, the

final deformed length. The main equations used are:

FLiu = 2πEr0

(
2σ2(0)

λ2(0)
− PiE

r0

)
, l0 = −

∫ 1

λ2(0)

dλ2

λ1 sin γ(λ2)
(2.28)

Where the axial stress σ2(0) and radial stretch ratio λ2(0) are at the initial configuration and

γ(λ2) is the angle made by the meridian of PAM (on the surface) with the z axis given as a

function of the stretch ratio. However, it may be noted that in most PAMs, the fiber is not

embedded inside the bladder, but forms a sheath on the outer surface. Hence, the application

of this model on a general PAM structure is debatable.

Another model by Ball et al. [119] also considers thin wall approach in modeling PAM. In

this case, the expression for force is given as

FBall = Fstrands + Fpressure + Felastic ± µfPeff (2.29)

where, Fstrands + Fpressure =
Pol

2

2πN2
− Pi

(
b2 − l2
4πN2

− Vb
l

)
, Po = Pi −

σ2(r0 − ri)
λ1λ2

√
b2−l2
n2π2 − 4

π
Vb
l

and Felastic =
σ1Vb
l

with Po as the pressure acting at the outer radius by the bladder on the sleeve and σ1,2 is given

in terms of material constants and stretch ratios. In case of thick walled bladder as well as

pre-strained bladders, the thin wall tube model is applied sequentially as if the thick cylinder

is an array of concentric nested thin tubes. The computational method calculates the pressure

Po of the innermost layer and works sequentially outwards. The derivations based on thin film

approach on the same lines of [116] may also be found in the fiber-reinforced electro-pneumatic

PAM shown in [120].

2.2.7 Advanced modeling of PAMs

A few recently developed models try to capture the forces in PAM in greater detail. For

example, in Chen et al. [121], two expressions for pressurization as well as de-pressurization of
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a MPAM are derived. For pressurization, axial force is given as:

F
(1)
Chen =

πPi
4

(
b

Nπ

)2 (
3 cos2 θ − 1

)
− 4m2N

b sin θ
(Mf +Md +Mr +Mtr) (2.30)

For de-pressurization, the axial force is given as

F
(2)
Chen =

πPi
4

(
b

Nπ

)2 (
3 cos2 θ − 1

)
+

4m2N

b sin θ
(Mf −Md −Mr +Mtr) (2.31)

where detailed expression are given for moments, Mf , Md, Mr and Mtr representing the effects

of friction between strands of threads, bending deformation of thread strand, bulging of bladder

between the threads in braided sleeve and the friction between threads and bladder, respectively.

The highly detailed model requires numerical integration tools and the accuracy of the model

may depend heavily on the coefficients of friction between the braid strands, between the braid

and tube as well as the guess on the contact surface area between the strands.

Another example is the description of statics in [103], where the model considers the effect

of thermal expansion in PAM during actuation. The improved model from [103] takes the form:

F
(2)
Andrikopoulos = πr2

0Pik
(2)
f

[
q1

(
1− k(2)

ε (ε+ αl∆T )
)2 − q2

]
−
(

2πr0l0µs

S
(1)
scale

)
× sin θ0

(1− kε(ε+ αl∆T ))
√

1− cos2 θ0(1− kε(ε+ αl∆T ))2
× Pisgn (v) (2.32)

where αl, ∆T and v represent the coefficient of thermal expansion of bladder, the change in

temperature as well as the velocity of MPAM tip, respectively.

Apart from the usual methods which focus on finding an exact analytical expression to

relate pressure, force and displacement of a PAM, a few models use numerical methods such as

finite element methods to solve the statics of PAM. For example in [122], the authors use FEA

to analyze the dynamics of PAM used in parachute systems. The preliminary model used is:

ε = 1−
√
F tan2 θ0

2πr2
0Pi

(2.33)

where F is the applied force. The application of FEA can also be found in reference [123] as

well as the analysis of a pneumatic bending fiber re-inforced actuator in reference [46]. Such

analyses could be proven useful especially for actuators with non-uniform physical structure.
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2.2.8 Modeling MPAMs

In case of modeling miniaturized PAMs, thin walled tube approximation is not appropriate

since the ratio between bladder material volume and the inner volume of bladder is usually

high. Also, it has been found that many models for normal sized PAM need to be adjusted by

adding correction factors so as to include the effects of forces which are difficult to measure.

Reference [38] shows the analysis of a miniaturized FAM with outer diameter 1.5 mm and length

between 22 mm and 62 mm intended to use in a fluidic actuated surgical tool. The equation

for the force used is

Fde Volder = max

[(
Fmin,

(Pi − Pi,corr)b
2

4πN2

)(
3(l − lcorr)

2

b
− 1

)]
(2.34)

+max [0, kb (l − lb0)]

where lcorr, Pi,corr are factors used to correct length and dead-band pressure, respectively. The

term Fmin is used as a threshold so that the PAM does not generate pushing forces. Finally,

the term kb (l − lb0) is added to generate a linear spring force equivalent in the model.

Another analysis and validation of statics of a MPAM with outer diameter between 3.02 mm

and 4.19 mm is shown by Hocking et al. [115]. The basic force equation derived from Ferraresi

shown below has the Hoop’s stress (σ1) and axial stress (σ2) terms which consider the elasticity

of material [104]. The force is obtained as

F =
Pi

4πN

(
3l2 − b2

)
+ σ1

Vb
l
− σ2tl

2

2πN2r
(2.35)

In Hocking’s paper, these stresses are chosen as nonlinear (polynomial) functions of strain and

the equation is modified to:

F
(1)
Hocking =

Pi
4πN

(
3l2 − b2

)
+
Vb
l

n∑
i=1

Ei

(
l

l0
− 1

)i
− tl2

2πN2r

n∑
i=1

Ei

(
r

r0

− 1

)i
(2.36)

where the material constants Ei are empirically identified from experimental results.

To the above model, friction is added as

F
(2)
Hocking = F

(1)
Hocking ± µfF

(1)
Hockingsgn(v) (2.37)

One modification in the friction term compared to the other models is that, µf is assumed

to vary with pressure. A dead-band pressure which is the threshold value of pressure upto
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which contraction does not start is usually observed in the case of MPAMs. In this paper,

correction to account for dead-band pressure is made as P corr
i = Pi − Pc where Pc is calcu-

lated from experiments. Similarly, the tip effect is considered by using a corrected length,

Lcorr = l − 2
[(π

2
− 1
)

(r − r0)
]

in the above equation. A similar strategy is used in refer-

ence [25] where the model used is essentially that of Hocking [115] with the thickness term

included from Chou’s model [98]. In this model, the stress is empirically related to strain as a

function of pressure as

σ =
n∑
j=1

(EjI + EjSPi) ε
j (2.38)

where the constants are experimentally determined.

In another paper by Sangian et al. [124], the authors characterizes miniaturized FAM of

outer diameter 5.6 mm taking into account the pressure deadband. Gaylord’s model is modified

to include the threshold pressure (P̄i) required to initialize the contraction. The final force

expression takes the form:

FSangian = πr2
0

[
q1 (1− ε)2 − q2

] [
Pi − P̄i +

Et0b

2πNr2
0

{(
1− l2

l20
cos2 θ0

) 1
2

+ sin θ0

}]
(2.39)

Use of empirical model formulation for MPAM (outer diameter 1.8 mm) can also be found

in [45] where the static model used is

εl = 1−
√

1

κ1

(
F − κ2

Pi
− κ3

)
(2.40)

εr =

√
κ4ε2l + κ5εl + κ6

κ6 (1− εl)
− 1 (2.41)

2.2.9 Empirical considerations

As mentioned in section 2.1, advanced and more involved models are often quite difficult to

implement in real-time control systems. Additionally, the measurement of exact values for

parameters necessary for these advanced models will not be possible in all cases – it is hard to

measure the deformed outer diameter of miniaturized muscles and axial strain of PAMs which

are already employed in a robot. Hence, many models use empirical formulation derived from

the basic models for practical purposes. In reference [24], the equation (2.6) is modified to
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obtain

FTakosoglu = 4πr2
0Pi [q1 (1− ε)n − q2] (2.42)

the factor n and also the parameter q1 are later empirically determined to be:

n(Pi) = κ1e
−Pi
κ2 + κ3, q1(Pi) = κ4e

−Pi
κ5 + κ6

In a model in reference [100] the expression is further empirically adjusted to:

FItto = πr2
0Pi

[
q1

{
1− κ1

(
1 + eκ2Pi

)
ε
}2 − q2

]
(2.43)

and the above model so formed is shown to agree well with experimental values.

In reference [96], the authors analyse the static model of a PAM used as ‘pedestrian dummy

device’ in the test set up of pedestrian safety system. The model derived takes the form:

FDoric = FChou − FPAM, e − FPAM, s (2.44)

where FPAM, e =

(
1− w

w0

)
κ1, FPAM, s =

Pε

l0
κ2

The second and third terms take into account the effects of thickness, elasticity of bladder as

well as the form of PAM. The correction factors for elasticity as well as the shape of PAM, κ1

and κ2 are experimentally determined.

Purely empirical formulations are also presented in the works of [92], [125], [126], [127], [128]

and [129] for its relative ease in control system design. In these papers, the empirical expressions

for blocked force as a function of applied pressure and axial strain take different forms such as

F (Pi, ε) = (κ1 + κ2ε+ κ3ε
2)Pi + (κ4 + κ5ε+ κ6ε

2 + κ7ε
3 + κ8ε

4) (2.45)

F (Pi, ε) = κ1 + κ2ε+ κ3ε
2 + κ4Pi + κ5εPi (2.46)

F (Pi, ε, ε̇) =
(
κ1P

2
i + κ2Pi + κ3

)
ε+ κ4Pi + κ5 + κ6ε̇ (2.47)

F (ε) = κ1Fmax

(
1− ε

εmax

)
(2.48)

where constants κ are determined from prior experimentation.

28



CHAPTER 2. A SURVEY ON STATIC MODELLING OF PNEUMATIC ARTIFICIAL
MUSCLES

2.2.10 Modeling hysteresis

In almost all the models described in the previous sections, hysteresis is accounted by adding

or subtracting a frictional force term to the static equation for axial force. A convincing

representation of the added frictional force term is not yet developed in the literature. In

most cases, an approximating function is chosen to represent this frictional force term which

is empirically determined. For example, in [90], this additional frictional force term Ffstat is

calculated from the static force term Fstat obtained from phenomenological models as

Ffstat = −µfFstat = (κ1 + κ2Pi)Fstat (2.49)

While the term Fstat gives the mean curve of force-deformation plot, adding or subtracting

this frictional force term will give the pressurizing and the de-pressurizing curve. In the above

equation, the coefficient of friction is assumed to be linearly dependent on applied pressure and

the constants k1 and k2 are determined from experiments.

In a few research works, a few empirical formulations are derived for force-displacement

curves for expansion and compression of a PAM in a manner different from the method men-

tioned above. In cases where accurate hysteresis modeling is required– especially for practical

applications, force-length and pressure-length hysteresis profiles of PAM are found out for com-

pression and expansion curves separately. For example, in [130], van Damme et al. derived

a hysteresis profile for pleated PAM using Preisach hysteresis model [131]. The math model

takes the form

Fhyst = Pil
2
0f

fit
t0

(
1 + κscale

(
W [εs]−W fit

(εs)

))
(2.50)

where ffit
t0

= κ0ε
−1 +κ1 +κ2ε+κ3ε

2 +κ4ε
3 is the approximated mean curve of force-displacement

hysteresis. The function W[εs] is the output of Preisach model which is a weighted summation

of small discrete hysteresis relays and the function W fit
(εs)

represents a curve fitted between the

two curves generated by W[εs] and κscale is a scaling factor. The proposed model is shown to

estimate hysteresis phenomenon in PAM for contractile range below 20%.

A Maxwell slip model [132] for hysteresis is described in references [133], [134]. In this

method, the force-length hysteresis of the PAM – the hysteresis component in PAM force curve

due to the motion of PAM as well as the stretching of bladder – is experimentally determined

and modeled. In order to achieve this, at first the force is measured from a constrained model

where the motion of PAM is arrested. Then isobaric experiments are carried out where the

pressure is kept constant and force value corresponding to change in length is obtained. The

29



CHAPTER 2. A SURVEY ON STATIC MODELLING OF PNEUMATIC ARTIFICIAL
MUSCLES

difference between the two values gives the force-length hysteresis in PAM. This component

of hysteresis appears to be qualified as ‘non-local memory hysteresis’ which can be modeled

using Maxwell slip model. In non-local memory hysteresis modeling, when the PAM is actuated

towards a particular contracted length (following a particular force-length curve) and is allowed

to dilate (following a different curve), by ‘remembering’ the parameters of return points (Fm and

εm), the subsequent contraction and dilation can be modeled by the knowing the characteristic

curve called the ‘virgin curve’. In mathematical form, this procedure can be written as:

Fhys = Fm + 2f((ε− εm)/2); f = y(ε), v ≥ 0, f = −y(−ε), v ≤ 0 (2.51)

where y(·) represents the virgin curve. In their papers, this virgin curve is identified as piece-

wise linear curve. For each piece of the curve, a slip element with stiffness ‘k’ and maximum

saturation force ‘w’ can be attributed. The piecewise continuous stiff elements can also be

visualized as a parallel arrangement of spring systems with each element having different values

of stiffness and a saturation force limit (representing the pressure in pressure-length hysteresis

plot) beyond which displacement does not take place for that particular element. From the

knowledge of each slip elements, the hysteretic force can be calculated for any choice of length,

by intuitively choosing the right number of elements that would contribute to the section of

curve. The total hysteresis force, Fhys, is the sum
∑n

1 Fi.

In another paper by Jin et al. [135], the authors show a Bouc-Wen model [136] to represent

the pressure-length hysteresis of PAM for use in control system design. In this work, the

hysteresis loop for pressure-length curve is represented using the expression:

l(t) = k(k1Pi(t)− h(t)) + ρ (2.52)

where h(t) is a solution of the equation

ḣ = αṖi(t)− γṖi(t)|h|n − βz|Ṗi(t)||h|n−1 (2.53)

with the parameters n, k, k1, ρ, α, β, γ identified by minimizing the least square error between

the model and experimental data. The paper also presents a Prandtl-Ishlinskii (PI) [137] model

for pressure-length hysteresis representation where the loop is given by the equations:

l(k) = wTHr[Pi, l0](k) =
n−1∑
i=0

wi ·max {Pi(k)− ri,min {Pi(k) + ri, l(k − 1)}} (2.54)
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In the above Hr are the backlash (play) operators of PI model and k is the sampling number

of the operator. The weights wi and threshold ri are found out using least square error min-

imization as mentioned in the case of Boruc-Wen model. The application of Prandtl-Ishlinki

model on trajectory control of PAM can be found in [138] (see also [139]).

The models suggested in [135], however are suitable mostly for symmetric hysteresis loops.

In reference [140], a modification to this model which can be used in asymmetric hysteresis

loop is proposed. Here, in the basic PI model, the backlash operator is divided into two, one

for ascending and one for descending curves and is written as

l(t) = κ1Pi(t) +
n∑
i=1

wai (H
a
ri[Pi, l0](t)− Pi(t)) +

n∑
i=1

wdi (H
d
ri[Pi, l0](t)− Pi(t)) (2.55)

where Ha,d
ri are different for ascending and descending; κ1 is a constant. The two operators are

subject to constraints:

Ha
ri[1, l0](t) = 1, Ha

ri[1, l0](k) = 1,

κ1 +
n∑
i=1

wai H
a
ri[1, l0](t) +

n∑
i=1

wdiH
d
ri[1, l0](t) = 1

In the above equations, there are (2n+3) parameters that need to be identified – the additional

3 parameters compared to the classic PI model are from determining coefficients of a quadratic

function used in the descending play operator. Another variant in PI hysteresis model is shown

in [141] where an ‘Extended Unparallel PI’ model is proposed. Here, the PI model is modified

so that the ascending and descending edges are multiplied with factors α and β, which change

the respective slopes. The final backlash operator becomes:

Hri,αi,βi[Pi](k) = max
{
αi(Pi(k)− ri),min

{
βi(Pi(k) + ri),Hri,αi,βi[Pi](k−1)

}}
(2.56)

2.3 Conclusions and summary of review

Tondu’s review paper [93] concludes with an open question of whether it is possible to achieve an

accurate mathematical description of the physics behind the actuation of Pneumatic Artificial

Muscles. Till date, many researchers have attempted to answer this question, which resulted

in a variety of modeling techniques some of which, even though are not exact representation

of the physical phenomena, seem to suit the purpose of application in PAM enabled robots

and mechanisms. A detailed survey of various modeling considerations for PAM in this regard
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have been carried out in this chapter and this is the first contribution of the thesis. Table 2.1

shows the summary of major phenomenological modelling strategies discussed above with the

key equations used in the same. The models shown in rows marked with * are experimentally

validated in literature, on miniaturized versions of PAMs or FAMs. From the first model

mentioned in Gaylord’s patent for fluidic muscle actuators, many improvements have been made

so far, by adding correction factors, considering better modeling assumptions and including

factors arising from other physical aspects of the PAM which are detailed. As shown in [142],

where the authors picked static force component from [41] and the frictional forces from [99]

for their model, it may be possible to combine only relevant component of forces as per the

application. Since understanding the hysteresis of PAM in a phenomenological point of view

is still a challenge, many applications rely heavily on empirical formulations. In this regard, a

few empirical formulations are also discussed.

Though there are numerous models available in the literature for the statics of PAM, it

is shown in the next chapter that the models do not conform to the experimental data for

the fabricated MPAM due to the miniaturized size of the actuator. In order to address this

shortcoming, a new approach to model the statics of MPAM is proposed and this is shown to

be in good agreement with experimental results.
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Chapter 3

Fabrication and characterization of

miniaturized PAMs

3.1 Introduction

Before a MPAM is employed in a robotic tool, a thorough understanding of its behaviour

is essential. This assists in designing a device optimized to certain tasks, and also in control

systems applications like model based controller design. For a quai-static system, it is necessary

to identify the amount of deformation (contraction or elongation) of a MPAM corresponding

to the applied pressure and axial loading. This constitutes the statics of the MPAM. From

the literature as well as from the experiments conducted on a MPAM, it is noted that static

characteristics of miniaturized PAMs are not always consistent with the static models used for

normal sized PAMs. This is primarily due to the larger ratio between the volume occupied by

bladder and the internal volume of the bladder as well as the end effects. Hence, most of the

models for MPAMs require prior experimentation to accurately determine the correction factors,

friction coefficients as well as the empirical constants used in the stress equations. Also, simpler

models such as the one proposed by Sangian et al. [124] is quite inaccurate in predicting the

pressure-deformation characteristics of MPAM (as shown in the later section of this chapter),

while the numerical iterative method used by Ball et al. [119] is computationally expensive

and non-trivial to implement. Moreover, it is also observed that many models proposed in

the literature are inconsistent to the changes in initial parameters when applied on MPAMs.

For measurements taken from specimens belonging to same fabricated lot, the accuracy of

theoretical models vary considerably when only the initial length or braid angle is different,

while keeping all the other material and fabrication parameters constant. This anomaly and

the gap in literature necessitates the development of an improved statics model for MPAM.
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In this chapter, a new approach to model the statics of MPAM is proposed, which is shown

to be consistent with variation in MPAM parameters and in good agreement with experiments

done on MPAMs. A miniaturized PAM with diameter less than 2 mm is fabricated and is

characterized. The fabrication procedure as well as the experimental set-up is discussed in

section 3.2. The derivations of proposed model is explained in detail in section 3.3 followed by

experimental validation of the proposed model in section 3.4. Finally, conclusions are presented

in section 3.5.

3.2 MPAM characteristics and experimental set-up

Before the model is discussed in detail, characteristics of the MPAMs fabricated as well as the

set-up used for experimentation is discussed. Two MPAMs are used in this study, consisting of

inner silicone tubes with outer radii ro = {0.55, 0.75} mm and inner radii ri = {0.25, 0.25} mm

respectively. The tubes are braided on the outer surface using nylon cords of radius ∼ 50µm

at angles α = {36◦, 38◦, 40◦} (refer Fig. 3.1) from the meridian of tube. Since the angle of

winding is less than 54.7◦, the actuator contracts upon application of pressure [98]. The overall

outer diameter of MPAM is 1.2 mm and 1.6 mm. Braiding is carried out using a standard

Horn gear braiding machine used in the fabrication of coaxial communication cables. Most

commercially available braiding machines are designed for braiding the tubes up to a minimum

of 5 mm. However, by manually adjusting the configuration of machine, it was possible to braid

the silicone tube so that the gap between silicone tube and braid is minimized. In spite of the

care taken during fabrication, in the MPAMs used for experiments, there exist a small gap δ

between the outer radius of the silicone tube ro and the inner surface of braid with the radius rb.

The fabrication process also limits the range of helix angles with which the nylon fibers could be

braided – in the fabricated MPAMs helix angles between 36◦ and 40◦ could be obtained. One

Figure 3.1: Fabricated miniaturized pneumatic artificial muscles–1.5 and 1.2 mm diameter

end of the braided tube is sealed with epoxy adhesive which forms the free end of the MPAM.
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In the other end, a micro-pipette is inserted and fixed using a gelatinous adhesive. The free

end of the pipette is connected to a polyurethane tube which is used to supply pressurized air.

The ends of pipette are then secured using epoxy adhesive. The actual fabricated MPAMs are

shown in Fig. 3.1. The contraction of 60 mm long MPAM after pressurization is demonstrated

in Fig. 3.2.

Figure 3.2: MPAM before and after pressurization

The layout of pneumatic circuit used to actuate MPAM is shown in Fig. 3.3. A pneumatic

compressor of maximum output pressure 1034 kPa (150 psi) is connected to a 1 litre air (at NTP)

reservoir which is used to deliver high pressure air to the MPAM. A pressure regulating circuit

operates the compressor when the value of pressure in reservoir falls below certain threshold

thereby maintaining availability of 827 kPa (120 psi) pressure at all times. Two proportional

valves are used to control pressure inside air muscle – one for pressurizing the MPAM and the

other for bleeding. A Honeywell pressure transducer (with range of 0 to 1034 kPa) is connected

in series with MPAM to measure the inner pressure. An ATmel ATMega2560 micro-controller

board interfaced with MATLAB [143] controls the proportional valves through a current driver

circuit to maintain user defined value of pressure inside the MPAM. To keep a straight alignment

of the MPAM, a 5 gram weight (0.05 N) is applied on the free end. For a 40 mm air muscle,

the maximum deformation of 15 gram (0.15 N) end-loading varies from 5 gram by less than 0.3

mm (less than 3% of total deformation). Since this variation in deformation is comparable to

the error bounds of the measurements in the experiments, the effect of this small end-loading

is ignored in the formulations. The experimental set up used is shown in Fig. 3.41.

1In the actual experiments, the MPAM is positioned vertically with a weight of 5 grams hanging on the free
end. The horizontal position shown in figure is for better visualization.
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Figure 3.3: Layout of pneumatic circuit and controller

The deformation of MPAM is captured using a high resolution camera and changes in

length are computed using image processing. The measurement method consists of taking

photos of MPAMs in its operational state using high resolution camera and identifying the

length of MPAM by measuring the displacement between the image pixels corresponding to

the tips of MPAM. At first, size of each pixel in the HD camera image is calculated based on

a benchmarking with a standard object with known dimensions. Then the distance between

two markers set in the either ends of MPAM is calculated in terms of pixels and using the scale

mentioned above, it is converted in terms of millimetres. The possible error in this method

is in identifying the marker pixels which is not more than 2 pixels size in each ends. For

the scale and measurement set up used, this value is about 0.2 mm. By conducting the scale

determination as well as the MPAM operation in the same focal plane of camera, perspective

issues in measurement are also avoided. All measurements are repeated more than 5 times and

the results are reported as mean of the obtained vales and measurement errors shown in error

bars.

Fig. 3.5 shows the end-point displacement of MPAM during inflation as well as deflation

with dead load (F = 0.05N) attached at the end. The MPAM clearly shows hysteresis. The

maximum error due to measurement is about 0.1 mm and error bars in the plot are obtained
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Figure 3.4: Experimental set-up for MPAM characterization
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Figure 3.5: MPAM hysteresis profile
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from at least 5 sets of experiments. In the comparisons with existing approaches, the hysteresis

is not shown and the mean value, between the inflation and deflation, is used (see Fig. 3.5).

Experiments were performed with different lengths of MPAMs and results are compared with

theoretical values obtained from various models available in literature. Since the focus is on

identifying the mechanics of MPAM, the comparison plots are limited to only phenomenological

models as opposed to the models which rely on empirical data as well as parameters which

require sophisticated measurement set-up for identification.

3.3 Proposed statics model for MPAM

This section details the new approach for modelling statics of MPAM.

3.3.1 Characterization of pressure dead-band

In Fig. 3.6, we can see the pressure deadband which is the range of pressure below which

contraction of MPAM is not apparent. This pressure deadband is mentioned in [115] as due

to the Mullin’s effect [144], which is unlikely in the case of MPAM used in this work. In our

case, the MPAM was pre-stretched and inflated multiple times, so as to form a permanent set

before it is braided on the outer surface. This ensured the repeatability of bladder inflation

characteristics while employed in the MPAM. It is also observed that the un-braided bladder

inflates considerably at values of pressure within this dead-band range. On closer observation,

it is found that the MPAM expands instead of contracting in this range (see inset of Fig. 3.6)

and this is due to the small gap δ (of the order of 0.04 mm) between the tube and nylon sleeve

during fabrication, as mentioned in earlier section. It may be noted that this expansion is not

usually seen in commercial PAMs as well as fiber embedded PAMs where this gap is unlikely

to occur while it was prominent in the fabricated braided sleeve PAMs as in the case of the

MPAM used in this work and in the work presented in [115]. Due to this gap, the initial stage

of pressurization results in the expansion of silicone tube till the outer surface of silicone tube

makes contact with the nylon sleeve. The pressure at which contact occurs is termed the critical

dead-band pressure P̄i. Since the forces acting on MPAM before and after the critical deadband

pressure are different, we may consider this as two phases of contraction which has to be treated

separately. The bladder material is assumed as linear elastic for simplicity in derivations and

also since the linear elastic model is shown to be sufficient to capture model characteristics as

observed from Kothera’s model [105].
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Figure 3.6: Deformation phases of MPAM (inset – elongation part zoomed)

3.3.2 Model for first phase–expansion

In the first phase of deformation, the bladder expands without the constraint of the outer braid

sheath. In this phase, a linear thick cylinder approach is used to find the displacements in

axial and radial directions. The equilibrium equations for inflation of thick cylinder are given

by [145]

∂

∂r

(
1

r

∂(rur)

∂r

)
= 0,

∂2uz
∂z2

= 0 (3.1)

where ur and uz are the displacements of silicone tube in radial and axial directions respectively1.

Solving the equations, we get the displacements

ur = c1r +
c2

r
, uz = c3z + c4 (3.2)

where ci, i = 1, 2, 3, 4 are constants. In the initial phase of deformation, since the braid

has not come in contact with the tube, the outer surface will be pressure free. The applied

pressure Pi will act in the inner cylindrical surface while in the axial ends, inflation pressure

1The variable r in this section would represent the radial co-ordinate in the cylindrical co-ordinate system
as opposed to the deformed outer radius of tube in chapter 2.
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as well as the pressure due to applied axial load will act. This pressure component will be

Ps = Pi
r2
i

r2
o − r2

i

+ Psil, where Psil is the pressure acting on the silicone tube due to the applied

axial load F. Using these boundary conditions as well as the zero displacement condition on

the fixed end of the MPAM, we get the values of constants as:

c1 =
(Λ1 + 2Λ2)

2Λ2 (3Λ1 + 2Λ2)

[
Pir

2
i

r2
o − r2

i

+
Por

2
o

r2
o − r2

i

− PsΛ1

Λ1 + 2Λ2

]
c2 =

1

2Λ2

[
r2
i r

2
o

r2
o − r2

i

]
(Pi − Po)

c3 =
Λ1

Λ2 (3Λ1 + 2Λ2)

[
− Pir

2
i

r2
o − r2

i

+
Por

2
o

r2
o − r2

i

+ Ps
Λ1 + Λ2

Λ1

]
c4 = 0 (3.3)

where Λ1 and Λ2 are Lame’s parameters. Substituting the constants, we get the displacements

as:

ur|r=ro =
ro

Λ2 (3Λ1 + 2Λ2)

[
2 (Λ1 + Λ2) r2

i

(r2
o − r2

i )
Pi −

λ

2

(
Pi

r2
i

r2
o − r2

i

+ Psil

)]
(3.4)

uz|l=l0 =
Λ1l0

Λ2 (3Λ1 + 2Λ2)

[
− Pir

2
i

r2
o − r2

i

+

(
Pi

r2
i

r2
o − r2

i

+ Psil

)
Λ1 + Λ2

Λ1

]
(3.5)

The MPAM expands according to the above equations till the tube makes contact with the braid.

The pressure components at this point remains the same as that of the initial expansion phase,

since there is no radial pressure on the outside surface of the silicone tube at the onset of contact.

As the tube expands, the braid deforms as per the kinematics rule given in equations (2.1) and

(2.2). Taking into account the gap between braid and the tube, the modified kinematics model

of the braided sleeve can be written as:

l0 = b cos θ0, 2πrbN = b sin θ0 (3.6)

l0 + ûz = b cos θ, 2π(rb + ûr)N = b sin θ (3.7)

where rb = r0 +δ is the initial radius of the braided sleeve and the quantities ûr and ûz represent

the radial as well as the axial displacements of the braided sleeve. The above equations can

also be written as a single expression which relates the radial and axial displacements of the

sleeve:

ûr = rb

 1

sin θ0

√
1− cos2 θ0

(
1 +

ûz
l0

)2

− 1

 (3.8)
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Since the braid and sleeve are sealed at the tips, the axial displacement of the sleeve and the

tube is the same. Hence, ûz = uz(l=l0) at all times. At the critical inflection pressure, the tube

makes contact with the braid surface. This is the point where the radius of deformed bladder

becomes equal to the radius of the displaced sleeve. Hence,

ro + ur|ro = rb + ûr = ro + δ + ûr (3.9)

and we have

ro + c1ro +
c2

ro
= ro + δ + rb

 1

sin θ0

√
1− cos2 θ0

(
1 +

ûz
l0

)2

− 1

 (3.10)

Simplifying and substituting for ûz, we get

c1ro +
c2

ro
= δ + rb

{
1

sin θ0

√
1− cos2 θ0 (1 + c3)2 − 1

}
(3.11)

In the above expression, the constants c1, c2 and c3 depend only on applied Pi which is the
inflection pressure P̄i. Substituting the values of constants, we get the following equation

rb

 1

sin θ0

√
1− cos2 θ0

(
1 +

Λ1

Λ2 (3Λ1 + 2Λ2)

[
− P̄ 2

i

r2o − r2i
+ Ps

Λ1 + Λ2

Λ1

])2

− 1


− ro

Λ2 (3Λ1 + 2Λ2)

[
2 (Λ1 + Λ2) r2i

(r2o − r2i )
P̄i −

Λ1

2
Ps

]
+ δ = 0 (3.12)

where Ps = P̄i
r2
i

r2
o − r2

i

+
F

πr2
i

. This equation can be numerically solved to find the inflection

pressure. For values of applied pressure below P̄i, equation (3.5) can be used to find the end-

point elongation of the MPAM.

3.3.3 Model for second phase-contraction

For values of pressure above P̄i, the contact is established and in this phase, the radial as well

as axial displacement of braided sheath will be same as that of the outer surface of silicone tube

i.e., ur|ro = ûr and uz|lo = ûz. Then from the kinematics of braid, equation (3.7), and from

equation (3.2) we can write

c1 +
c2

r2
o

=

(
sin θ

sin θ0

− 1

)
, c3 =

(
cos θ

cos θ0

− 1

)
(3.13)
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Figure 3.7: MPAM statics

The above equations represent the constrain on the motion of silicone tube imposed by the

braided sleeve.

In this phase, an axial pull on sleeve generates a radial pressure on the outer surface of the

silicone tube and vice versa. The total axial end force on the MPAM, Fe, has contributions

from three components which are 1) the manually applied axial load F , 2) force acting on the

walls due to the applied inner pressure FPi = Pi (πr
2
i ) and 3) any other unaccounted forces such

as the static frictional force between the threads and the axial component of force due to the

conical shape at the ends which are essential to maintain the static equilibrium of the MPAM.

These unaccounted force components are collectively termed Fu. This total axial force Fe is

borne unequally by the axial end of silicone tube as well as the nylon braid (ref Fig. 3.7).

Fe = F + FPi + Fu = Fsil + Fnyl (3.14)

where Fsil represents the axial force acting on silicone tube and Fnyl represents the axial force

acting on the nylon braid. The force component acting on the braided sleeve is then converted

into a radial force based on the kinematics of the braid. The pressure generated by this radial

force will constitute the component Po in the equations (3.3). Derivation of this radial pressure

is detailed in what follows.

Since the displacement of end of MPAM ∆ is same as the deformation of the nylon sleeve
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Figure 3.8: Braid statics

∆nyl as well as the silicone tube ∆sil, it is possible to write the individual components of forces

in terms of the end force Fe. The material properties of the tube and sheath can be used to

calculate the axial displacement of nylon sheath,

∆nyl =
F̂ b

ÂnylEnyl

cos θ0 =
Fnyll0 cos θ0

mÂnylEnyl

(3.15)

where F̂ =
Fnyl

m
cos θ0 is the force acting on a single strand of braid and Ânyl is the area of cross

section of single nylon strand and Enyl is the modulus of elasticity of nylon (refer Fig. 3.7).

Similarly, the axial displacement of silicone tube can be written as

∆sil =
Fsill0
AsilEsil

(3.16)

where Asil and Esil are the cross section area and Young’s modulus of silicone tube. From

equations (3.14), (3.15) and (3.16), we get the individual components of forces in terms of end

force acting on MPAM as:

Fnyl =
FemÂnylEnyl

mÂnylEnyl + cos θ0AsilEsil

(3.17)

and

Fsil =
Fe cos θ0AsilEsil

mÂnylEnyl + cos θ0AsilEsil

(3.18)

The radial force applied by the braid on the outer surface of tube due to the axial pulling force

Fnyl to maintain static equilibrium of the sheath can be calculated using virtual work principle.
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From Fig. 3.8, we get

Frδr + Fnylδl = 0 (3.19)

where δr and δl are the virtual displacements in radial and axial directions, respectively. This

quantity can be obtained by taking the variational derivatives of equations (3.7)

δl = −b sin θ δθ, δr = b
rb
l0

cos θ

tan θ0

δθ (3.20)

where l = l0 + ûz, r = rb + ûr are the length and radius of sleeve at angle θ. Substituting in

equation (3.19) and rearranging, we get

Fr = Fnyl
l0
rb

tan θtan θ0 (3.21)

The pressure acting on the surface of tube due to this radial force can be calculated by

dividing the radial force with the surface area of contact Scontact between the tube and nylon

sheath. The value of Scontact is difficult to measure due to the small size of the MPAM. However,

we assume that the contact area between the braid and sheath is same as the area of contact

between braid in the cross-over points as shown in Fig. 3.9. An analytical expression for the

same is given by Davis (mentioned in chapter 1). Rearranging the expressions (2.9) and (2.10),

we get

Scontact =

(
sin2 θmin cos2 θmin

sin2 θ cos2 θ

)
Scyl

where Scyl represents the outer surface area of the silicone tube after deforming to the angle

θ. The quantity in brackets represents the fraction of total outer surface area of silicone tube

where the contact occurs. However, in the either ends of MPAM, the braid stretches, so as to

assume the shape of a conical frustum as pointed out in [93] (refer section 2.2). In this region,

the braid densely covers the surface of tube due to the stretching effect (ref Fig. 3.10). Due

to this reason, we may assume full contact at these ends which are about a length φ = 5 mm

from either ends. Since this end-effect accounts for approximately 25% of the total length of

MPAM, this effect needs to be included in the formulation. Then the cylindrical portion of the

MPAM will only be (l0 − 2φ) mm long. Taking into account the end-effect factor, we can write

the total area of contact as:

Scontact =
sin2 θmin cos2 θmin

sin2 θ cos2 θ
[2πr (l0 − 2φ) (1 + c3)] + 2π (rb + r)φ (1 + c3) (3.22)
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Figure 3.9: Area of contact between silicone tube and braided sleeve

Figure 3.10: End-effect due to braiding

The pressure Po acting on the surface of the silicone tube will be due to the braided sleeve,

Po = Pb =
Fr

Scontact

. Substituting the values from equations (3.17), (3.21) and (3.22), we get the
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braid pressure

Po =

[
2(F+πr2i Pi+Fu)mÂnylEnyl

2mÂnylEnyl+3 cos θ0AsilEsil

]
l0
rb

sin2 θ
cos θ

sin θ0
cos θ0{ sin2 θmin cos2 θmin

sin2 θ cos2 θ

[
2π
(
c1ro + c2

ro

)
(l0 − 2φ) (1 + c3)

]}
+2π

(
rb + c1ro + c2

ro

)
(φ+ c3φ)

 (3.23)

The six equations in (3.3) and (3.13) along with the outer pressure value given by equa-

tion (3.23) can be solved for the six unknown quantities c1, c2, c3, c4, θ and Fu. Then the final

displacements in this contraction phase can be found using the expressions:

ur|r=ro = c1ro +
c2

ro
(3.24)

uz|l=lo = c3lo (3.25)

For ease of implementation and to simplify the calculations in second phase, it is possible to

consider the second phase as a problem of deformation with the dimensions of tube and sleeve

reset to the values at the inflection point [115]

ro → ro + û|ro ri → ri + û|ri lo → lo + û|lo

where (̄·) denote the corresponding values at the inflection point. For the new arrangement to

be in equilibrium, all the traction forces on surfaces must be zero. Hence, we also modify the

input pressure to Pi → Pi − P̄i, pressure at the axial end to Ps → Ps − P̄s and the radial outer

surface pressure on silicone tube (equal to the pressure applied by braid) to Po = Pb → Pb− P̄b.

3.3.4 Summary of proposed model

To summarize, the model proposed above constitutes two phases of deformation–an initial

elongation phase followed by the contraction phase. In the first phase, the statics of PAM is

essentially the statics of the inner tube which is expressed as an inflation problem of a linear

thick cylinder. In the second phase, the braided sleeve constraints the tube motion by adding

radial pressure on the outer surface of tube. Expression for this radial pressure is formulated

based on the kinematics of braid as well as an estimate of the contact surface area between

the sleeve and the tube. By applying the derived surface pressure on the tube, the static

equations of inner tube is solved along with the kinematic constraint equations, to form the

contraction model. One major advantage of using the developed model is that all the axial forces

required to maintain the static equilibrium of MPAM–given the values of other applied forces
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and known components of forces – are collectively termed as Fu and is solved from the six set of

equations. Hence finding exact mathematical descriptions of the individual components acting

in this direction such as static frictional force, axial force component from the conical ends and

other non-linearities are not necessary. If one wishes to study the dependencies of individual

axial components of force, one needs to break down Fu into its individual components such as

Fu = Fstatic + Fconical for example. However, in doing so, it is highly likely that many other

contributing factors may be overlooked for the axial load which would result in an incomplete

formulation. Another advantage of the model is that except the length of the conical section

of muscle after deformation which needs to be measured, all other parameters can be obtained

during fabrication itself.

3.4 Experimental validation of proposed model

The above derived equations for deformation of MPAM is solved using fsolve routine in MAT-

LAB on an desktop PC with 2.0 GHz processor. The routine takes approximately 0.04 seconds

to converge with zero initial conditions. Results from the experiments on 40 mm MPAM

are plotted against the theoretical values alongside other models for comparison in Fig. 3.11.

We can see that the derived model predicts the end-point displacement better than the other

compared models with standard error of 4.6% from the maximum deflection. The error val-

ues for other models considering the parameters which are obtained from the best curve fit,

are 40%, 12%, 7%, 8%, 29%, 8% and 35% for Chou [98], Liu [116], Kothera [105], Andrikopou-

los [103], Trivedi [111], Hocking [115] and Sangian’s [124] models respectively. The length of

conical end section is measured experimentally for this calculation while all the other data

are obtained from fabrication. By keeping all the parameters constant, the results for 60 mm

MPAM is plotted in Fig. 3.12. Except for the Hocking’s model (error = 13%), the other models

are quite inconsistent in predicting the theoretical contraction with standard error above 20%.

The derived model is found to be better, with values predicted within 2% error. In order to

check the consistency of winding angle, the theoretical results for three different winding angles

of MPAM are plotted and are compared with the experimental values (refer Fig. 3.13). The

MPAM wound at higher braid angle was found to have larger gap due to the limitation in

winding process. However, the experimental results match the theoretical values with less than

5% error. Theoretical and experimental results for MPAMs of three different lengths wound at

38◦ initial winding angle are shown in Fig. 3.14. The standard errors between theoretical and

experimental values are less than 5%. In order to check the consistency of change in thickness,

experiments are conducted on MPAMs fabricated with silicone tube of 1.5 mm outer diameter

and 0.5 mm thickness. The results are shown in Fig. 3.15 with error values at a maximum of
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Figure 3.11: Experimental validation for 40 mm MPAM θ0 = 36◦, ri = 0.25 mm, ro = 0.55
mm, rn = 0.04 mm, m = 30, φ = 5mm, E = 0.35 MPa, ν = 0.499.
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Figure 3.12: Experimental validation for 60 mm MPAM. θ0 = 36◦, ri = 0.25 mm, ro = 0.55
mm, rn = 0.04 mm, m = 30, φ = 5mm, E = 0.35 MPa, ν = 0.499.

6.9%.

The stiffness of a 45 mm MPAM compressed at 785 kPa pressure is calculated by plotting
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Figure 3.13: Experimental validation for different angle of windings lo = 40 mm, ri = 0.25 mm,
ro = 0.55 mm, rn = 0.04 mm, m = 30, φ = 5mm, E = 0.35 MPa, ν = 0.499.
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Figure 3.14: Experimental validation for MPAM wound at 38◦ angle. ri = 0.25 mm, ro = 0.55
mm, rn = 0.04 mm, m = 30, E = 0.35 MPa, ν = 0.499.
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Figure 3.15: Experimental validation for MPAM with tube O.D 1.5 mm. θ0 = 35◦, ri = 0.25
mm, rn = 0.04 mm, m = 30, E = 0.35 MPa, ν = 0.499.
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Figure 3.16: Axial force vs displacement comparison Pi = 758 kPa, α = 36◦, lo = 45 mm,
ri = 0.25 mm, ro = 0.55 mm, rn = 0.04 mm, m = 30, φ = 5mm, E = 0.35 MPa, ν = 0.499

axial force vs displacement and calculating the slope (ref Fig. 3.16). The value is found to

be 0.94 N/mm. This value over-predicts the actual deflection of 0.63 N/mm by 49%. Except
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Figure 3.17: Evolution of final braid angle for large pressure range

Andrikopoulos’ model1 which gives 0.92 N/mm and Liu’s model which gives 1.96 N/m stiffness,

other models show very large error in the stiffness value (in the order of 10) and are not

plotted hence. Upon observation, it is found that at higher loads, the effect of conical ends are

prominent, since the MPAM is axially stretched due to this loads. Due to this stretching caused

by applied loads, the value φ is higher. An analytical model for this effect is not developed

for calculating the value of φ, but a proportional increase of the value φ based on the applied

force, say φ̂ = φ
F

k
(where k is a scaling factor), is shown to give much better approximation at

higher loads. This corrected model is also plotted in Fig. 3.16.

The final theoretical braid angle for an extrapolated pressure value is plotted in the Fig. 3.17.

We can see that the braid angle asymptotically reaches the locking limit of 54.7◦. In this case,

the limit is slightly overshot at higher pressures. This is because the scaling factor S
(1)
scale for

contact area mentioned in the Cadwell’s derivation is not considered in this formulation, which,

is in fact a correction factor for the underestimation of radial force on tube. However, since we

do not have definitive calculations to determine Sscale except by empirical measures, the same

is not considered further.

From the above validation experiments we can conclude that, the developed model is able

to predict the deformation of MPAM with good accuracy and consistency compared to other

1Since the factor k
(2)
f in Andrikopoulos’ model is evaluated using experimental data, the better prediction

of stiffness is expected.
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models. Theoretical model is able to predict the actual deformation with less than 7% error.

The consistency of the model with respect to change in parameters such as initial length, initial

braiding angle as well as the thickness of inner tube is experimentally validated. The developed

model shows large error in predicting the stiffness of MPAM. However, an increase in the length

of conical section proportional to the applied force shows much better conformation with the

experimental value of stiffness. The application of this model on PAMs of diameter larger than

5 mm is not verified by the validation experiments and hence it is not possible to claim the

accuracy of this modeling strategy on regular sized PAMs.

3.5 Conclusions

It was found that most of the phenomenological models for PAM seem to be inconsistent

with the statics of miniaturized PAMs especially to the change in initial parameters. A novel

modeling strategy different from the conventional energy balance concept and which considers

two major physical aspects of MPAM – the material property of the Silicone tube and the non

cylindrical end-effects – has been derived. As opposed to the conventional modelling strategy,

the complex axial components of force such as friction as well as the component of radial force

from conical ends required to maintain static equilibrium of the MPAM are obtained by solving

the model. Hence, separate accurate formulation of these terms are not necessary. The derived

model could accurately predict the deformation of MPAM for a given applied pressure with

less than 7% error. The consistency of model with changes in initial parameters such as length,

braid angle as well as the thickness of tube is verified by validation experiments. The standard

error between experimental results and theoretical results for different initial parameters is

much less compared to the other models available in the literature. While the model under

predicts the stiffness of pressurized MPAM, this is identified as due to the limitation in the

model in addressing the stretching of conical end-section due to the applied force. A correction

applied to the end-section length proportional to the applied force showed better conformation

with the experimental results. The model also predicts the theoretical limiting angle of 54.7◦

at extrapolated pressure values.

Next chapter discusses the development and analysis of a novel flexible end-effector which

makes use of three MPAMs for actuation. For kinematics analysis, the model of MPAM de-

veloped in this chapter is used to estimate the the pressure-deformation relationship of the

MPAMs employed in the end-effector.
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Chapter 4

Design, fabrication and analysis of

flexible end-effector for endoscopic

catheters

4.1 Introduction

Previous chapter detailed the fabrication, testing and characterization of miniaturized PAMs

with maximum outer diameter of 2 mm. Since the muscle shows approximately 1 N/mm

stiffness at 758 kPa pressure, a collection of muscles can be utilized in an endoscopic end-

effector to successfully deflect the catheter tip. As mentioned in chapter 1, it is possible to

find a few robotic designs in the literature which utilize pneumatic muscles for actuation. For

example, in [26] and [146], three or more PAMs are grouped together along the circumference

of a circle to form the robot. The tool is placed at the sealed end of the muscle bundle and by

actuating the muscles individually, the tip can be deflected in different directions. Here, the

stiffness of the robot in the unactuated state is imparted by the stiffness of the PAM bundle and

will be ideal for robots which use PAMs with thick bladder. For the current application, such

method will result in very low stiffness of end-effector and hence, an explicit stiffener should

be provided. In reference [38], the author borrowed the design concept from cable-driven

continuum robot which essentially is a flexible rod (backbone) actuated using a set of cables.

This design could be used for the endoscopic end-effector as well, where MPAMs replacing the

cables. One drawback in this design is that the guiding disks provided could impart friction

which will result in rupture of the muscles unless the muscles are fixed to the disks. However, for

short actuators, this would mean a reduction of the effective working length of the actuator and

hence, reducing the overall contraction. Reference [147] shows another design where multiple
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Figure 4.1: Conceptual design of endoscopic tip assembly

parallel manipulators are stacked to form a serial system with end-effector attached at to the

surface of distal segment. The prismatic joints of the manipulators are pneumatic muscles in

this case. It may be noted that this design will also not be efficient for the endoscopic end-

effector since the overall length of the end-effector is limited to about 50 mm and incorporating

multiple short MPAMs within the dimensions and thereby obtaining large deflections of the tip

will be non-trivial, if not impossible.

Borrowing largely from these existing designs, an innovative end-effector design which pro-

vides both unactuated stiffness as well as enough force to deflect the endoscopic catheters,

while conforming to the available dimensions is presented in this chapter. Section 4.2 details

the design and fabrication of the novel end-effector. Since the proposed design does not utilize

guiding discs as is the case of other robots available in the literature, a new forward kinematics

model is proposed in section 4.3. Experimental validation of the model is shown in section 4.4.

The inverse kinematics which takes input from the projected workspace of the end-effector and

real-time implementation of the kinematic models are discussed in sections 4.5 and 4.6 respec-

tively. Some representative examples of the implementation to demonstrate the concepts are

shown in section 4.7 before summarizing the conclusions of the chapter in section 4.8.
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End-effector Assembly

Tool tip

Dorsal holder

Distal holder

Outer spring

Inner spring

MPAM

Tool cables

Teflon tubes

Figure 4.2: End-effector Design

4.2 End-effector design
The proposed modification at the distal end of endoscope is shown in Fig. 4.1. The system

consists of three main components:

• A camera assembly which holds camera, lighting system and a nozzle for spraying water

as well as pump air. The assembly may be pre-stressed to the shape shown in Fig. 4.1

such that it acts like an overhead camera during deployed state.

• An end-effector assembly with endoscopic tool/catheter attached to the tip. This assembly

can be deflected independent to the camera assembly.

• A spring loaded end-cap which can be retracted using cables to reveal the end-effector

assembly as well as the camera assembly whenever necessary.

The work presented in this thesis focuses on the end-effector assembly (here onwards called

end-effector). The design of end-effector is shown in Fig. 4.2. The end-effector consists of two

holders on either ends, each having a central hole of 3.5 mm diameter for catheter entry and

three holes of 2 mm diameter, 120◦ apart for placement of MPAMs. When only one MPAM is

pressurized, it contracts and the end-effector moves along the plane containing the MPAM and

the catheter. When two MAPM’s are actuated, the end-effector moves approximately along the

bisector of actuation planes formed from individual actuation of MPAMs. Hence, by actuating

one or two MPAMs, the end-effector can be positioned anywhere on the surface of a section of

a hemisphere.

The separation between dorsal and distal holders decides the overall length of end-effector

and hence the length of the MPAM used. A minimum end-effector deflection of 10 mm is desired

for convenient positioning of the tip of a catheter and this is kept as a design target during

the fabrication. It has been experimentally observed that air muscle length below 40 mm does
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not produce a large enough force to bend standard commercial forceps catheter to required

deflection. In addition, since the depth of view of a typical endoscopic camera is between 0 to

90 mm, 45 mm long air muscles were chosen in the design.

Catheter

Outer spring

Inner spring

Air muscle

Distal holder

Dorsal holder

Teflon tube

Figure 4.3: Design with separate catheter

As shown in Fig. 4.2, a wound coil of 4 mm outer diameter is fixed in the center. This coil

serves two purposes—it acts as a passage for catheter without interfering with the pneumatic

air muscles and also acts as a fulcrum on which the catheter will bend when air muscle is

energized. The coil has high axial stiffness with minimal motion along the axis of the coil

and low lateral stiffness thereby allowing it to bend easily—as a consequence, the end-effector

workspace is a section of hemispherical surface. Almost all endoscopic catheters have a common

design which consists of a closely wound coil which protects one or two cables used to actuate

the catheter mechanism at the tip and a plastic sheath covering the coil. In the proposed design,

it is possible to remove the catheter coil which is in fact redundant, since the inner-spring of

the end-effector itself can act as the protective sheath. This will reduce the overall stiffness of

the end-effector, resulting in better deflection and will also reduce the overall diameter of the

end-effector. The design shown in Fig. 4.2 is in fact, the catheter integrated design. The design

which uses separate catheter is shown in Fig. 4.3. The outer coil is highly flexible and is used

to maintain the shape of the end-effector. The pneumatic air muscles are rigidly fixed to the

top and bottom holders. While it is sealed at the top holder, the air muscles are connected

at the bottom to Teflon tubes of 2 mm diameter which in turn is connected to the pneumatic

circuitry. A maximum pressure of 827 kPa (120 psi) is applied to the MPAM. The volume

of air inside the MPAM is approximately 30mm3 and hence, even in case of MPAM rupture,

this volume will not result in a safety issue. In addition to this, the flow control valve limits

the volume flow rate of air into the MPAM to avoid sudden bleeding of compressed air from

the reservoir to the MPAM. Fig. 4.4 shows the fabricated end-effector prototype with standard
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forceps catheter inside. In its current form, the end-effector is 55 mm long and has a diameter

of 9 mm.

In the following section, kinematics of the designed end-effector based on the static char-

acteristics of the fabricated MPAM is discussed. A catheter-less end-effector is used for the

initial study. This is because the stiffness of catheter used in end-effector will depend on the

type of catheter used as well as the manufacturer. From the later sections, it can be seen that

for an end-effector which actuates commercial catheters, the kinematic formulation will remain

the same, since only the flexural rigidity of the end-effector will change with the inclusion of

catheter, and this value could be experimentally calculated before implementation.

Figure 4.4: End-effector prototype with forceps

4.3 Forward kinematics of end-effector

The developed end-effector is similar to the tendon driven robots based on the actuation tech-

nique. The inner spring acts as the backbone and the tendons are replaced by MPAMs. A

major difference between the current model with the conventional tendon driven models is the

lack of guiding discs in our prototype as mentioned in section 4.1. Due to the absence of guiding

discs, the MPAMs could drift sideways once the end-effector is deflected as shown in Fig. 4.5.

Hence existing kinematic equations available in the literature for guided tendon routing (see

for example [60] and [70]) shows large deviation from the experimental observations. To take

into account the absence of guiding disks, a new kinematic model is developed which relates

the position of the tip of the end-effector as a function of the deformation in the three MPAMs.

This model is required for real-time control of the end-effector.

The main assumption is that when the end-effector is deflected, the system tries to move

minimum distance so as to achieve an equilibrium position. Fig. 4.6 shows the backbone-

actuator assembly along an axial section of end-effector (section AA from Fig. 4.5). The entire
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Figure 4.5: Tendon driven robot analogy
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Figure 4.6: Backbone-actuator profile

length of end-effector is discretized into n segments, each segment representing the length at

which the outer spring comes in contact with the MPAM. An axial load will cause change

in length in inner spring. However, since three MPAMs are not actuated simultaneously, the

loading on the end-effector is primarily the moment applied by the MPAMs and hence, the

spring (backbone) is assumed to be of constant length throughout the actuation. The length of

a backbone in a segment is given as δl0 =
l0
n

and the length of actuator in a segment is δla =
la
n

where la is the final length of MPAM after pressurizing. In un-actuated state, the segment forms

a quadrilateral with co-ordinates Xi
b,X

i+1
b ,Xi+1

a ,Xi
a as shown in the figure where the subscripts

b and a represent backbone and MPAM respectively. For segment at the base of end-effector,

i = 1 and i = n at the tip. The natural undeformed initial positions Xi+1
b and Xi+1

a are found
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out as

Xi+1
b = Xi

b + δl0v̂i (4.1)

Xi+1
a = Xi

a + δlav̂i (4.2)

where, v̂i =
Xi
b −Xi−1

b

‖Xi
b −Xi−1

b ‖
(4.3)

For the initial segment (i = 1), the unit vector v̂1 is perpendicular to the vector X1
b −X1

a along

the initial axis of end-effector.

After deformation, the quadrilateral changes to Xi
b,x

i+1
b ,xi+1

a ,Xi
a where vectors in lower

case characters represent deformed position. Since the distance between backbone and MPAMs

are constrained by the outer spring to a fixed value, the length ‖xi+1
b − xi+1

a ‖ = a at all times.

The deformed quadrilateral could be positioned in different configurations depending on the

angle formed by xi+1
a − Xi

a and Xi
b − Xi

a. During actuation, since the MPAM becomes stiff

compared to the other components, the natural configuration is assumed to be the one where

MPAM has the least motion. Hence, the configuration of the deformed parallel manipulator is

assumed to be the one which minimizes the displacement of tip xi+1
a (where the MPAM contacts

the outer spring). To find the deformed configuration, we formulate the problem as

min
xi+1
b ,xi+1

a

‖Xi+1
a − xi+1

a ‖

Subject to:

‖xi+1
b −Xi

b‖ = δl0

‖xi+1
a −Xi

a‖ = δla

‖xi+1
b − xi+1

a ‖ = a (4.4)

The solution to the above optimization problem gives the co-ordinates of tips xi+1
b and xi+1

a .

The iterative method starts from the base segment and proceeds towards the tip of the end-

effector to determine the final pose of the end-effector backbone and the actuated MPAM. Since

the other two MPAMs are not pressurized, they are very flexible and can move freely within

the end-effector and their exact pose need not be considered in the formulation.

In the case of two MPAMs actuated together, the resultant moment due to these actuations

can be written as

M = ai × Fi + aj × Fj = ar × Fres (4.5)
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Figure 4.7: Displacement vector addition

where ai,j are the position vectors of the tip of ith and jth MPAM and Fi,j are the applied forces

on end-effector by the MPAMs. Let ar be the position vector of a hypothetical actuator whose

resultant force Fres = F1 + F2 will provide the same moment as due to the other two MPAMs

actuated together. In terms of direction cosines li and mi, the equation can be rewritten as

a
(
l1î +m1ĵ

)
×F1k̂ + a

(
l2î +m2ĵ

)
× F2k̂

= a
(
lr î +mr ĵ

)
× (F1 + F2) k̂ (4.6)

where î, ĵ and k̂ denote the unit vectors along the co-ordinate axes. Simplifying the above and

equating the components of î and ĵ, we get the direction cosines of the hypothetical actuator

lr =
(l1F1 + l2F2)

F1 + F2

, mr =
(m1F1 +m2F2)

F1 + F2

(4.7)

and hence, the plane which contains the resultant profile of end-effector.

If two MPAMs are pressurized simultaneously, the axial force generated at the tip will be

large enough to compress the inner spring. The resultant deflection will be inwards in the k̂

direction which is not desired. Hence, MPAMs are pressurized only one after the other. From

Fig. 4.7, the tip deflection from initial position (ξ0 in the figure) due to individual actuation of

two MPAMs (given by curves ξ1 and ξ2) are along the direction of force vectors represented by

d1 and d2 respectively. When these MPAMs are pressurized successively in the order MPAM-1

followed by MPAM-2, then the vector d2 is rotated about β1 angle which is the angle at the tip

of ξ1 with respect to k̂ axis. The rotation will be along the axis of rotation of the end-effector
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q̂1 when only the first MPAM is actuated. The resultant deflection will be in the direction of

vector sum of d1 and d′2 where d′2 = R̂(q̂1,β1)d2 is the rotated vector.

From the static model of MPAM derived in chapter 3, we obtain the deformed length

corresponding to a given applied pressure and axial load. From the forward kinematic equations

derived in section 4.3, we get the pose of end-effector corresponding to given displacement of

MPAMs/tendons. Combining both the models, we obtain the pose of end-effector corresponding

to pressure applied at MPAMs.

4.4 Experimental validation

In order to validate the developed model, end-effector prototype is subjected to different values

of pressure and the pose of end-effector after deflection is compared with the values obtained

from theoretical model. Two cameras are used to capture images from different angles and the

3D co-ordinates of the central (backbone) curve of end-effector is obtained using multiple view

image reconstruction techniques [148]. A thin flexible film of white colour is applied on the end

effector surface to facilitate control point identification. A high contrast marking relative to the

colour of end holder is made at the tip so that the marker is easily identified in the captured

images. To find the co-ordinates of the tip, respective pixels in the two images corresponding to

the marker position are manually selected. The possible error in this method is in incorrectly

identifying the marker pixels which will not more than 4 pixels size for both the images. For

the scale and measurement set up used, this value is about 2 mm. While this method is only

suitable for the validation experiments conducted for the paper, in actual practice, the pose

could be reconstructed using the methods suggested in [149] which will be much faster and

better for control purposes. The maximum error in reconstruction is approximately ±2 mm at

the tip.

Fig. 4.8 shows the deformation of end-effector as well as the re-constructed profile when one

MPAM is pressurized. It may be noted that the reconstructed profile is limited to the tip of

MPAM which is at 45 mm from the base, while the end-effector tip extends up to 55 mm due to

the distal holder. By actuating three MPAMs individually, it is found out that the MPAMs are

positioned at 307.5◦, 219◦ and 75◦ angles from the positive î axis as shown in Fig. 4.9. They

are named R, G and B respectively for identification1. By applying a 0.1 N transverse load

at the tip of the end-effector, a deflection of approximately 15 mm is obtained. The flexural

rigidity is then calculated using the standard beam equation.

The solution to kinematics of end-effector considering the MPAM statics is carried out using

1The names are chosen only to conveniently distinguish between the muscles in further analysis and related
figures.
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Figure 4.8: End-effector profile reconstruction using image analysis

î

ĵ
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Figure 4.9: Angles showing MPAM arrangement in the end-effector

an iterative scheme. At first, the deformation of a single MPAM for zero applied axial load is

found out using the theoretical model of MPAM. This value of deformation is used to calculate

δla and the optimization problem in equation (4.4) is solved to get the pose of end-effector.

The displacement of tip δe from the original position is calculated from the theoretical pose of

end-effector. The moment that may be applied at the tip of end-effector in order to produce the

same deflection is calculated using the equation δe =
ML2

3EI
, where EI is the flexural rigidity of

the end effector. Since moment M = a×F , we get the axial load F that should be produced by

the MPAM in order to get the same deflection. Using this value of F , the deformation of single

MPAM is re-calculated and the same procedure is repeated till the change in final deflection of

end-effector is within a specified tolerance.

In order to validate the theoretical model, a pressure of 689.4 kPa(100 psi) is applied to
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Table 4.1: Forward kinematics iteration for MPAM-R at Pi = 689.4 kPa

F (N) ∆ (mm) δe (mm) F ∗ (N)

0 7.6 22.8 1.69

1.69 6.9 20.4 1.51

1.51 6.9 20.4 1.51

0

5050

0

0

50

-50
-50

-50

0

50

-50 0 50

Figure 4.10: MPAM R actuated at 689.4 kPa

MPAM-R. For no applied load, R gives ∆ = 7.6 mm contraction as per the derived theoretical

model. The final length of MPAM will be la = lo−∆ = 37.4 mm. This value is used to predict

the pose of end-effector using the kinematic model where 15 segments are used for computation

(length of one segment is equal to the pitch of the outer spring). The final pose of end-effector

gives a tip deflection of δe = 24.5 mm. The load F which MPAM has to apply on end-effector

so as to obtain this value of deflection is calculated to be F ∗ = 1.79 N. Now, the deformation of

MPAM is re-calculated with F = F ∗ = 1.79 N force where the deflection is 6.8 mm for 45 mm

MPAM. The procedure is repeated as shown in Table 4.1. The value of deformation of MPAM

to achieve equilibrium is found out to be 6.9 mm. The pose of end-effector obtained with final

length of MPAM as 45− 6.9 = 38.1 mm is shown in Fig. 4.10 alongside the actual deflection of

end-effector. The measured pose of the end-effector matches with the theoretical model with a

maximum error of 1 mm at the tip. The time required to solve the forward kinematics is about

1.0 seconds on an Intel Pentium PC at 2.0 GHz.

As observed in chapter 3, there is an error in the calculated force-displacement profile for

MPAM at higher values of axial load. The MPAM displacement is corrected for this error and

the iteration table for the same pressure with the MPAM deflection corrected to ∆∗ is shown
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Table 4.2: Forward kinematics iteration for MPAM-R at Pi = 689.4 kPa with MPAM deforma-
tion correction

F (N) ∆ (mm) ∆∗ (mm) δe (mm) F ∗ (N)

0 7.6 7.6 22.8 1.69

1.69 6.9 6.5 18.9 1.40

1.40 7.0 6.7 19.7 1.46

1.46 6.9 6.6 19.3 1.43

1.43 6.9 6.7 19.7 1.46
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Figure 4.11: MPAM G actuated at 689.4 kPa

in Table 4.2. It can be seen that the corrected value of MPAM deflection varies from the value

predicted using the model by 0.2 mm. The change in tip deflection of end-effector due to this

value is 1.05 mm which is well within the measurement error bounds.

Fig. 4.11 shows the actuation of MPAM-G with same value of pressure. Fig. 4.12 shows the

comparison between theoretical and measured pose for MPAM-G actuated at 551.6 kPa (80

psi). The iteration table is shown in Table 4.3. The maximum error in tip deflection in this

case is also found to be about 1 mm.
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Figure 4.12: MPAM G actuated at 551.6 kPa

Table 4.3: Forward kinematics iteration for MPAM-R at Pi = 551.6 kPa

F (N) ∆ (mm) δe (mm) F ∗ (N)

0 7.1 21.2 1.57

1.57 6.4 18.5 1.37

1.37 6.4 18.5 1.37

The following steps summarize the method in finding the final pose of end-effector when

two MPAMs are actuated:

1. Pose of end-effector ξ1 when one MPAM, say, MPAM-R is pressurized individually is

found out using the above formulation; tip deflection vector d1 is calculated.

2. Pose of end-effector ξ2 when second MPAM, say, MPAM-G is pressurized individually is

found out; tip deflection vector d2 is calculated.
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Table 4.4: Forward kinematics iteration for Pi = 413.6 kPa

F (N) ∆ (mm) δe (mm) F ∗ (N)

0 6.2 17.9 1.32

1.32 5.6 15.2 1.13

1.13 5.7 15.8 1.17

1.17 5.7 15.8 1.17

3. Angle of end-point vector of MPAM-R is calculated using the equation:

β1 = cos−1

(
xnb − xn−1

b

‖xnb − xn−1
b ‖ · k̂

)
(4.8)

4. Axis vector q̂1 is found out using the equation:

q̂1 =
xn − xn−1

‖xn − xn−1‖ ×
xn−2 − xn−1

‖xn−2 − xn−1‖ (4.9)

5. Rotation matrix R̂(q̂1,β1) is populated using axis-angle method [150] and tip displacement

of second MPAM, d2 is rotated to get d′2.

6. Direction cosines of ar are calculated using equation (4.7). The plane containing the

vector ar as well as the k̂ axis can be defined by its normal vector (mr) î + (−lr) ĵ.

7. A straight line is drawn from the vector l0k̂ + d1 in the direction of d′2. The intersection

of this line with the plane defined in step 4) gives the final tip position.

8. The iteration is repeated with n → n − 1 for the entire length of end-effector to obtain

the final pose.

Fig. 4.13 shows the final deformation of end-effector when two MPAMs are actuated by 689.4

kPa (100 psi). The experimental results agree with the theoretical model well. The model is

also validated using wide range of pressure values. For example, the iteration Table 4.4 gives

the deformation and axial load for a 413 kPa (60 psi) pressure input. The direction cosines

of ar calculated using F1 = 1.61 N (corresponding to 689 kPa pressure) and F2 = 1.28 N

(corresponding to 413 kPa pressure) are lr = −0.17 and mr = −0.7 respectively–i.e, the plane

forms an angle 13.3◦ with the ĵ axis. For a pressure combination of 413 kPa for MPAM-R and
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Figure 4.13: MPAMs R,G actuated at 689.4 kPa
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Figure 4.14: MPAM G at 689.4 kPa and R at 413 kPa
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689 kPa for MPAM-G, the results are shown in Fig. 4.14. The predicted data as well as the

reconstructed image for all the results show that the theoretical model gives very good estimate

of the final deformation of end-effector.

4.5 Inverse kinematics of end-effector

In this section, the inverse kinematics of the end-effector is discussed. The deflection of end-

effector with a standard 2.5 mm diameter forceps is shown in the Fig. 4.15. The maximum

Figure 4.15: End effector with forceps at 827 kPa

displacement of ∼ 22.4 mm is observed at the end of distal holder and ∼ 26.5 mm at tip

of catheter when the MPAM is pressurized to 827 kPa. The pressure versus deflection for

single air muscle actuation is plotted in Fig. 4.16. As mentioned in the earlier section, solution

Figure 4.16: Pressure vs deflection, with catheter
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to the forward kinematics of end-effector, using the iterative approach takes about 1 second

to complete and is not possible for real-time implementation in the current form. Due to

this reason, a cubic curve is fitted on the deflection vs pressure data. A maximum limit

of 827 kPa (120 psi) is set, beyond which negligible change in deflection is observed. With

this approximation, the following approach can be used to find the pressure required for the

catheter-tip to reach a particular position in the end-effector workspace.

Fig. 4.17 shows the front view of the end-effector with three air muscles actuated indepen-

dently at maximum pressure. Three unit vectors e1, e2, e3 represents direction of displacement

of air muscles MPAM-R, MPAM-B and MPAM-G actuated independently. Projection of the
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Figure 4.17: Front view of end-effector

end-effector workspace onto a plane perpendicular to the axis of the end-effector is shown in

Fig. 4.18 where A1e1, A2e2, A3e3 are the vectors corresponding to the maximum displacement

in e1, e2, e3 directions respectively. The sector between ei and ej, i, j = R,G,B, i 6= j is termed

Si. To access a particular point in Si, say v = (vx, vy)
T (see Fig. 4.19), the air muscles i and j

should be pressurized so as to obtain displacements ai and aj respectively.

With reference to Fig. 4.19, we get the following set of equations:[
ei

ej

]
=

[
cosαi sinαi

cosαj sinαj

][
î

ĵ

]
(4.10)

[
î

ĵ

]
=

[
sinαj − sinαi

− cosαj cosαi

]
sin (αj − αi)

[
ei

ej

]
(4.11)
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Figure 4.18: Projected workspace of end-effector
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Figure 4.19: Vector in projected workspace

vx̂i + vy ĵ =

{
vx [sinαjei − sinαiej]

+vy [− cosαjei + cosαiej]

}
sin (αj − αi)

(4.12)

=
[
vx sinαj−vy cosαj

sin(αj−αi)

]
ei +

[
−vx sinαi+vy cosαi

sin(αj−αi)

]
ej (4.13)

= aiei + ajej (4.14)

The above expression gives the values of ai and aj which are the respective displacements from

actuators i and j in order to access point (vx, vy) in the sector Si. Fig. 4.20 and Fig. 4.21 show

the experimental and expected end-effector position for a pre-defined input. The air muscle
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MPAM-G is pressurized at 689 kPa (100 psi) and MPAM-R is given maximum pressure. It can

be seen that the predicted deflection and actual deflection varies by ∼ 9◦.
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Figure 4.20: Experimental vs theoretical comparison of deflection in random direction
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Figure 4.21: Deflection in resultant direction

4.6 Real-time implementation of end-effector actuation

The actuation of end effector is implemented in real time by taking input from a thumb stick

which specifies the desired direction of motion. The analog signal from thumb stick is input to

an Arduino Mega board which reads values from 0 to 1024 corresponding to 0 to 5 V— (0,0)

is the top left corner and (1024,1024) is the bottom right corner. The origin of thumb stick,

initially at (512,512) is made (0,0) by using the conversion

tx = (tx − 512)

ty = −(ty − 512)
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where (tx, ty) are the user input. The analog signals from thumb stick span a square surface

from -512 to +512 in both left-right and top-bottom directions. The projected workspace of

end-effector as given in previous section is then superimposed on this square surface, with

the projection completely inscribed in the square surface. One unit of thumb stick motion is

equal to
max {Ai, ‖Aiei + Ajej‖}

512
mm, with i, j = R,G,B. Using this conversion scale, the

co-ordinates (vx, vy) can be found. Once (vx, vy) is obtained, sector Si is found out using the

condition θvi+θvj = αj−αi; θvi and θvj being the angle made by vector v with the unit vectors

ei and ej, respectively. The values ai and aj are then calculated using equation (4.14).
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Figure 4.22: Vector outside workspace

Since some co-ordinates received from thumb stick lie outside the workspace of end-effector

(see Fig. 4.22), these co-ordinates are accounted for, based on the algorithm given below:

• Find the subsection (A or B) which vector v belongs to. The logic used is same as that

of finding sectors, except that the vector ej is the resultant of (ei + ej) for section A and

ei is (ei + ej) for section B.

• If v is in sector A, ai = Ai (maximum displacement). For calculating aj, let ev be unit

vector in the direction of v. From Fig. 4.22,

Rev = Aiei + ajej (4.15)

• If v is in sector B, aj = Aj, then

Rev = aiei + Ajej (4.16)
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From the above equations, value of R and ai are calculated.

Once (ai, aj) are found out, then the cubic equation for pressure is solved using fsolve

function in MATLAB to get the required pressure in both the actuating air muscles.

4.7 Implementation examples

A number of experiments are performed to position the tip of a catheter by applying air pressure

to three independent air muscles. In this section representative experimental results are shown.
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Figure 4.23: Tracing line in workspace

The deflection at the tip of a standard forceps of outer diameter 2.5 mm and length 20

mm from the end-effector tip is measured and plotted. As mentioned earlier, the workspace is

divided into three sectors and a point P in workspace can be accessed by applying independent

pressure (p1, p2, p3) to the three air muscles (R,B,G) respectively. Fig. 4.23 shows the end-

effector tracing a line in the workspace when a single air muscle is actuated. These are shown

by points P1, P2 and P3 (red markers). The applied pressure for each of these points is shown

beside the figure. Fig. 4.23 also shows three representative points P4, P5 and P6 (blue markers)

obtained by actuating two air muscles. The pressures applied to the two actuators are mentioned

beside the figure. An approximate circular tip motion of the catheter and the pressures applied

to obtain the same is shown in Fig. 4.24. The tip can be moved from one point to another in

a circle without re-setting to the center position. The results shows that arbitrary positioning

of the forceps is possible in the workspace.
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Figure 4.24: Tracing circle in workspace

4.8 Conclusions

A novel end-effector for actuating endoscopic catheters is successfully designed and fabricated.

The design uses three miniaturized pneumatic artificial muscle of 1.6 mm diameter enabling

compactness while delivering required deflection and stiffness. The design differs from other

robotic applications seen in the literature due to the absence of guiding discs to route the

PAMs. Because of the absence of guiding discs, existing kinematic analyses available in the

literature were not applicable to the end-effector and hence, a new forward kinematics model

is developed. The model approximates the entire length of the end-effector as a series of

connected parallelogram mechanisms and uses optimization based method to solve the pose

of the actuated end-effector. A method to calculate the pose as well as the actuation plane

for resultant actuation of two MPAMs is also discussed. An iterative method is derived to

integrate the statics of the MPAM to the forward kinematics of end-effector. The experimental

results show good agreement with the proposed model with maximum error less than 2mm

at the tip. An algorithm to find the inverse kinematics of the end-effector, given the position

of the end-effector tip at a particular point in the projection of workspace is proposed. The

theoretical prediction varies from experimental results by ∼ 9◦ in deflection angle. A method

for real-time implementation of end-effector manipulation using a thumbstick is discussed and

demonstrated.
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Chapter 5

Motion planning of endoscopic robots

5.1 Introduction

As mentioned in chapter 1, the second issue faced by the endoscopists is in efficiently manoeu-

vring the scope through the GI tract. This chapter proposes an approach where the endoscope

is considered as a continuum robot. The most popular and easily fabricated continuum robot

is the cable driven elephant-trunk robot, which has multiple actuating segments, with each

segment actuated using four cables placed 90◦ apart. Pulling the cable(s) result in the segment

taking the shape of an arc of a circle. The forward kinematics of the cable driven continuum

robot is to find the pose of the robot when the lengths of cables are given. In reference [60]

Gravagne and Walker derived analytical expressions for the forward kinematics of elephant

trunk robot using concepts from differential geometry. The co-ordinates of a point on the robot

is determined using two parameters—α which is angle of rotation of the plane that contains the

final configuration of the robot and about the initial axis of the robot1 and the angle β(s) made

by the tangent of backbone with the initial axis (which varies along the length of the deformed

backbone). In the paper by Starke et al [151], the authors cite the advantage of using robots

with non-conventional tendon routing. Kinematic analysis of continuum robot with general

tendon routing can be found in [67] as well. However, the derivations in [67] are applicable to

tendon routes which can be analytically described and overall, the formulation is non-intuitive.

Hence, a simpler and more direct formulation which can be applied to any general tendon routes

will be advantageous.

The endoscope designed as a multi-segment continuum robot can be efficiently manoeuvred

through the GI tract with the motion planned so as to avoid collision with the walls of the tract.

As mentioned in chapter 1, the medial axis of the GI tract (locus of centroid of the cross-sections

1The configuration of the robot will always be in a plane and is shown to take the shape of an arc of a circle.
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of the tract) is a reasonable choice for the path through which the tip of the endoscopic robot

shall trace. Once the path is given, finding the configuration of the robot which avoids collision

with the tract walls constitutes redundancy resolution of the hyper-redundant robot. The

collision avoidance can be achieved locally–by means of sensors [152], [153] or globally–where

the obstacles are known apriori [53]. While the first method is mostly used for environments

with moving obstacles, the latter is used for static environments. Considering the application in

hand, global motion planning would suffice, since the patient will be stationary throughout the

procedure, and also, the GI tract profile can be determined using MRI based imaging which is

already being used in surgery ([154], [155]). Once the profile of the tract is known, tractrix based

minimization approach mentioned in [88] can be used to plan a smooth and ‘realistic’ motion.

However, in the special case of motion through confined spaces within a narrow bounded path–

which hereafter we call “duct”, directly implementing the algorithm would require modelling the

entire half space outside the duct as obstacles which is impractical. Hence, an efficient motion

planning algorithm for motion inside confined narrow bounded paths may be developed.

The work presented in this chapter is organized as follows. In section 5.2, the kinematics of

a single segment of continuum robot is analyzed. A new formulation is proposed for the forward

kinematics of the continuum robot which uses optimization based method. The formulation for

robot manipulation in 2D as well as the validation of the method is discussed in section 5.2.1.

Section 5.2.2 details the method to extend the concepts for manipulation in 3D as well as

the validation of the method through simulations. After discussing the kinematics of a single

segment of continuum robot, the motion planning of the entire hyper-redundant robot through

the confinement of GI tract is discussed in section 5.3. Firstly, an overview of the tractrix-

based motion planning is discussed. Then the proposed algorithm for motion planning through

ducts in 2D and 3D with different ways of representing the ducts are discussed in detail in

sections 5.3.2 and 5.3.3 respectively. Simulation of an endoscopic robot travelling through the

GI tract is carried out in section 5.3.4. Finally, a few limitations of this method are discussed

in section 5.3.5 before summarizing the conclusions in section 5.4.

5.2 Kinematics model for continuum robot

In this section, a new approach in modelling the forward kinematics of continuum robot is

discussed. The modelling strategy is based on discretization of the continuum robot and using

an optimization scheme similar to the approach discussed in section 4.3. The method is shown

to be simpler in implementation and has the potential to be extended to robots with general

tendon routing.
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Figure 5.1: Discretization of robot in
2D plane
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Figure 5.2: Nomenclature for single segment

5.2.1 Forward kinematics of 2D continuum robot

In a cable driven continuum robot with two pairs of cables, if the two opposing cables in one of

the pairs (cables which are 180◦ apart) are actuated, the robot will be restricted to move within

a 2D plane. Among the opposing cable duo, only one cable is pulled at a time, since otherwise,

the robot can buckle. In this section, a new method in formulating the forward kinematics of

2D planar continuum robot is discussed.

The proposed formulation assumes the profile of the continuum robot as a set of connected

4 bar parallel linkages. To this end, the robot is discretized into n number of segments along

the backbone of the continuum robot as shown in Fig. 5.1. In this approach, only one cable

from the opposing cable pair is considered, as it can be seen in the later part of the section

that the other cable does not have any role in manipulation of the robot in the quadrants

containing the actuated cable1. With reference to Fig. 5.2, one segment of the continuum robot

can be approximated as a 4-bar linkage, with the first crank, coupler, second crank and fixed

link having lengths l0, l1, l2 and l3 respectively. Since the cables pass through holes present in

the guide disks, the lengths l1 = l3 = a where a is the constant spacing between the backbone

and the cables. For the robot of length L0 measured along the backbone, the length of the first

crank l0 =
L0

n
. When the cables are actuated to a final length of La = L0−∆La where ∆La is

the prescribed change in length of the cable, the length of second crank, l2 = l =
La
n

. From the

loop-closure constraint equations of the 4-bar linkage located at the base of continuum robot,

we get

f(θ, β) = l20 + 2a2 − l2 + 2al0 sin (θ − β)− 2a (l0 sin θ + a cos β) = 0 (5.1)

1The opposing cable is used to retract the robot to its original position if the backbone material is not
perfectly elastic, and for manipulation in the opposing direction of the first cable.
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Figure 5.3: variation of β with θ

where θ is the angle made by the first crank and the axis of backbone while β is the coupler

angle measured relative to the fixed link. Plotting the values of θ and β, we can see from

Fig. 5.3 that a minimum exists for β − θ curve for a given set of length parameters.

Differentiating the above equation with respect to θ and setting
dβ

dθ
= 0 and simplifying, we

get

cos (θ − β) = cos θ

From the above equation, we can get the value of crank angle (and subsequently a configuration

of the linkage) where the rate of change of coupler angle with respect to the crank angle is zero.

This is given by

β = 2 (θ − kπ) (5.2)

where k is an integer.

In the initial un-actuated configuration, the lengths of link are l0 = l2 =
L0

n
. In this position,

the initial coupler angle is zero. After actuation, the nearest minimum for the coupler angle

(from zero value) appears when k = 0, or β = 2θ for small displacements of the first crank. In

what follows, it is shown that the configuration which produces minimum change of coupler

angle is the same as the configuration obtained analytically by Gravagne and Walker [60].

Substituting θ =
β

2
in equation (5.1) and simplifying, we get

−l2 +

(
l0 − 2a sin

(
β

2

))2

= 0 (5.3)
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Figure 5.4: Assembly of 4 bar linkages for iteration procedure

Since l takes only positive values, we get

sin
β

2
=
l0 − l

2a
(5.4)

The assembled discrete segments represent the robotic continuum for large values of n. In that

case, the right-hand side of the above equation will be very small. For small angles, we get

β =
l0 − l
a

(5.5)

The value of coupler angle for the distal tip, which is same as the angle β(L0) in the derivation

shown in [60], can be found by multiplying the above expression for β with the total number

of segments n. The value of coupler angle so obtained,

β(L0) = n
l0 − l
a

=
∆La
a

(5.6)

is same as the value obtained analytically in [60].

Since it has been shown that the forward kinematics of continuum robot can be obtained by

minimizing the coupler angle of approximated 4 bar parallel linkages, the following formulation

may be used to implement the optimization procedure:

Let the co-ordinates of the ends of the coupler attached to the first crank and the second

crank in the undeformed position be denoted by Xi+1
0 and Xi+1

a , respectively. The corresponding

80



CHAPTER 5. MOTION PLANNING OF ENDOSCOPIC ROBOTS

deformed positions are denoted by xi+1
0 and xi+1

a , respectively. Similarly, the co-ordinates of

the ends of the fixed link attached to the first crank and the second crank are Xi
0 and Xi

a,

respectively. For the segment at the base of robot i = 1 and i = n at the tip. With the above,

the optimization problem may be formulated as:

argmin
xi+1
b ,xi+1

a

arccos

((
Xi

0 −Xi
a

‖Xi
0 −Xi

a‖

)
·
(

xi+1
0 − xi+1

a

‖xi+1
0 − xi+1

a ‖

))
Subject to:

‖xi+1
0 −Xi

0‖ = l0

‖xi+1
a −Xi

a‖ = l

‖xi+1
0 − xi+1

a ‖ = a (5.7)

Given data: Xi
0,X

i+1
0 ,Xi

a,X
i+1
a , l0, l, a

The solution to the above optimization problem gives the co-ordinates of tips xi+1
0 and xi+1

a

and the iterative method starts from the base segment and proceeds towards the tip of the

robot. With reference to equation (5.4), in order to ensure that the right-hand side of the

equation is always less than 1, the value of n may be chosen such that

n >
L0 − La

2a
(5.8)

Fig. 5.5 shows the profile plotted for a continuum robot using the solution obtained from

analytical method as well as the discretized optimization method solved using fmincon in

MATLAB. The solution, as proved before, is exact except for the tolerances in the numerical

procedure. Fig. 5.6 shows that the profile remains similar with different number of segments.

The extension of this approach to 3D continuum robots is discussed in the next section.

5.2.2 Forward kinematics of 3D continuum robot

If both pairs of cables are actuated simultaneously, the continuum robot will assume a deformed

pose in 3D space. For simultaneous actuation, the discretization of robot is carried out as shown

in Fig.5.7. Here, the backbone along with the actuating cables which are placed at an angle

φ = 90◦ apart can be considered as a set of two adjoined 4 bar linkages (a 7-bar linkage). The

two quadrilaterals have the vertices
(
Xi

0,X
i+1
0 ,Xi+1

a ,Xi
a

)
and

(
Xi

0,X
i+1
0 ,Xi+1

b ,Xi
b

)
initially.

These quantities change to
(
Xi

0,x
i+1
0 ,xi+1

a ,Xi
a

)
and

(
Xi

0,x
i+1
0 ,xi+1

b ,Xi
b

)
after actuation. The
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Figure 5.7: Discretization of robot in
3D
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subscripts a and b are used to denote the respective values for the linkages formed by cable

pairs a and b respectively. The coupler angles may be defined as βa and βb for the two 4-bar

linkages.

Since the deformation of the robot is commutative– i.e., the actuation is the same irrespective

of the order of actuating the cables, the final pose will be the one where coupler angles of both the

linkages are minimized simultaneously and independently. Hence, the pose can be determined

from solving the optimization problem

argmin
xi+1
b ,xi+1

a

[
arccos

((
Xi

0 −Xi
a

‖Xi
0 −Xi

a‖

)
·
(

xi+1
0 − xi+1

a

‖xi+1
0 − xi+1

a ‖

))]2

+ (5.9)

[
arccos

((
Xi

0 −Xi
b

‖Xi
0 −Xi

b‖

)
·
(

xi+1
0 − xi+1

b

‖xi+1
0 − xi+1

b ‖

))]2
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Subject to:

‖xi+1
0 −Xi

0‖ = l0 (5.10)

‖xi+1
a −Xi

a‖ = la

‖xi+1
b −Xi

b‖ = lb

‖xi+1
0 − xi+1

a ‖ = a

‖xi+1
0 − xi+1

b ‖ = a

arccos
((

xi0−xia
‖xi0−xia‖

)
·
(

xi0−xib
‖xi0−xib‖

))
− arccos

((
Xi

0−Xi
a

‖Xi
0−Xi

a‖

)
·
(

Xi
0−Xi

b

‖Xi
0−Xi

b‖

))
= 0

Given data: Xi
0,X

i+1
0 ,Xi

a,X
i+1
a ,Xi

b,X
i+1
b , l0, la, lb, a

where la =
La
n
, lb =

Lb
n

and the last equality constraint ensures that the separation between

the cables remains constant even after deformation.

In Fig. 5.9 and Fig. 5.10, the pose of robot with two cables actuated by equal amounts

as well as by different values are shown. As is the case with the 2D, analytical solution and

optimization based solution varies only by the numerical error induced due to the optimization

scheme.

To summarize, it is shown that the forward kinematics of a cable-driven continuum robot,

with a fixed tendon spacing can be calculated using an optimization based approach. The

actuating cable of the continuum robot as well as the backbone are discretized to a number

of segments and the two are considered as the two cranks of a 4-bar linkage. The constant

spacing between the cable and the backbone separates the cranks and form the fixed link as

well as the coupler. Minimizing the coupler angle from the stationary initial position based on

the constraints imposed by the cable lengths, backbone length as well as the constant spacing

between the cable and backbone, a unique pose is obtained for the robot. This unique pose is

shown to match the solution obtained using differential geometric approach [60].

It is worth noting that the approach is applicable only if the given lengths are constant. For

a robot which does not have guiding disks to keep a constant cable spacing, a will vary and the

approach detailed in section 4.3 may be used. For the case where the cables are passed through

guiding disks with holes drilled with different spacings, the cables will not drift in circumferential

direction. In reference [67], the forward kinematics of such a system with general tendon routing

is posed using a set of differential equations based on Cosserat theory. However, as mentioned

earlier in section 5.1, the expressions are non-intuitive and are applicable to tendon routes that

can be analytically expressed. In the optimization based method proposed in this section, the

83



CHAPTER 5. MOTION PLANNING OF ENDOSCOPIC ROBOTS

X axis
0 5 10 15

Y
 a

xi
s

-2

0

2

4

6

8

10

12

14

16

18

Top view

15

Y axis

10

5

0
15

10

5

X axis

0

15

10

5

0

-5

Z
 a

xi
s

Isometric view

Z
 a

xi
s

-5

0

5

10

15

X axis
0 5 10 15

Front view

Z
 a

xi
s

-5

0

5

10

15

Y axis
0 5 10 15

Side view

Figure 5.9: Profile of robot with cables actuated by equal displacements. (Black lines for
analytical solution and blue lines for optimization based solution)
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same would translate to adding specific constraints to the problem, such as:

‖xi+1
0 − xi+1

a ‖j = aj (5.11)

‖xi+1
0 − xi+1

b ‖j = aj{
arccos

((
xi0 − xia
‖xi0 − xia‖

)
·
(

xi0 − xib
‖xi0 − xib‖

))}
j

=φj

where (·)j represent the specified values at segment index j. The above optimization problem

can again be solved numerically using the function fmincon provided by MATLAB.

Inverse kinematics of continuum robot corresponds to finding the configuration of the robot–

which is essentially determining the radius of curvature as well as the co-ordinates of the center

of the arc formed by the backbone, given the position of the tip of the robot. For general tendon

routing, this problem is non-trivial and dependent on the routing of the cables. For continuum

robot with equally spaced tendons, this problem has been already addressed by Neppali at al.

in reference [156].

5.3 Motion planning of endoscopic robot

This section discusses, the tractrix based motion planning of hyper-redundant endoscopic robot

whose travel is confined to a duct. At first, the fundamentals of tractrix based motion planning

is discussed. This is followed by three methods to represent 2-dimensional planar ducts along

with the motion planning algorithm for each representation. The concept is extended to two

methods of 3-D representations and the implementation strategy in the two cases are discussed.

Finally, simulation results for an endoscopic robot travelling through GI tract is shown and a

few limitations of the procedure is discussed.

5.3.1 Overview of tractrix based motion planning

Consider a rigid link of length L0 positioned in a 2D plane, initially aligned to the Y-axis as

shown in Fig. 5.11. The co-ordinates of the ‘head’ of the link is given as Xh = [Xh, Yh]
T and

the co-ordinates of the ‘tail’ as Xt = [Xt, Yt]
T . If the head is displaced to the co-ordinate

xh = [xh, yh] along the positive X− axis by t units, the tail of the link can lie anywhere on the

circumference of a circle centered at the co-ordinate (t, 0) with radius L0. If we assign a rule

that the velocity of the tail of the link is always directed towards the length of the link, we get

two diametrically opposite points on the circle. The continuous path traced by the tail point
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is the well known tractrix curve as given in equation (5.12):

xt = [x(t), y(t)] = [t− L0 tanh
t

L0

, L0 sech
t

L0

] (5.12)

The extension of tractrix equation along motion in arbitrary direction as well as an algorithm

to calculate the same in 3-D can be found in [87]. In case of multiple links connected to each

other as in the case of a hyper-redundant robot, or a one dimensional object approximated as

a series of connected linkages, the algorithm can be applied iteratively from the head to tail as

shown in their paper. By moving along the tractix curve, the tail moves the minimum distance

with respect to its initial position. Also, the displacement ‖xh−Xh‖ ≥ ‖xt−Xt‖ which means

that the displacement attentuates from the displaced link to end of the chain in case of serially

connected links as shown in Fig. 5.12. Due to the minimal displacement of the tail, the motion

can be imagined as the one with high lateral resistance on the link and less resistance in the

direction of motion of link.
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Figure 5.11: Tractrix curve in 2D with one link
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Figure 5.12: Tractrix with multiple links

It is shown in [88] that for a single rigid link, tractrix curve can also be obtained by minimiz-

ing an L2 metric – the displacement of the tail from its initial position subject to the condition

that the length of link is always preserved. So, the co-ordinates of the tail can be obtained from

the following minimization problem:

argmin
xt

‖xt −Xt‖ (5.13)

Subject to: ‖xh − xt‖ − L0 = 0
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An advantage of expressing tractrix as a minimization problem is that more constraints can

be added to the above expression and hence, control the position of the tail point. Though

the resulting curve may not necessarily be a tractix curve, the motion of the tail will appear

realistic1. For the motion of a link which minimizes its tail velocity (displacement of the tail

co-ordinates), obstacle avoidance is achieved by formulating the problem as:

argmin
xt

‖xt −Xt‖ (5.14)

Subject to:‖xh − xt‖ − L0 = 0

f(x) � 0

where f(x) = 0 are the analytical equations of the boundaries of the surfaces which are to

be avoided. For example, if the tail is to avoid a single obstacle represented by a circle with

center (xc, yc), the expression f(x) = (x − xc)2 + (y − yc)2 − r2 > 0 ensures that the point x

always lies outside the circle of radius r. This is demonstrated in Fig. 5.13, where the ‘head’

of a hyper-redundant robot follows the path given by the blue dotted line, while the rest of

the robot successfully avoids the obstacles represented by two circles. Complex objects can be

modelled as a combination of super-ellipses as shown in [89]. In this case, f(x) will be a vector

of all boundary equations f(x) = [f1(x), f2(x), ...fm(x)]T . It is also worth noting that the value

of constraint function in equation (5.14) will increase or decrease as the point is farther from

the curve f(x); the value being zero on the curve. Hence, this approach can also be imagined

as a geometric potential field, with zero potential only at the surface of the obstacle.

The problem of planning the motion of the robot through a duct may be specified as:

argmin
xt

‖xt −Xt‖ (5.15)

Subject to:‖xh − xt‖ − L0 = 0

Cineq : f(x) < 0

While this expression is applicable for a duct represented by a single surface with the boundary

f(x), unlike the obstacle avoidance problem, the same will not work in the case of complex

surfaces represented by combination of simpler analytical shapes. This is because if a point is

classified as inside one of the simpler shapes, then it should be classified as outside the other

shapes forming the duct. In other words, if one constraint function fk(x) < 0, then the other

1The tractrix based algorithm represents a physical system where the link moves in a highly viscous envi-
ronment. A method to simulate motion in less viscous medium is given in Appendix C
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Figure 5.13: Obstacle avoidance in a plane

constraint functions fi6=k ≥ 0.

5.3.2 Motion planning through planar ducts

This section discusses different methods to represent a duct in 2D planar surface and how

constraints can be added in different representations of duct so as to ensure that the the tip

will always lie inside the duct during motion. Each method is shown to have its own advantages.

5.3.2.1 Representation of duct using super-ellipses

One method to represent a duct is by overlapping a series of super-ellipses as shown in Fig. 5.15.

This is the most simple and straightforward means of representation as shown in [89]. In

Cartesian co-ordinate system R2, the contour of super-ellipse generates different shapes (see

Fig. 5.14) using the following equation:

f(x) = f(x, y) :

∣∣∣∣x− xca

∣∣∣∣n +

∣∣∣∣y − ycb

∣∣∣∣n − 1 = 0 (5.16)

The condition f(xt) < 0 will ensure that the co-ordinates of the tail of the link (xt, yt)
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ary, blue: desired path of head

always lie inside the bounding curve of a super-ellipse. However, in case of multiple equations

(fi(x), i = 1, 2, ...,m), only one of them will be satisfied for the point to be inside the duct. In

practical implementation, we can say that this translates to saying that the least value amongst

all the values of fi(x) should be less than zero. For the ith super-ellipse which is rotated by an

angle φi about the z− axis and whose center is translated to the co-ordinates (xi, yi) so as to fit

a portion of a duct, the co-ordinates of boundary should be multiplied with a transformation

matrix

Ti =


cosφi − sinφi 0 xi

sinφi cosφi 0 yi

0 0 1 0

0 0 0 1

 (5.17)

The constraint equation now becomes gi(xt) : fi(T
T
i xt) < 0, i = 1, 2, ...,m. For practical

implementation, we can write the inequality constraint as

Cineq : min (gi(xt)) < 0, i = 1, 2, ...,m (5.18)

An example of single link and multi-segmented chain passing through the duct is shown

in Fig. 5.16. Motion of a unit link with and without constraint is shown in Fig. 5.17. The

negative gradient of the inequality constraint function is also shown in Fig. 5.17. The method

shown here is quite fast and scalable, while the majority of time taken for the scheme is in

identifying the super-ellipsoids which fit the duct profile, which is however, a pre-processing

90



CHAPTER 5. MOTION PLANNING OF ENDOSCOPIC ROBOTS

task. For the example shown in this section, this identification is done by manually selecting

clusters of points in the duct and fitting ellipses which will reduce the fitting error in a least

squared sense.

a b

c d

e f

Figure 5.16: Motion through duct modelled as
combination of super-ellipses
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Figure 5.17: Effect of gradient of inequality
constraint in pulling the tail into the duct

5.3.2.2 Representation of duct as a set of connected quadrilaterals

Since the profile of a super-ellipse is always symmetric, for complex and non-symmetric ducts,

representation using the previous method might require a large number of shapes. For such

cases, a complex duct shape can be represented as a closed shape obtained by stitching con-

vex quadrilaterals as shown in Fig. 5.18. The individual quadrilateral patches, denoted as

A1, A2, ..., An, are each bounded by the line segments defined by the points (P0,P1), (P1,P2), ...,

(Pn−1,Pn) for the curve ζ1 and (Q0,Q1), (Q1,Q2), ..., (Qn−1,Qn) for the curve ζ2. Classifica-

tion of a point xt as inside or outside a quadrilateral represented by points, say, P1,P2,Q2 and

Q1, is essentially checking the placement of the point in the half spaces represented by the four

lines spanned by the point set (P1,P2), (P2,Q2), (Q2,Q1), and (Q1,P1). This can be written

as a set of four inequality constraints:

A1
ixt + A2

i yt +Bi < 0 i = 1, 2, 3, 4 (5.19)

where A1
ix + A2

i y + Bi = 0 represents a line obtained from one pair of non-diagonal points in

the quadrilateral. In matrix form, the inequality will be:

Cineq : [A] xt + B < 0 (5.20)
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where [A] is a 4× 4 matrix and B is a 4× 1 vector.

A more convenient method for practical applications is as follows:

The co-ordinates of a point inside the surface patch Ai is given by the parametric expression

xi(u, v) = [Pi−1 + (1− u) Pi] (1− v) + [Qi−1 + (1− u) Qi] (v) (5.21)

in parameters u and v. If the vertices of the quadrilateral are given by Pi = [xPi,
yPi]

T and

Qi = [xQi,
yQi]

T , then the analytical expressions for the terms u and v, given the value of xi,

can be obtained by solving equation (5.21) (see Appendix A). The values of u, v can be used

to classify the point with respect to the surface patch Ai
1.
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Figure 5.18: Duct represented by stitched quadrilaterals A1 through A6

In case of a single quadrilateral patch, the inequality constraints will be simply,

Cineq : 0 ≤ u ≤ 1, 0 < v < 1 (5.22)

for real values of u and v. In case of multiple patches, classifying one point with respect to all

the patches return the values (u1, v1) , (u2, v2) , ..., (um, vm) etc. for the m number of patches

A1, A2, ..., Am and consequently, m set of conditions. However, out of the m condition sets, only

1It may be noted that there will be two sets of solution and they are not always real and unique.
For example, the point P = (10,−5) when classified with respect to the area A given by the points
P1 = (0, 15) ,P2 = (10, 10) ,Q1 = (0, 0) and Q2 = (4, 1) , returns the values u = (1.0 + 0.6 i, 1.0− 0.6 i)
and v = (2.0 + 1.9 i, 2.0− 1.9 i). However, it is easy to filter out the imaginary set of solutions, should the
algorithm encounter the same.
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one set should be satisfied since the point will belong to only one patch at a given instance of

motion through the duct.

In order to provide a gradient to the constraint which will direct the point into the duct, an

inequality constraint is to be included as in the case of super-ellipses described in the previous

subsection. If û and v̂ represent the parameters obtained for a point xt classified with respect

to the quadrilateral Ai, xζ1(t) = Pi−1 + (1− û) Pi and xζ2(t) = Qi−1 + (1− û) Qi will give the

two points on the duct boundary curves corresponding to the parameter û. Then we can see

that the quantity

h = ‖xζ1 − xt‖2 + ‖xζ2 − xt‖2 − ‖xζ1 − xζ2‖2 (5.23)

will always assign a negative real value for h when point is inside the duct and a positive

real value when the point is outside the duct. The value will be zero only at the boundaries.

Hence, for an array of quadrilaterals, it is only necessary that the minimum value of the vector

h = [h1, h2, ..., hm] should be negative for classifying the point with respect to the duct, as in

the case of previous section. It may be noted that the inequality only takes into account the

parameter variation across the boundaries (along the parameter v) and not in the direction

of u. To account for the same, we make use of the function χ which is necessarily a linear

combination of two Heaviside step functions H(0)−H(1), defined as:

χ(t) =


0, t < 0

1, 0 ≤ t ≤ 1

0, t > 1

(5.24)

The function χ applied on the quantity ûi (which is the value of parameter u classified with

respect to quadrilateral Ai), will return 0 only if the point satisfies the constraint 0 ≤ ûi ≤ 1.

Now, multiplying this quantity χ(û) with hi will return a non-zero negative value only if the

point is inside the duct. Then the following inequality constraint:

Cineq : [χ (û)]T h < 0 (5.25)

where û = [û1, û2, ..., ûm]T becomes a more practical and convenient way to implement the

inequality constraint in the optimization problem.

As an example, motion of a unit link passing through the duct and the effect of the added

inequality constraint in equation (5.25) to pull the tail end of the link which is initially positioned
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outside the duct, is shown in Fig. 5.20. Apart from being more flexible, another advantage of

representing a 2D duct as a set of connected quadrilaterals in this parametric form is that by

setting the limits of the parameter v to 0 + δ < v < 1− δ, δ < 0.5, it is easy to manually add

a clearance from the walls of the duct without manipulating the duct itself. Also, it is easy to

note that δ = 0.5− ε (where ε is a small number) would follow the backbone curve motion.
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Figure 5.19: Example of constrained motion of a 40 link robot with stitched quadrilaterals
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5.3.2.3 Representation of duct using two non-intersecting continuous curves

If the non-intersecting border curves of the duct can be analytically expressed, then the equation

of the surface patch will simply be,

xi(u, v) = ζ1(u) (1− v) + ζ2(u) (v) (5.26)

For example, Fig. 5.21 shows a 2D duct defined by two curves ζ1(u) = [u, sin (u)]T and ζ2(u) =[
u, sin

(
u+ π

8

)
+ 1
]T

and a path chosen midway between the two curves. The equation of the

surface generated by these curves will be
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Figure 5.21: Example of analytical duct
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Figure 5.22: Motion through analytical duct

[
x(u, v)

y(u, v)

]
=

[
u

sin (u) +
[
sin
(
u+ π

8

)
− sin (u) + 1

]
v

]
(5.27)

which has the analytical solution for u and v:

u = x

v =
y − sin (x)

sin
(
x+ π

8

)
− sin (x) + 1

In this case, we will solve the equations:

min
xt
‖xt −Xt‖ (5.28)

sub: ‖xh − xt‖ − L0 = 0
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0 < v|xt < 1 (5.29)

An example movement of hyper-redundant manipulator through the duct is shown in Fig. 5.22.

However, analytical solution is not always viable for complex equations and numerical procedure

must be employed to find the values of u and v corresponding to the given tail point to be

classified. Also, since multiple solutions may be possible for such cases, the correctness of the

solution would heavily depend on the choice of initial guess provided1.

5.3.3 Motion planning through 3D ducts

In this section, three methods to represent ducts in 3D and how the optimizaton problem can

be framed for each representations is detailed.

5.3.3.1 Representation of duct as a combination of super-ellipsoids

Representation of ducts in 2D can be extended to 3D by using super-ellipsoids. In a Cartesian

co-ordinate system, the surface of a super-ellipsoid follows the equation:

f(x, y, z) :

[{(x
a

) 2
e

+
(y
b

) 2
e

} e
n

+
(z
c

) 2
n

]n
2

− 1 = 0 (5.30)

By changing the parameters a, b, c and n, we get different closed surfaces as shown in

Fig. 5.23 and by combining different super-ellipsoid shapes, we can generate a 3D duct profile.
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Figure 5.23: Super-ellipsoids

The procedure to calculate the inside-outside condition is same as that of the method

described in section 5.3.2.1. The inequality condition will be equation (5.18). As mentioned in

the case for super-ellipses, solution to the motion planning problem with ducts represented by

1The same argument will also hold for analytical surfaces spanned in 3D and hence is not studied further.
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super-ellipsoids is fast. Identifying the shapes which fit the duct, is also same as the method

mentioned in section 5.3.2.1.

5.3.3.2 Representation of duct as a set of connected cylinders

Similar to the set of connected quadrilaterals in 2D, a duct in 3D can be represented by series

of connected cylinders. By linearly interpolating two circles in space, we get the parametric

equation of the cylinder as given in equation (5.31) below (see Appendix B for the expanded

form of equation (5.31).)

x = C1(u, t, θ), y = C2(u, t, θ), z = C3(u, t, θ) (5.31)

where the parameters u, t and θ varies along the radial, axial and circumferential direction

of the cylinder respectively (see Fig. B.1). Similar to the representation in section 5.3.2.2,

0 ≤ u < 1 and 0 < t < 1 classifies the point as inside the cylinder. The constrained inequality

(5.25) generated will also be valid for cylinders. The quantity hi is given as hi = ûi − 1 which

shows the same characteristics as defined by the value of hi in equation (5.23). The constraint

inequality, hence takes the form:

Cineq :
[
χ
(
t̂
)]T

h < 0 (5.32)

As is the case of quadrilaterals, it is possible to add a clearance from the walls by changing the

radius of cylinder from r to r − δ, which is a very desirable characteristic for robots used in

medical applications.

5.3.3.3 Representation of duct using point clouds

The most direct way of representing the duct would be as a point cloud as obtained from

measurements or a depth map. Subsequently, it would be possible to process the raw data (by

using alpha shapes [157] and standard Delaunay triangulation algorithms [158]) to obtain the

geometric representation of the cloud of points as a convex polyhedron. Stereo-lithographic

formatted file (STL) is a standard data structure, which has been used in the current work.

Using the current framework, it is possible to pose the motion planning problem in the following

form:

min
xt
‖xt −Xt‖ (5.33)

subject to: ‖xh − xt‖ − L0 = 0

[A]xt + B ≤ 0
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where A is a m×3 matrix and B is a m×1 vector. The left-hand side of m inequalities represent

the equations of m number of planes spanned by three points on each triangular facet of convex

polyhedron. The ith equation, A1
ixt + A2

i yt + A3
i zt + Bi takes a value less than zero when the

point xt is in the half space which contains the origin and is greater than zero otherwise. The

value also provides the attractive gradient which will ensure that the point stays inside the duct.

However, in actual implementation, this procedure will be tedious and for practical convenience,

it is possible to classify the point xt as inside or outside the hull using the MATLAB function

inhull.m, made available by John D’Errico for free usage. The attracting gradient which

ensures the point to be inside the duct–as was the case with the previous methods– can be

provided using the artificial potential field generated from the centroid of the point cloud in

conjunction with the output of the in-out function. The inequality constraint then becomes

w(xt)
1

‖(R)− xt‖
≤ 0 (5.34)

where w(xt) represents the output from in-out function which is either 1 for the point being

outside and 0 for the point being inside the cloud or on the bounding surface1. Representations

of a pipe using ellipsoids, analytical cylinders and as convex point clouds are shown in Fig. 5.24,

Fig. 5.25 and Fig. 5.26.
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Figure 5.24: Fitted ellipsoids
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Figure 5.26: Point clouds

5.3.4 Simulation of motion through GI tract

In this section, the natural motion of a hyper-redundant endoscopic robot through a GI tract

is simulated. For simulation, the stereo-lithographic data of GI tract obtained by processing

CT scan data obtained from Visible Human Dataset [159] is used. For demonstration, both

the methods presented in section 5.3.3.1 and section 5.3.3.2 are used for approximating the GI

tract. In the first method, a collection of points are manually selected from the STL file where

1Unlike the previous classification problems, the bounding surface will also be considered as inside the
surface in this case.
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super-elliposids are fit based on least square error minimization techniques. Representation of

GI tract as series of super-ellipsoids is shown in Fig. 5.27.

Figure 5.27: GI tract as collection of
super-elliposids Figure 5.28: GI tract with connected cylinders

For representing GI tract as cylinders, firstly, the medial axis of the duct is found out

following Cao et al. [160]. Then at equal intervals of distance along the medial axis, planes

are drawn normal to the same. The collection of points which are in the close proximity of

the plane are selected and a circle is fitted on the points using least square error minimization.

The parameters so obtained are used for the cylinder equations in (5.31). Representation of GI

tract as a series of connected cylinders is shown in Fig. 5.28. The algorithms are implemented

in MATLAB and the results are rendered using Blender [161]. The realistic motion simulation

of an endoscope through GI tract is shown in Fig. 5.29.

It may be noted that the GI tract profile used for the above demonstration is a constant

entity obtained from a particular set of CT scan data and therefore is a rigid model. In practice,

there will be disturbances due to patient movement which leads to distortion in the profile. This

issue can be addressed by updating the CT scan data online and hence, the duct parameters

in the formulation. This aspect is however, not explored further in this thesis.

5.3.5 Limitations of the tractrix based scheme

In spite of the definite advantages regarding formulation and computational aspects of the trac-

trix based motion planning approach, there are a few limitations which are of importance.
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Figure 5.29: Motion of endoscope through GI tract

The ducts represented by analytical curves and cylinders involve numerically solving non-linear

or transcendental equations to calculate the parameters which could be computationally ex-

pensive for bad choice of initial guesses.

It can be seen that a given hyper-redundant robot with a particular link length will not be able

to negotiate a path with a “very high” curvature. This is shown in Fig. 5.30. In the figure,

the points 1,2,...,8 denote the coordinates of xh across successive iterations. From iteration 6

onwards, the constraints demarcating the feasible space S and the one guaranteeing a constant

link length cannot be simultaneously satisfied unless the tail xt (the result of equation (5.13)),

backtracks its own path. Soon after, the optimization problem stops as the link seems to be

“locked” at the trough of ζ(u)1. This locking effect can be qualitatively quantified using the

concept of “traversability” from literature on wheeled mobile robots (see for example, [162]). A

curve ζ(u) is traversable by a circle Ci, Ci :

(
Ri cos(v)

Ri sin(v)

)
, 0 ≤ v ≤ 2π if Ci can roll over the

curve ζ(u) while maintaining “only one” point of contact at all times. Traversibility for planar

curves can be described by the relative curvature κR of the circle and the curve at the point of

contact. For a planar curve and a circle of radius Ri, the relative curvature can be given as

κR =
ζuu

(1 + ζ2
u)3/2

− 1

Ri

1The problem appears for backbone curve approach as well, and the solution which address the same comes
with the cost of a very large displacement of the tail point.
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A curve is traversable if the relative curvature is greater than 0, just traversable if it is equal to

zero and not traversable if it is negative. This can be visualized from Fig. 5.31. This concept

would generalize to traversable surfaces when the minimum of the two eigenvalues of the relative

curvature matrix1 is positive for traversability or vice versa. Based on this result, it can be

hypothesized that if curve is traversable by a circle of diameter Di, then a hyper-redundant

robot of link length Di can move below the curve without intersecting the curve as shown in

Fig. 5.32. This would also give an idea about the largest link length that can be used in a

hyper-redundant robot traversing a given duct.
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5.4 Conclusions

The forward kinematics of cable driven continuum robots such as the well-known Rice/Clemson

elephant trunk has been analytically solved by Gravagne and Walker based on differential

geometry. It is shown in that the same can also be achieved using optimization methods.

The continuum robot is discretized into segments with each segment represented as a 4-bar

parallelogram linkage for planar manipulation. From the initial horizontal position of the

coupler, a unique pose of the 4-bar linkage is obtained by minimizing the angle made by coupler

with the fixed link, while maintaining the constraints of link lengths. When the iterative process

is continued for the entire robot, the resulting pose is shown to be the same as the one derived

using the traditional differential geometric methods. A minimum number of segments required

for the procedure is also suggested based on the derivation and the method shows consistency

with varying number of segments. The concept is directly extended to 3D using a 7-bar linkage

1The relative curvature matrix of a parametric surface S(u, v) : S2 → R3 and a sphere of radius R at the
point of contact P = S(u∗, v∗) and on the Gaussian frame attached to the sphere at P is given as: κR|P =[
Suu.N− 1/R Suv.N

Suv.N Svv.N− 1/R

]
(u=u∗,v=v∗)

where N is the normal vector.
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or two adjoined 4-bar linkages and with an extra constraint to maintain the constant angle

between the cables. The numerical procedure and analytical solution are shown to match each

other as in the 2D case. The method suggested in this chapter suggests a new perspective in

modelling the forward kinematics of cable driven continuum robots. The proposed method is

easy to apply to robots having uneven separation between the cables and also for robots with

generalized cable routing— for which analytical methods could be a daunting task.

Motion planning for hyper-redundant robots in narrow ducts using tractrix based redun-

dancy resolution scheme is addressed. To this end, three methods to represent ducts in 2D

plane as a combination of ellipses, as a series of connected quadrilaterals as well as a bound

planar surface formed from two non-intersecting analytical curves are discussed. Methods to

formulate inequality constraints which will impose the tail point of a link to always lie inside the

duct are investigated for all the cases. In 3D, representations of ducts as series of ellipsoids and

as a series of connected cylinders are discussed. The basic formulation as well as formulation for

efficient practical implementation are discussed. The motion planning strategy is validated by

simulating the motion of endoscopic hyper-redundant robot traversing a GI tract and is shown

that the methods discussed can be effectively used in motion planning of a hyper-redundant

robot while emulating realism.
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Chapter 6

Conclusions and Future work

6.1 Summary

Due to the innovative concepts in catheter design and minimal invasive nature of procedures con-

ducted using endoscopes, endoscopy has become and indispensable solution for many medical

treatments and diagnosis. The two problems faced during endoscopy which are the indepen-

dent nmotion of catheter with respect to the camera as well as maneuvering the scope through

the tract while maintaining the safety of patients are still largely unaddresed by modern day

endoscopes. An endoscope design which takes care of these issues can reduce the overall time

required for the procedure and thereby reducing the patient’s discomfort. The thesis prescribes

solutions to addressing these problems using a flexible end-effector for actuating the catheter

tip independent of the camera and using a hyper-redundant endoscopic robot which can be

controlled to travel through the GI tract without colliding the walls of the duct.

Pneumatic artificial muscles are found to be a very good choice for actuating the end-

effector due to its inherent compliance, lightness and high power-to-weight ratio. In order to

apply the muscles in end-effector and to analyse the kinematics of end-effector, the pressure-

deformation characteristics of MPAMs should be well understood. A literature survey on the

static pressure-deformation characteristics of PAMs is studied. Due to the non-trivial nature

of the physical interaction between the tube and the braiding of a PAM, many attempts were

made in the literature to quantify the same as accurately as possible. From an implementation

point of view, many emperical models have also been researched. In chapter 2 of this thesis,

various attempts made by the researchers in this field have been consolidated. It is possible to

selectively choose one of these models, or combine relevant aspects of different models based

on the application in hand, and to this end, the chapter would serve as a guide for upcoming

and continuuing researchers and engineers.
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In chapter 3, fabrication and characterization of a miniaturized PAM is discussed in detail.

Miniaturized versions of pneumatic artificial muscles (MPAMs) with diameters 1.2 mm and

1.6 mm with lengths ranging from 40 to 70 mm are successfully fabricated and tested. From

the literature survey, it has been observed that not many research emphasis has been made to

describe the physics of miniaturized versions of PAMs due to the added complexity of the same

and also due to the difficulty in experimentaion. It is also seen from preliminary characterization

experiments that the models available for PAMs do not conform experimentally with the results

obtained for the fabricated MPAMs. To address this gap in the literature, and also to develop

a consistent model which can be employed in the end-effector, a new mathematical model

for miniaturized PAMs have been developed. The modelling strategy is different from the

conventional methods and is shown to be consistent with the changes in the initial parameters

of MPAM such as length, thickness as well as the initial braiding angle with error less than

7%. While the model under-predicts the stiffness of pressurized MPAM, this is identified as

due to the limitation in the model in addressing the stretching of conical end-section due to

the applied force. A correction applied to the end-section length proportional to the applied

force showed better conformation with the experimental results. The model also predicts the

theoretical limiting angle of 54.7◦

Chapter 4 shows the design, fabrication and testing of a flexible end-effector which make use

of miniaturized PAMs. The fabricated end-effector prototype, is 55 mm long and has a diameter

of 9 mm. The prototype was able to deflect a catheter tip by about 20 mm at the highest set

pressure, which is more than the value required for practical purposes. The design stands out

from similar designs for continuum actuators due to its absence of guiding discs to route the

MPAMs. Due to the absence of guiding discs, the kinematic analysis for similar continuum

designs—which are already available in the literature—could not be directy applied. Hence, a

new forward kinematics model for the end-effector is proposed and validated experimentatlly.

The new model takes input from the pressure-deformation model and uses an iterative method

to solve the forward kinematics. The method predicts the actual pose of the end-effector with

±2mm error at the tip. An inverse kinematics formulation is proposed which takes input from

the projected workspace of the end-effector. The theoretical prediction varies from experimental

results by ∼ 9 mm in deflection angle. Finally, a method to control the end-effector in real-time

by integrating the workspace with the workspace of a thumbstick is proposed and demonstrated

which demonstrates the feasibility of the designed end-effector in successful application on a

clinical setting.

The second problem of maneuverability of the endoscope is addressed in chapter 5 of this the-

sis, by proposing the endoscope as a hyper-redundant continuum manipulator. Multi-segmented
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cable driven continuum robot is identified to be the best suitor for this application due to its

flexibility and potential for compact design. A different approach in modelling the forward

kinematics of continuum robot has been developed and simulated. For 2D and 3D continuum

manipulators with four cables routed at 90◦ apart, the derived numerical approach is shown

to exactly match the theroretical results obtained form a differential geometric approach bar-

ring the errors from the numerical computation scheme. Since it is shown in the literature

that unorthodox tendon routing for cables in continuum robots have definite advantages over

the conventional routing, the derived formulation becomes more convenient and hence, quite

promising method in solving the forward kinematics of cable driven robots. Once the kine-

matics of a single segment is fully understood, the endosopic robot could be successfully used

to maneuver through the GI tract while avoiding collision from the walls of the duct. To this

end, chapter 5 of this thesis also propose tractrix based optimization strategy to resolve the

redundancy and hence, to plan the motion of the robot to travel in confined spaces. Three

different ways to represent a duct in 2D as well as 3D are shown. Formulations to implement

confined-space motion in each of these cases are discussed in detail. Finally, the motion of an

endoscopc robot passing through a GI tract profile obtained from a human CT scan data is

simulated to demonstrate and validate the concepts.

6.2 Scope for future work

The designs and methodologies discussed in this thesis have the following scopes for improve-

ment:

1. As mentioned in chapter 3, the derived mathematical formulation does not quantify the

end-tapering and the value is at present, experimentally determined. By considering the

non-linear elastic nature of the silicone tube, and from the clamped end-conditions, the

end-point curvature of the silicone tube at the inflated state could be calculated. This

value of curvature could prove to be a cruicial identifier in quantifying the end-tapering

of the MPAM.

2. The end-effector is in preliminary stages of development and has scope of improvement

in terms of developing faster implementation schemes and model based control systems.

More work is required before the independently actuated end-effector can be employed in

a clinical setting. The endoscopic tip with the preformed camera assembly and the spring

loaded cap has to be fabricated and analysed. Integration of the catheter to reduce the

overall dimensions of the end-effector is yet to be carried out.
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3. Since it is possible to generate different spatial configurations for a continuum robot

through geneal tendon routing, it may be possible to construct endoscopic robot which

adhers to the profile of the GI tract, in which case, the actuation will be minimal. More

work has to be done in this regard which may be accompanied with experimental demon-

strations.

4. By including an artificial potential in the direction of motion which considers the curvature

of the traversed path, it may be possible to negotiate sharp corners and avoid the locking

effect of hyper-redundant manipulators.
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A Analytical expressions for u, v for quadrilateral patch

v =
k1 − k2 ±

√
(k2 − k1)2 − 4k3k4

2k3

, u =
(x− xPi−1 + v)

(a2 + va3)
(6.1)

where, k1 = (b1b2 + b0b3) , k2 = (a1a2 + a0a3) , k3 = (a1a3 − b1b3) , k4 = (a0a2 − b0b2)

a0 = y − yPi−1, a1 = yPi−1 − yPi, a2 = xQi−1 − xPi−1, a3 = (xQi − xPi)− (xQi−1 − xPi−1)

b0 = x− xPi−1, b1 = xPi−1 − xPi, b2 = yQi−1 − yPi−1, b3 = (yQi − yPi)− (yQi−1 − yPi−1)

If xPi−1 = xPi and xQi−1 = xQi,

u =
b0

a2

, v =
a0a2 − (a3 + a2)

a1 (b0 − a2) + b0 (b3 − b2)
(6.2)

B Parametric equation of solid cylinder

The parametric cylinder, as shown in figure B.1, with the parameters u, θ and t is given as:

x = C1(u, t, θ) = (r1m1u cos θ +m2) (1− t) + (r2n1u cos θ + n2) t (6.3)

y = C2(u, t, θ) = (r1m3u cos θ + r1m4u sin θ +m5) (1− t) + (r2n3u cos θ + r2n4u sin θ + n5) t

(6.4)

z = C3(u, t, θ) = (r1m6u cos θ + r1m7u sin θ +m8) (1− t) + (r2n6u cos θ + r2n7u sin θ + n8) t

(6.5)

where

m1 = cos 1φ2, m2 = 1xc, m3 = sin 1φ1 sin 1φ2, m4 = cos 1φ1,

m5 = 1yc, m6 = − cos 1φ1 sin 1φ2, m7 = sin 1φ1, m8 = 1zc
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Figure B.1: Parameters of a general cylinder

n1 = cos 2φ2, n2 = 2xc, n3 = sin 2φ1 sin 2φ2, n4 = cos 2φ1,

n5 = 2yc, n6 = − cos 2φ1 sin 2φ2, n7 = sin 2φ1, n8 = 2zc

The quantity 1 (·) and 2 (·) represent the corresponding parameters of the circles at the ends of

the cylinder. φ1 and φ2 are the angles about the Y and X-axes which the plane of the circle is

rotated, (xc, yc, zc) is the co-ordinate of the center of the circle.

C Tractrix emulates natural motion

Motion simulated using the approach discussed in this paper imparts realism due to the minimal

movement of tail with respect to the head. In nature this effect is created due to the friction

or other resistive forces acting in the lateral direction of the link. In the absence of friction,

displacement given in the head will result in a simple translation of link. In other words, xt in

this case, will be same as xh. In actual practice, there will be a discrepancy between natural

movement and the simulation based on the tractrix approach because tractrix represents the

ideal scenario with motion of tail limited only in the direction of motion of the link due to

very high friction while in natural motion, there is always some degree of translation possible.

This slippage could be included in the formulation, however, by adding a slip vector to the tail

displacement. Since the slippage amounts to the translation of link in the direction of link, slip

vector will be in the direction of head displacement and can be written as as s = νXh, where

ν < 1 is a constant. Ideal tractrix case with friction is obtained by setting ν = 0 and ν = 1

represents pure translation of the link. Including this vector, the minimization function may
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be written as:

min
xt
‖xt − (Xt + νXh) ‖ (6.6)

Fig. C.2 and Fig. C.3 show the final pose of a bicycle chain pulled from an initial horizontal

position along the negative Y-axis on two surfaces: a smooth paper and a rough surface paved

with gravel. Using a constant value of ν = 0.95 for paper and ν = 0.86 for gravel, we can see

from the figures that the results from the formulation closely resembly the actual pose.

Figure C.2: Tractrix emulating the motion of
a bicycle chain on photo paper, ν = 0.95

Figure C.3: Tractrix emulating the motion of
a bicycle chain on gravel, ν = 0.86
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[157] H. Edelsbrunner and E. P. Mücke, “Three-dimensional alpha shapes”, ACM Transactions

on Graphics (TOG), vol. 13, no. 1, pp. 43–72, 1994 (cit. on p. 98).

[158] D.-T. Lee and B. J. Schachter, “Two algorithms for constructing a delaunay triangula-

tion”, International Journal of Computer & Information Sciences, vol. 9, no. 3, pp. 219–

242, 1980 (cit. on p. 98).

[159] V. M. Spitzer and D. G. Whitlock, “The visible human dataset: The anatomical platform

for human simulation”, The Anatomical Record: An Official Publication of the American

Association of Anatomists, vol. 253, no. 2, pp. 49–57, 1998 (cit. on p. 99).

[160] J. Cao, A. Tagliasacchi, M. Olson, H. Zhang, and Z. Su, “Point cloud skeletons via

Laplacian based contraction”, in Shape Modeling International (SMI 2010), IEEE, 2010,

pp. 187–197 (cit. on p. 100).

[161] Blender Online Community, Blender–A 3D modelling and rendering package, Blender

Foundation, Blender Institute, Amsterdam, 2018. [Online]. Available: http://www.

blender.org (cit. on p. 100).

[162] C. N, “Modeling of wheeled mobile robots on uneven terrain”, Master’s thesis, Indian

Institute of Science, Bangalore (India), 2003 (cit. on p. 101).

124

http://www.blender.org
http://www.blender.org

	Acknowledgements
	Abstract
	Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Motivation
	1.2 Contributions of the thesis
	1.3 Preview of the thesis

	2 A survey on static modelling of pneumatic artificial muscles
	2.1 Introduction
	2.2 Review of static modeling of PAMs
	2.2.1 Basic modeling strategies
	2.2.2 Correction factors for Gaylord's model
	2.2.3 Inclusion of material properties for bladder: linear elastic model
	2.2.4 Inclusion of material properties for bladder: non-linear elastic model
	2.2.5 End-effects consideration
	2.2.6 Bladder as a thin walled tube
	2.2.7 Advanced modeling of PAMs
	2.2.8 Modeling MPAMs
	2.2.9 Empirical considerations
	2.2.10 Modeling hysteresis

	2.3 Conclusions and summary of review

	3 Fabrication and characterization of miniaturized PAMs
	3.1 Introduction
	3.2 MPAM characteristics and experimental set-up
	3.3 Proposed statics model for MPAM
	3.3.1 Characterization of pressure dead-band
	3.3.2 Model for first phase–expansion
	3.3.3 Model for second phase-contraction
	3.3.4 Summary of proposed model

	3.4 Experimental validation of proposed model
	3.5 Conclusions

	4 Design, fabrication and analysis of flexible end-effector for endoscopic catheters
	4.1 Introduction
	4.2 End-effector design
	4.3 Forward kinematics of end-effector
	4.4 Experimental validation
	4.5 Inverse kinematics of end-effector
	4.6 Real-time implementation of end-effector actuation
	4.7 Implementation examples
	4.8 Conclusions

	5 Motion planning of endoscopic robots
	5.1 Introduction
	5.2 Kinematics model for continuum robot
	5.2.1 Forward kinematics of 2D continuum robot
	5.2.2 Forward kinematics of 3D continuum robot

	5.3 Motion planning of endoscopic robot
	5.3.1 Overview of tractrix based motion planning
	5.3.2 Motion planning through planar ducts
	5.3.2.1 Representation of duct using super-ellipses
	5.3.2.2 Representation of duct as a set of connected quadrilaterals
	5.3.2.3 Representation of duct using two non-intersecting continuous curves

	5.3.3 Motion planning through 3D ducts
	5.3.3.1 Representation of duct as a combination of super-ellipsoids
	5.3.3.2 Representation of duct as a set of connected cylinders
	5.3.3.3 Representation of duct using point clouds

	5.3.4 Simulation of motion through GI tract
	5.3.5 Limitations of the tractrix based scheme

	5.4 Conclusions

	6 Conclusions and Future work
	6.1 Summary
	6.2 Scope for future work

	Appendix
	A Analytical expressions for u,v for quadrilateral patch
	B Parametric equation of solid cylinder
	C Tractrix emulates natural motion

	Bibliography

