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Abstract

Bistable arches have two force-free stable equilibrium configurations. They also show
multimodality by switching between their stable states in multiple deformation path-
ways. These two attributes and their nonlinear force-displacement characteristics are
desirable in a range of engineering applications. The analytical and semi-analytical
methods developed in this work enable a faster analysis than a finite element analysis
and also facilitate closed-form relationships for the insightful design of bistable arches.

We show that arch profiles composed using the basis set of buckling mode shapes of
the straight column with the corresponding boundary conditions exhibit bistability. We
analyze such arches by expressing their deformed profiles also in the same basis set. We
assume that the arches are slender and shallow to derive their potential energy compris-
ing bending and compression strain energies as well as the work potential. We solve the
equilibrium equations obtained by minimizing potential energy using a semi-analytical
method for analytically intractable general boundary conditions. In this method, we ob-
tain the critical points on the force-displacement curve corresponding to switching and
switch back forces and travel of the mid-point of the arch. We use this method to analyze
and optimize arches of varying as-fabricated stress-free shapes and boundary conditions.

We obtain an analytical relationship between the arch-profiles in the force-free states
of the arch by equating the force to zero in the aforementioned equilibrium equations
for both fixed-fixed and pinned-pinned boundary conditions. This relationship is bilat-
eral, i.e., in one form it can be used for analysis and in another for design. We derive
necessary and sufficient conditions as well as corollaries from the bilateral relationship
pertaining to the shapes of bistable arches.

Deformation pathways in bistable arches can also be three-dimensional. These spa-
tial deformation pathways can help reduce the switching and switch-back forces and
might also, at times, adversely affect bistability. We model spatial pathways by incorpo-
rating additional energy terms due to out-of-plane bending and torsion into the analysis
of planar arches. We use and extend a geometric relation by St. Venant and Michell to
capture the coupling amongst the in-plane and out-of-plane deformations and rotation of
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the cross-sections. Furthermore, we show that non-planar arches, i.e., spatial arches, can
be bistable too. Our analysis is extended to spatial arches by modifying the geometric
relation to consider the additional out-of-plane curvature.

We also present the design of two applications based on bistable arches: an RF-
MEMS switch and a mechanical OR gate. The RF-MEMS switch utilizes bimodality
and a novel initially-retracting electrothermal actuator to realize ON and OFF states with
only two electrical terminals. The mechanical OR gate uses the bilateral relationship to
design arch-profiles that achieve the OR gate logic.

Additionally, we present two studies on bistability in axisymmetric shallow thin
shells. In the first study, we optimize the shell-profile for maximum travel by numerical
and semi-analytical approaches and compare the results with the shell obtained by re-
volving the optimal arch for maximum travel. In the second study, we discuss the design
of a passive universal gripper based on a bistable shell that can grasp objects of varying
shapes.
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Chapter 1

Introduction

Synopsis

This thesis describes the analysis, design, optimization, and applications of planar and

spatial arches that have two force-free stable equilibrium states, namely bistable arches.

Interestingly, to switch between two stable states, these arches can take multiple de-

formation pathways. Two force-free stable states and multiple deformation pathways

enable bistable arches to have a wide range of applications. Analytical models that de-

scribe nonlinear force-displacement characteristics in the post-buckling regime of such

structures are key to understanding bistability.

1.1 Bistability in elastic systems

Bistable elastic systems have two force-free stable equilibrium states. Hair-clips, spectacle-

frames, sippy-cups, tin-lids, shampoo-bottle-caps, and hibiscus leaves (Fig. 1.1a-f) are

examples of such systems with which we interact in our daily life. Bistability ensures

that power is required only for switching between the two stable states but not for main-

taining them. Thus, they are power-efficient. They are widely used in switch-based

applications, for example, a miniature circuit breaker (MCB) shown in Fig. 1.1g. Using

elastic bistable elements can reduce the number of parts in an MCB to just one or two.

They can also be used in large-scale applications to orient windmill-blades based on

the wind direction (Fig. 1.1h) and to orient aircraft-wings (Fig. 1.1i) based on the flight

mode.

In each of the applications given in Fig. 1.1, there is a key elastic structural element

that makes the system bistable. For instance the hair-clip in Fig. 1.1a has two prestressed

1
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

FLEXYS FLEXYS

Figure 1.1: Examples of bistable systems in our daily life: (a) hair-clip, (b) spectacle-
frame, (c) sippy-cup, (d) tin-lid, (e) shampoo-bottle-cap, (f) hibiscus leaf, (g) MCB, (h)
windmill-blades, and (i) aircraft-wings (https://www.flxsys.com/).
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bistable beams, the tin-lid in Fig. 1.1d is a bistable shell, and the MCB in Fig. 1.1g has

two bistable arches. Buckled beams, arches, and shells are the three monolithic com-

pliant bistable structures. Buckled beams are bistable only due to the prestress in them.

On the other hand, arches and shells can be bistable solely due to their as-fabricated

stress-free shape. In this thesis, we study stress-free bistable arches. Additionally, there

is a chapter on bistable shells.

The bistable structures considered in this study are slender. This assumption comes

from the fact that slender structures are prone to buckling, which is necessary for them

to be bistable. Moreover, structures being slender helps simplify otherwise intractable

analytical equilibrium equations. Another underlying assumption in all the analysis pre-

sented in the thesis is that the structures are shallow, i.e., the height of the arch is much

less than its span. This is because only shallow arches exhibit snap-through buckling

leading to bistability.

Figure 1.2a shows a typical force-displacement characteristic of a shallow slender

bistable arch. There are three force-free points on the curve. The first and the last

points correspond to the stable State 1 and State 2 of the arch, and the point in be-

tween corresponds to an unstable equilibrium. As shown in Fig. 1.2b, State 1 is the

as-fabricated force-free equilibrium state and State 2 is the stressed force-free equilib-

rium state. Switching force, Fs, is the minimum force required to switch the arch from

State 1 to State 2; switch-back force, Fsb, is the minimum force required to switch back

to State 1 from State 2; and travel, utr, is the distance the midpoint of the arch moves

between the two stable states. Generally, points on the force-displacement curve cor-

responding to Fs, Fsb and utr are useful metrics for analyzing and designing a bistable

arch. Hence, we identify and refer to these three points as the critical points on the

force-displacement curve in the rest of the thesis.
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Figure 1.2: Typical force-displacement characteristics of a bistable arch

1.2 Motivation

This thesis is motivated by the absence of analytical techniques in the literature to design

bistable arches. The theory of structural stability, starting from Leonhard Euler’s seminal

work on buckling columns (Euler, 1744), is well established. The effect of nonlinearity

arising from large deflections, dynamic stability, and snap-through in arches has also

been studied. However, these studies do not aid in the design of bistable arches. For

example, to design an arch-profile for given boundary conditions, as shown in Fig. 1.3,

ensuring bistable behaviour, the stability theory is not directly useful. This is mainly

due to the change in perspective to design for buckling rather than to prevent it. Note

that in the aforementioned question, we are looking for an arch that buckles between

two configurations. In other words, the studies in structural stability were primarily

intended in finding the critical load of failure of the arch. Our focus is in studying the

post-buckling behavior of the arch to ensure that it buckles and has the desired metrices

(Fs, Fsb, utr) and arch-profile.

For given boundary conditions, to find an arch-profile that is bistable, we need to en-
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?

Figure 1.3: How to design arch-profiles that are bistable for given boundary conditions?

sure that the force-displacement characteristics of the arch have three force-free points.

Furthermore, we are also interested in analyzing the critical points corresponding to the

switching and switch-back forces, and travel. This seems to be a problem that finite

element analysis (FEA) can solve. However, obtaining FEA-based numerical solutions

in the post-buckling regime is computationally challenging due to a high degree of ge-

ometric nonlinearity and the presence of multiple buckling solutions that splits from a

single point.

Note that each buckling solution corresponds to a certain deformation pathway of

the arch. In other words, these solutions indicate that bistable arches can be switched

from one state to another by multiple deformation pathways, i.e., bistable arches are

multimodal. Let us understand a simple case of multimodality with the help of a chair

for the elderly (Sarojini et al., 2016) conceptualized using bistable arches. As shown

in Fig. 1.4, the weight of the person switches the seat attached to a bistable arch from

Figure 1.4: A chair for the elderly designed using multimodal bistability.

its first to second stable configuration, which is labeled actuation port 1. The moment

applied at the pivot when the person tries to get up by pressing down the chair handle
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switches the seat back and assists the person to rise, which is labeled actuation port

2. In this example, bimodality arises from two different modes of actuation; however,

that is not the case always. Multiple deformation pathways exist for the same mode

of actuation. For e.g., a bistable arch when actuated at a point at the mid-span can

deform taking either symmetric or asymmetric pathways. How do we capture all these

deformation pathways? Moreover, out of all the deformation pathways, how do we

predict the pathway the arch will follow? How do we design arches to follow or not

follow certain pathways? These are the questions that arise in designing arches.

In addition to planar deformation pathways, arches can be actuated to follow a spatial

deformation pathway as shown in Fig. 1.5a. A comparison between force-displacement

x
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z
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Spatial deformation
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(b)

Spatial deformation Planar deformationPlanar arch

Figure 1.5: (a) Planar and spatial deformation pathways of a planar arch; dashed lines
aid visualization of the curvature of the arch during deformation (b) Switching forces
of a spatially-deforming bistable arch are found to be smaller than those of an arch
deforming in the plane.

characteristics corresponding to spatial and planar deformation pathways is given in

Fig. 1.5b. It can be noted that spatial deformation pathways in planar bistable arches

reduce the switching and switch-back forces. In the context of bistability, this is some-

times desirable as it reduces the force required for switching between the equilibrium

configurations of the bistable arch. Nonetheless, this also implies that these pathways

reduce the stiffness and stability of the arch. Thus, the geometric and material parame-
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ters that excessively favor spatial deformations can adversely affect bistability. How do

we ensure that planar bistable arches do not lose bistability due to the presence of spatial

deformation pathways? Answering this question requires insights into the spatial buck-

ling of arches. Such insights are hard to come by through FEA as spatial deformation of

unstable structures is computationally expensive even with today’s computer hardware

and software. The aforementioned analysis and design problems underline the need for

analytical models to capture bistability.

Let us consider one more design problem to illustrate the utility of analytical solu-

tions. How do we design an arch-profile such that we get a desired shape in State 2 of

the arch, as for instance shown in Fig. 1.6? This question is not straightforward to solve

?

State 1

State 2

Figure 1.6: How to design an arch-profile such that we get a desired shape in State 2 of
the arch?

with FEA, where an approach involving numerous iterations is the only way. Even if

this approach works, it is cumbersome and not practical. In contrast, an analytical so-

lution, which can either design for any given arch-profile or indicate that a solution for

the specified arch-profile does not exist, would be ideal. Thus, analytical models for the

analysis and design of bistable arches are imperative. To summarize, we address the

following five questions using analytical models in this thesis:

• What are the key geometric and material parameters that affect curvature-induced

bistability in shallow slender arches and how do we design and analyze such

arches for any given boundary conditions?

• How does one obtain optimal bistable arches that have minimal switching force,

maximum travel at the mid-span between two stable states, and maximum switch-

back force?



8 Introduction

• How to design for an arch-profile when the arch-profile in the other stable state is

specified?

• How does spatial deformation affect planar bistable arches?

• Can arches with spatial curvatures be bistable and how do they compare to planar

bistable arches?

By answering these questions, we capture the statics of bistable arches, which forms the

subject matter of this thesis.

1.3 Scope of the thesis

Our interest in bistable-buckling is in line with the emerging trend in mechanics to use

instabilities in structures for functionality. Other instabilities like wrinkling, crumpling,

folding, etc., are also being used for a range of interesting applications (Reis, 2015). This

“design for failure” approach is reviving some seminal works in structural instabilities.

For example, the analysis presented by Fung and Kaplan in 1952 (Fung and Kaplan,

1952) is the backbone of the analytical models developed in this thesis. Another example

is the geometric relation given by St. Venant and Michell (Love, 2013) to describe

lateral-torsional buckling in arches, which inspired our analytical modeling of spatial

deformation pathways in arches.

As described in the previous section, analytical models that describe nonlinear force-

displacement characteristics in the post-buckling regime of such structures are key to

understanding bistability. This thesis includes the analysis, design, optimization, and

applications of shallow bistable planar and spatial arches.

We model planar arches with rotary and translational springs at pin joints anchored to

the ground. The arches are modeled with springs at the joints to capture general bound-

ary conditions with finite stiffness values as well as the extreme cases of pinned-pinned

and fixed-fixed conditions. The equilibrium equations for a post-buckling analysis are

derived by writing the deflected profile as a linear combination of the buckling mode

shapes of the corresponding straight beam with torsion and translational springs at the

pinned ends, a technique introduced by Fung and Kaplan (1952). These equations are

solved to obtain the force-displacement characteristics and deformation pathways. We

propose a computational approach based on critical points on the force-displacement

curve. An algorithm to obtain the critical-points for arches with general boundary con-
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ditions is presented. The critical-point method enables the design of bistable arches with

a wide range of boundary conditions and initial shapes as shown in Fig. 1.7.

Figure 1.7: 3D-printed bistable arches with various boundary conditions and as-
fabricated profiles in their two stable states. (a) pinned-pinned sine arch (b) travel-
optimized pinned-pinned arch (c) asymmetric pinned-pinned arch (d) asymmetric
pinned-fixed arch (e) split-tube flexure-based arch, and (f) constrained double-cosine
arch

.

Our model relies on capturing various energy components in the arches. In planar

arches, irrespective of the boundary conditions, bistability arises from the interplay of

transverse bending and axial compression strain energies. Quantitatively, bending and

compression energies are proportional to the squares of change in the curvature and

arc-length of the arch, respectively. Since there is always a change in curvature associ-

ated with a deforming arch, bending energy attains a minimum only in the as-fabricated

stress-free state of the arch. On the contrary, a change in arch-length can assume mini-

mal values at multiple deformed states of the arch. The existence of two such minimum

points in the axial energy landscape is essential to have two minima in the total strain

energy curve and therefore it is essential for bistability in arches with no prestress.

To analyze and design bistable arches of arbitrary profiles efficiently, we derive a

two-way, i.e., bilateral, relationship between the stress-free initial profile and the stressed

toggled profile. This relationship is presented for pinned-pinned and fixed-fixed bound-

ary conditions. We prove that the fundamental mode weights should be non-zero for an

arch to be bistable. The following corollaries arise from the aforementioned relation: (1)
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the symmetry in initial and toggled profiles remains unchanged; (2) all the mode weights

other than the fundamental mode weight have the same sign in both stable states; (3) the

magnitudes of corrugations in stable force-free arch-profiles are approximately equal.

Figures 1.8 and 1.9 show 3D-printed prototypes of arch-profiles conceived using the

bilateral relationship. The arch-profiles in Figure 1.8 have pinned-pinned boundary con-

As-fabricated profile in State 1 Toggled profile in State 2

Figure 1.8: Initial and toggled profiles of 3D-printed prototypes designed using the
bilateral relationship.

ditions and the bistable gripper-profile designed to grasp a circular disk in Fig. 1.9 have

fixed end conditions.

(a)

(b)

Figure 1.9: 3D-printed gripper in its open (a) and closed (b) configurations.
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Our model captures multiple deformation pathways, including spatial deformation

pathways, in bistable arches. With the aid of potential energy landscapes, we predict the

preferred pathway of any given arch. Note that when arches deform in spatial deforma-

tion pathways, in addition to axial and transverse bending energies, there are torsional

and out-of-plane bending energies as well. We show that the key to modeling these

interrelated energy terms is a geometric relation, which we obtain by modifying the St.

Venant and Michell relationship discussed in 1969 Love (2013); Ojalvo et al. (1969). We

use the understanding of spatial deformation pathways to design planar arches with a re-

duced switching force and to eliminate the loss of bistability due to spatial deformation

pathways in planar bistable arches.

Our studies on spatial deformation pathways in planar bistable arches led us to a new

and general class of structures, namely spatial bistable arches. As shown in Fig. 1.10,

the curvature of the spatial arch is not restricted to a single plane. Two varying orthog-

Figure 1.10: A pinned-pinned spatial arch in its as-fabricated stress-free, in-between
stressed, and second stressed stable states.

onal curvatures of the arch can be seen in the reflections of the arch in the xy and xz

planes. Spatial arches only exhibit spatial deformation pathways. Spatial arch-profiles

of in-between, and second stable states of the arch are also given in Fig. 1.10. We show

the analysis of spatial bistable arches with varying as-fabricated shapes and eccentric

loading for pinned-pinned as well as fixed-fixed end conditions.

In this thesis, we also consider shallow-thin shells that can be bistable without pre-
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stress. We show that there is scope for the optimization of shallow-thin shells in view of

switching and switch-back forces as well as the distance travelled by points of interest

between the two states. We vary the shape of the shell for a chosen thickness-profile and

support conditions. Three approaches are followed to pose and solve the optimization

problem for maximizing the travel with constraints on the switching and switch-back

forces.

Numerous examples are presented throughout the thesis to illustrate the utility of the

analytical models developed for design and analysis. Furthermore, we present the de-

sign of three applications of bistability. The first two applications are based on bistable

arches. The first application is a two-terminal bistable electrothermally actuated micro-

switch shown in Fig. 1.11a. The proposed design has bimodal bistability which is ob-

(a) (b)

Figure 1.11: (a) A two-terminal bistable micro-switch and (b) a passive universal grip-
per.

tained by using a pair of bistable arches. A V-beam electrothermal actuator, and a novel

initially-retracting actuator are the two other crucial design elements of the microswitch.

The salient feature of the design is the use of only a single pair of electrodes to switch

between on and off states, even though there are two actuators. The switch design is

experimentally verified by realizing on a silicon-on-insulator (SOI) wafer using a single-

layer micro-fabrication technique.

In the second application, an OR gate is designed using pinned-pinned bistable

arches. The compliant OR gate consists of five bistable arches arranged in such a way

that a central arch acts as the output with 0 and 1 stable states while two pairs of arches,

with their own 0 and 1 states, act as inputs. The arch-profiles of all the arches are de-
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signed so that the forces of switching and switching back between the two stable states

and the travel between the two stable configurations are as desired. A macro-scale pro-

totype is made using 3D-printing to validate the OR logic behaviour of the device.

The third application is a passive universal gripper based on a bistable shell. The

gripper is a monolithic design that combines a switching mechanism, an everting shell,

and grasping arms as shown in Fig. 1.11b. The switching mechanism releases the

grasped objects by transmitting the input force to the everting shell. The bistable shell

everts upon contact with the object to enable the grasping arms to envelop the object.

1.4 Organization of the thesis

In Chapter 2 of this thesis, we present the literature of bistable structures. We discuss

the seminal papers on structural stability that were key to the subsequent development of

the analysis of bistable arches and shells. Important work on the optimization of bistable

structures is reviewed. We also present the recent literature that focuses on bistability

and its applications.

Chapter 3 presents a semi-analytical method for the analysis and shape-synthesis of

bistable arches with general boundary conditions. This is done by numerically determin-

ing critical points in the force-displacement curve of a bistable arch. The critical-point

method is used for shape optimization for improving the travel and the switch-back force

of the arch using the critical-point method.

In Chapter 4, we derive a bilateral relationship between the stress-free initial profile

and the stressed toggled profile of pinned-pinned and fixed-fixed bistable arches. This

bilateral relationship is derived in two forms: a nonlinear single-variable equation for

analysis and a closed-form analytical expression for design. Some symmetrical features

of shape as well as necessary and sufficient conditions are presented as corollaries.

In Chapter 5, we analyze spatial deformation pathways in bistable arches and present

an analytical model incorporating axial, two transverse bending, and torsion energy

components. In this model, we extend the St. Venant and Michell relationship used in

the flexural-torsional buckling of planar arches and use it in modeling spatial arches. We

show that not considering spatial deformation leads to incorrect inferences concerning

the bistability of planar arches too. Thus, this model serves as a generalised framework

for the existing analysis on planar arches since they belong to a subset of spatial arches.

In Chapter 6, we present two applications using bistable arches. One is the design

of an electrothermally-actuated two-terminal bistable microswitch. The salient feature
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of the design is the use of only a single pair of electrodes to switch between the on and

off states, even though there are two actuators. We demonstrate the use of the analytical

model described in Chapter 3 in deciding the parameters of the bistable arch used in

this design. In the second application, we design a mechanical OR gate using bistable

arches.

Chapter 7 comprises optimization and an application using shallow-thin bistable

shells. We follow three approaches to pose and solve optimization problems for maxi-

mizing the travel with constraints on the switching and switch-back forces. In the appli-

cation part, a passive monolithic compliant grasping mechanism is conceptualized. The

grasper is capable of picking up stiff objects of any shape up to a maximum size and

weight.

The contributions of this thesis and the scope of future work are discussed in Chapter

8. A design technique using kinetoelastostatic maps is presented in Appendix A. This

design method is useful to scale the designs created using the analytical tools discussed

in chapters 3, 4, and 5. An analytical model of the electrothermal actuator used in the

design of a two-terminal bistable microswitch is given in Appendix B.

1.5 Closure

Bistability in structures finds numerous applications in our daily lives. We discussed

the importance of analytical modeling in designing bistable arches. In this context, we

highlighted the analysis and design problems of bistable arches, which forms the subject

matter of this thesis. We noted the scope and contributions of this thesis. In the next

chapter, we give a detailed review of the literature on the analysis of bistable structures

and show where the contributions from this thesis fit in.



Chapter 2

Literature review

Synopsis

The analysis of bistable arches has benefited from the existing literature on the snapping

of arches. An overview of the important results from the static and dynamic studies of

buckling in arches is presented followed by the development in analytical techniques

of bistable arches. The literature on analyses of bistability in buckled beams, elastica,

spatial arches and shells is discussed. Along with the literature, the work on which

this thesis is based is also described. Additionally, a review of mechanism designs and

applications involving bistable structures is presented.

2.1 Snapping in planar arches

Before bistability in arches found extensive use in engineering applications, the charac-

teristic buckling in shallow arches was widely referred to as snapping (also known as

snap-buckling or oil-canning) in arches. Studies on snapping helped in designing arches

that resisted buckling. In this section, we discuss studies on static and dynamic analyses

of buckling in arches.

2.1.1 Statics

Arches can be classified into two types based on their height to span ratio. Arches with

this ratio closer to or greater than one, i.e., the height is comparable to the span, are

called high arches. In low or shallow arches, this ratio is small and so the height is much

smaller compared to their span. Buckling in both high and low arches has been studied

since the beginning of the 20th century.

15
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In finding the critical load in high arches, capturing the axial compression energy

is not crucial since their dominant mode of buckling is bending. In other words, while

finding the critical buckling load, high arches are considered inextensional. Hurlbrink

(1907), Chwalla (1927), Timoshenko (1936), R. Mayer, E. Gaber, and L. Nicolai (the

last three works are referred to in Timoshenko (1936)) studied buckling in high circular

arches under uniformly distributed loading with various types of boundary conditions.

To predict buckling in shallow arches, capturing axial compression energy is as im-

portant as bending energy. According to Timoshenko (1936), this problem was first

discussed by Navier (1864). As in the case of high arches, initial stability studies on

shallow arches by Biezeno (1938); Friedrichs (1945); Marguerre (1938) considered cir-

cular arch-profiles. Timoshenko (1936) analyzed a low arch with a sine-curved initial

shape. These studies observed that buckling in shallow arches led to sudden rever-

sal in their curvature, which was referred to as snapping or snapthrough buckling or

oil-canning. These studies assumed symmetric buckling solutions which resulted in a

significant error in the predicted buckling loads.

The foremost comprehensive analysis considering asymmetric buckling modes and

varying arch shapes was by Fung and Kaplan (1952). The key step in the analysis was

to approximate the deflection of the arch with a Fourier series. The axial compression

energy was modeled by using the change in the arch length as the axial strain. They

investigated pinned-pinned shallow arches of various as-fabricated shapes and load con-

ditions and showed that the height of the shallow arch determines whether the arch snaps

through symmetrically or asymmetrically. They verified their analytical results with ex-

perimental data.

Thereafter, several extensions to Fung and Kaplan (1952)’s model have appeared

in the literature in the context of stability. Gjelsvik and Bodner (1962) attempted the

problem of buckling in a fixed-fixed shallow circular arch with a concentrated load at

the midpoint and obtained an approximate solution. An exact solution for this was later

given by Schreyer and Masur (1966). Masur and Lo (1972) presented a general discus-

sion on the behavior of shallow circular arches concerning buckling, post-buckling and

imperfection sensitivity by using Koiter (1970)’s theory of elastic stability that showed

the importance of imperfection sensitivity using an asymptotic analysis.

The snapping of shallow pinned arches resting on an elastic foundation under dis-

tributed loads was studied by Simitses (1973). The influence of the load position of the

snap-through instability was investigated by Plaut (1979). Chen et al. (2009) derived the

exact static critical loads for a pinned sine arch under a quasi-static concentrated force
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at the midpoint and couples at the endpoints (Chen and Lin, 2005b). In both of these

studies, they start their analysis from the governing differential equation of the arches.

Then they guess the deformed profile to be a sum of buckling mode shapes similar to

the aforementioned energy-based methods.

2.1.2 Dynamics

Hoff and Bruce (1953) first analyzed dynamic snapping in arches. This work was pub-

lished alongside Fung and Kaplan (1952)’s work and a part in both the papers was iden-

tical. Several works that discussed the dynamics of the snapping of shallow arches

followed later. Humphreys (1966) extended Hoff and Bruce (1953)’s analytical method

for different boundary conditions and Lock (1966) considered dynamic snapping under a

step pressure load. Hsu showed the effect of various parameters and initial conditions on

the dynamic stability for arches of arbitrary shapes (Hsu, 1966, 1967, 1968a,c). Some of

the other notable contributions are due to Fulton and Barton (1971); Gregory and Plaut

(1982); Huang and Nachbar (1968); Johnson (1980); Johnson and McIvor (1978); Lo

and Masur (1976); Patrcio et al. (1998); Sundararajan and Kumani (1972).

Recently, Chen analyzed dynamic snap-through in laterally loaded arches under pre-

scribed end motion with constant speed (Chen Jen-San and Lin Jian-San, 2004; Lin and

Chen, 2003). He derived exact dynamic critical loads for a pinned sine arch under a

concentrated force at the midpoint (Chen et al., 2009).

2.2 Bistable arches

In the early 2000s, the force-free stable equilibrium configurations arising from snapping

in arches started to find use in switch-based applications at the micro scale. In this

context, snapping arches gained popularity as bistable arches. This revoked interest

in designing for buckling in arches for specific switching forces and travel of a point

between two stable states.

2.2.1 Planar arches

Lee et al. (1999) analyzed the buckling of planar microactuators with bistable shallow

arch-shaped leaf springs for use in micro-optical switches and microrelays. Qiu et al.

(2004) showed analytically that the analysis by Lee does not reveal the key design re-

quirement involved in designing bistable arches with fixed-fixed boundary conditions.
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They showed that an arch can be made bistable by taking an as-fabricated shape as a

double-cosine curve joined at the mid-span. This is to physically restrict the asymmetric

mode of deformation, which, if not prevented, affects bistability.

A bistable arch with pinned-pinned boundary conditions has advantages over fixed-

fixed arches. First, a pinned-pinned arch does not need a connected double cosine curve

to restrict the asymmetric mode of switching. Second, it has an enhanced range of travel

between its two stable states and reduced switching force. Third, it has provision for

secondary lateral actuation, which was used by Sarojini et al. (2016) in a bimodal ac-

tuation of an assistive chair. However, pin joints lead to difficulties in manufacturing

at the micro scale and problems in operation due to friction and wear. Therefore, we

(Palathingal et al., 2015) proposed bistable arches with rotational flexures at the ends

with a monolithic design retaining the aforementioned three advantages while easing

manufacturing. Furthermore, we observed that the choices of sine curves for the initial

profile for pinned-pinned (Fung and Kaplan, 1952) and the cosine profile for fixed-fixed

(Qiu et al., 2004) boundary conditions were not arbitrary. They are the fundamental

buckling mode shape of a straight column with respective boundary conditions. There-

fore, we (Palathingal et al., 2015) took the initial profile of a bistable arch as a weighted

combination of all the buckling mode shapes of the column with the corresponding

boundary conditions of the arch.

We presented a computational approach to design bistable arches with general bound-

ary conditions (Palathingal and Ananthasuresh, 2017a,b) by determining critical points

on the force-displacement curve. In this critical-point method, a bistable arch is mod-

elled with one rotational and two translational springs at its endpoint. It enables the de-

sign of bistable arches with a wide range of boundary conditions. Boundary conditions

other than extreme cases of pinned-pinned and fixed-fixed are realized using compliant

revolute flexures. The analysis assumes that the translational spring stiffness is much

higher than the torsional stiffness, which is justifiable in the case of compliant revolute

flexures and, in particular, the split-tube flexure (Goldfarb and Speich, 1999) used in the

work. By taking the as-fabricated shape as a linear combination of mode shapes, the

method is shown to be applicable on arches with varying initial shapes. Moreover, they

obtained arch profiles that optimize each of the critical bistable characteristics for given

boundary conditions.

Bistability in arches can also be studied by considering force-free stable equilibrium

states without the deformation pathways that switch the arch between these states. Hsu

(1968b) analyzed the effect of various parameters on the stable states in arches. We
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derived a closed-form analytical relationship between the stable arch-profiles of bistable

arches (Palathingal and Ananthasuresh, 2018) for design. This relationship is bilat-

eral, i.e., it can also be written in a form amenable to analysis. We also derived an

upper bound on compression energy and conditions on the shapes of the arch for it to

be bistable. The design aspect of the bistable arch-profiles with pinned-pinned bound-

ary conditions was studied and a wide range of design applications were illustrated.

However, pinned-pinned boundary conditions pose a practical difficulty in the fabrica-

tion of micromachined mechanisms. Hence, we extended the analytical tools developed

for pinned-pinned to fixed-fixed boundary conditions (Palathingal and Ananthasuresh,

2019a). We showed that the analytical bilateral relationship and insights derived from it

for the pinned-pinned bistable arches are valid for fixed-fixed bistable arches as well.

2.2.2 Spatial arches

Flexural-torsional buckling causes spatial deformation in planar arches. This mode of

buckling in arches has been well studied. Those studies dealt with determining the crit-

ical load of buckling, especially in circular arches (Mohri et al., 2002; Papangelis and

Trahair, 1987; Pi et al., 2010; Timoshenko, 1936; Vlasov, 1959). Snapping of buck-

led beam with twist-induced deformation was studied by Sano and Wada (2019). In

contrast, Palathingal and Ananthasuresh (2019b) studied spatial deformation in arches

in the context of bistability. This study is relevant in planar arches since the switching

and switch-back forces resulting from spatial pathways are smaller than those in planar

deformation pathways. Therefore, in such arches, a planar analysis would over-predict

switching forces resulting in a poor design.

Furthermore, Palathingal and Ananthasuresh (2019b) analyzed spatial bistable arches.

These arches, being three dimenional in their fabricated state itself, only exhibit spatial

deformation pathways. When an arch deforms spatially, its cross-sections undergo dis-

placement in a plane perpendicular to its central axis. Along with the displacement, the

cross-sections rotate about the central axis. The displacement and rotation are related

to each other. The geometric relationship described by St. Venant and Michell (Love,

2013; Ojalvo et al., 1969) for lateral-torsional buckling analysis in planar arches is used

by Palathingal and Ananthasuresh (2019b) for analyzing planar arches with spatial de-

formation pathways. Furthermore, for the analysis pertaining to spatial arches, they

generalised the St. Venant and Michell relation considering the additional curvature of

the arch. That is to say, when one of curvatures of the arch in the modified relationship

by Palathingal and Ananthasuresh (2019b) is taken to be zero, the relationship reduces
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to its original form given in Love (2013); Ojalvo et al. (1969).

2.3 Analysis on bistable buckled beams

Bistability in arches can be due to either the prestress in them or their as-fabricated

shape. The most commonly used bistable structures with prestress are buckled beams.

The downside in using buckled beams is that precise prestress is hard to realize during

bulk-manufacturing and in microfabrication. However, from the analysis point of view,

bistability arising from prestress is not different from that which arises solely due to the

initial shape except that the initial stress should be accounted for.

Huddleston (1970) studied buckling and the snap-through behavior of a steep pre-

stressed arch obtained by first buckling a thin elastic strut into a deformed shape and then

attaching it to its supports. An experimental study on the effect of an angle at the bound-

ary on a buckled beam reported by Pippard (1990) and Patricio et al. (1998) explained

it using the elastica approach. Vangbo (1998) showed the importance of compression

energy in the analysis of bistable buckled beams. He followed an approach similar to

that followed by Fung and Kaplan (1952) for fixed-fixed boundary conditions. Cazottes

et al. (2009) extended the analysis by Vangbo (1998) to consider non-central actuation.

In recent studies, dynamics of snapping of buckled inextensible elastica subjected to ro-

tations at their ends was considered by Gomez et al. (2017); Plaut and Virgin (2009) and

the exact snapping loads of a buckled beam actuated at the mid-span was obtained by

Chen and Hung (2012).

A summary of our discussion on the contributions to the analysis of snapping and

bistabity in arches is given in Table 2.1. Now, we briefly describe the work on bistable

shells.

2.4 Bistable shells

The classical mechanics problem of bistability in shallow shells was initiated by von

Karman and Tsien (Karman, 1939). Kaplan and Fung (1954) analyzed spherical thin

elastic shells. Huang (1964) showed that unsymmetrical snapping is possible when the

rise parameter of the axisymmetrical shallow shell is above a certain limit. Budiansky

and Roth (1962) treated the case of a clamped shell of parabolic revolution under a uni-

form pressure applied suddenly for a finite time. Buckling and post-buckling behavior

of clamped spherical caps loaded by an concentrated force at the apex was studied by
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Fitch (1968) and showed the importance of considering asymmetric mode of buckling

in determining critical load. The eversion of bistable shells when subjected to in-plane

edge tension was first studied by Akkas and Odeh (2001) using a numerical method.

Shallow spherical shells with uniform in-plane tension on their outer rims were con-

sidered assuming axisymmetric deformation. Bistability in cylindrical shells has been

studied in detail by Guest and Pellegrino (2006); Iqbal and Pellegrino (2000); Iqbal et al.

(2000); Kebadze et al. (2004); Seffen and Guest (2011).

Chen and Lin (2005a) described snap-through behaviour in spinning shells. They

analytically investigated the deformation of a spinning annular non-flat disk using Von-

Karman’s plate equations. In this problem, the in-plane loading that switches the bistable

shell is due to centrifugal force. One of the important findings of the paper is reverse-

snapping, i.e. the snapping that can occur only in one direction, from the strained state

back to the initial state on the opposite side of the base plane when a certain critical rota-

tion speed is reached. This result was later generalized for all in-plane loading conditions

(Chen and Huang, 2006) and asymmetrical deformations (Chen and Chang, 2007).

In a recent study, Medina et al. (2016) analyzed the axisymmetric snap-through of an

initially curved circular micro plate, subjected to a distributed electrostatic force. Based

on a reduced degree of freedom Galerkin approximation, they predicted the equilib-

rium path of the shell under snap-through buckling. In another study on axisymmetric

shells, Sobota and Seffen (2017) explored the effect of boundary conditions on bista-

bility. Their analysis was done using polynomial displacement fields and the Foppl-

von Karman model that assume in-plane displacements to be small. Recently, Taffetani

et al. (2018) studied bisatbility in spherical caps while considering symmetric as well as

asymmetric modes of deformations.

2.5 Applications

Bistable arches, owing to their ability to maintain two force-free equilibrium states, find

applications in mechanisms that need two distinct stable configurations. Their nonlin-

ear force-displacement relations find application in energy harvesters. Bistable arches

and shells, due to their ability to take two distinct configurations, find application in

shape-changing and morphing applications. Comprehensive reviews on their applica-

tions in smart systems, energy harvesters, morphing, and shape-changing applications

were published recently by Hu and Burgueño (2015); Pellegrini et al. (2013); Pontecorvo

et al. (2013) and Holmes (2019), respectively. Brief accounts of the history of two
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applications—RF-MEMS switches and universal passive grippers, designs of which are

part of this thesis—are given next.

Author(s) Significance
Navier (1864) First considered snap-through buckling in shallow arches
Chwalla (1927);
Hurlbrink (1907);
Timoshenko (1936)

Foremost analysis on buckling in high circular arches

Biezeno (1938);
Friedrichs (1945);
Marguerre (1938)

Foremost analysis on buckling in shallow circular arches

Timoshenko (1936) Study on snapping in sine-curved arch

Fung and Kaplan
(1952)

Comprehensive analysis on pinned-pinned shallow arches
considering asymmetric buckling modes, varying arch
shapes, and multiple loading conditions

Hoff and Bruce
(1953)

Studied the dynamic problem of snapping of shallow-arches .

Hsu (1968b)
Analyzed the relationship between the stable equilibrium
states in arches.

Simitses (1973)
Studied snapping of shallow pinned arches resting on an elas-
tic foundation under distributed loads

Vangbo (1998)
Analytically modeled bistable buckled beams and showed the
importance of the compression energy term.

Lee et al. (1999)
First use of bistable arches in an application: planar microac-
tuators for use in micro optical switches and microrelays

Qiu et al. (2004)
Analytically showed the need for physically restricting the
asymmetric mode of deformation in fixed-fixed double cosine
arches.

Chen and Lin
(2005b); Chen et al.
(2009)

Derived the exact static critical loads for a pinned sine arch
under a quasi-static concentrated force at the midpoint and
couples at the endpoints.

Palathingal and
Ananthasuresh
(2017a,b)

Presented a computational approach to design bistable arches
with general boundary conditions by determining critical
points on the force-displacement curve.

Palathingal and
Ananthasuresh
(2018, 2019a)

Derived a bilateral relationship between arch-profiles that
could be used for both analysis and design for fixed-fixed and
pinned-pinned boundary conditions

Palathingal and
Ananthasuresh
(2019b)

Studied spatial deformation pathways in bistable arches and
introduced spatial bistable arches

Table 2.1: A summary of analysis on bistable arches
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2.5.1 Switches

Table 2.2 lists various bistable switches reported in the literature. Baker and Howell

(2002) presented an in-plane compliant bistable micromechanism in a four-bar linkage

configuration actuated by V-beam thermal actuators. Qiu et al. (2004) proposed a double

curved beam to be used as a bistable device with a detailed analysis of a heatuator

provided by Qiu et al. (2005). Sterner et al. (2007) developed a latching-based DC-to-

RF bistable switch with electrostatic actuation. A cantilever-based bistable RF switch

was presented by Zhang et al. (2007) employing electromagnetic actuation. Permanent

magnets were used to keep the switch in the ON state without using external power.

Many switch designs use two actuators acting one at a time, for switching between the

two states, and require three terminals for their operation including the common ground.

Recently, Huang and Yang (2013) reported a novel device that consists of a sin-

gle electrothermal V-beam actuator (VBA) to achieve both states (ON and OFF) of the

switch. They used a double cosine arch as the bistable element and a hinge-lever mech-

anism (Huang et al., 2016) . The actuating voltage signal is applied in the form of pulses

of different durations, across a single pair of terminals to switch between both states.

Generally, switch selection and latching are done by a drive-electronics module involv-

ing power electronics and logic components. The two-terminal design simplifies the

drive-electronic requirements, as the generation of command pulses is much easier to

achieve than operating three terminals. While there is the advantage of using a single

actuator, it increases the size and limits the performance of the device due to the use of a

hinge and lever arrangement. Also, the hinge, realized as a narrow flexural connection,

is the weakest link in the design due to stress concentration.

To overcome these shortcomings of (Huang et al., 2016)’s design, we proposed a

dual actuator system while retaining the two-terminal design (Yadav et al., 2019). The

two-terminal bistable switch has a distributed compliant design (Yin and Ananthasuresh,

2003) that limits the maximum stress, thus increasing the potential for high reliability.

A double cosine arch is used as the bistable element. In contrast to Huang et al. (2016)’s

design, a secondary actuator is used to axially pull the arch, which shares a single pair

of terminals with the primary electrothermal actuator. Thus, the desirable two-terminal

actuation is still retained through the mechanically-decoupled but electrically coupled

actuator arrangement. Mechanical decoupling facilitates the distribution of compliance

using a secondary actuator instead of lumping it in a highly stressed flexural pivot. For

push-on and push-off capability, a novel initially-retracting microactuator (Yadav and

Ananthasuresh, 2018) is used.
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Number
of

terminals
(including
ground)

Number of
electrothermal

actuators

Bistable
mechanisms

Type of
electrother-

mal
actuator

used

References

Three Double actuator

Bistable arches
V-beam

Lee and Wu
(2004),

Steiner et al.
(2014), Yang
et al. (2007)

Heatuator
Qiu et al.

(2005)

Latching
V-beam

Hu et al.
(2016),

Dellaert and
Doutreloigne

(2014),
Weight et al.

(2002)

Heatuator
Pirmoradi

et al. (2015)

Straight beam
segments

V-beam
Que et al.

(2004)

Compliant four-bar
linkage

V-beam

Baker and
Howell
(2002),

Masters and
Howell
(2003)

Two
Single actuator Bistable arches V-beam

Huang and
Yang (2013)

Double actuator Bistable arches

V-beam and
initially-
retracting
actuator

Yadav et al.
(2019)

Table 2.2: Comparative summary of bistable MEMS switches

2.5.2 Universal passive grippers

Universal passive grippers can grasp objects of varying sizes and shapes. In comparison

with active multi-fingered grippers, they do not need sophisticated grasping algorithms
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and thus are easier to implement (Bicchi and Kumar, 2000; Murray, 2017). Passive

grippers can be broadly classified as follows: grippers with soft contacts (Choi and Koc,

2006; Maruyama et al., 2013), granular grippers (Amend et al., 2012; Brown et al., 2010;

Manti et al., 2016), and underactuated grippers (Laliberté et al., 2002; Stavenuiter et al.,

2017). A planar passive gripper using bistable arches was considered before by Nguyen

and Wang (2016). We explored an alternative way to passively grip objects of arbitrar-

ily shaped objects using a monolithic compliant grasping mechanism based on bistable

shells, also known as everting shells (Balakuntala et al., 2018) . The bistable shell con-

sidered is stress-free in its as-fabricated state and stressed in its everted state. The ability

to maintain two structural orientations without consuming power makes bistable shells

ideal to be used in a passive gripper. By using an everting shell as the critical element

and attaching grasping arms to it, (Balakuntala et al., 2018) conceived a gripper that is

passive as well as capable of picking up objects of a variety of shapes.

2.6 Closure

Arches, one of the most commonly used structural elements, have been studied exten-

sively in the literature. When subjected to a transverse load, they can undergo buckling

resulting in two force-free equilibrium states. Most of the initial studies on the stability

of arches were focused on finding the critical buckling load. Its dependence on geomet-

rical parameters and geometrical imperfections was investigated as well. However, in

the past two decades, snap-through in arches has been studied in the context of bista-

bility, and analytical models have been developed for its design and use in innovative

applications. In the next chapter, we discuss such an semi-analytical strategy to analyze

and design bistable arches for generalized boundary conditions.
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Chapter 3

Design and analysis of bistable arches
by determining critical points in the
force-displacement curve

Synopsis

The points on the force-displacement curve corresponding to the switching and switch-

back forces, and the travel of a point between the stable states are critical to charac-

terizing bistability. We present a semi-analytical technique, namely the critical-point

method, to compute these points for arches with general boundary conditions. The ease

of implementation of this method enables analysis and shape-optimization of bistable

arches. Furthermore, with the aid of the analytical model, we gain some insights into

the effect of boundary conditions on bistability.

3.1 Introduction

We consider bistable arches with a transverse force at their midspan. We intend to find

the switching force, Fs, switch-back force, Fsb, and travel, utr, given in Fig. 3.1 for

bistable arches with general boundary conditions. That arches are assumed to be stress-

free in their as-fabricated state. These critical points on the force-displacement curve

corresponding to Fs, Fsb and utr are useful for analyzing and designing bistable arches.

In this chapter, we explain our approach of approximating the initial stress-free shape

and the deformed shape of an arch as a linear combination of the buckling mode shapes

of their corresponding straight column with the rotary springs at the ends. The equilib-

27
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Figure 3.1: Typical force-displacement characteristics of a bistable arch

rium equations are found by minimizing the potential energy of the system with respect

to the mode weights of the deformed shape and the displacements in the translational

springs. We discuss a numerical strategy, which we call the critical-point method, to find

the critical points from the equilibrium equations. We use the critical-point method as a

tool to design the bistable arches shown in Fig. 3.2. The design and shape optimization

of arches with split-tube flexures and the effect of the rotary stiffness and initial shape

on them is presented. We show that the critical-point method is equally effective in the

design of pinned-pinned and fixed-fixed bistable arches. We also present the design of

asymmetric bistable arches—a new class of bistable structures—using the same method.

3.2 Analysis

The critical-point method is semi-analytical, meaning we obtain the equilibrium equa-

tions analytically and solve them numerically. In this method, we solve only for the

critical points without obtaining the entire force-displacement curve, thus making the
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Figure 3.2: 3D-printed bistable arches with various boundary conditions and as-
fabricated profiles in their two stable states. (a) pinned-pinned sine arch (b) travel-
optimized pinned-pinned arch (c) asymmetric pinned-pinned arch (d) asymmetric
pinned-fixed arch (e) split-tube flexure-based arch, and (f) constrained double-cosine
arch (Same as Fig. 1.7)

.

solutions tractable. The equilibrium equations derived in this section are used to find the

critical points in Section 3.3. As mentioned before, a column that is buckled into its first

fundamental buckling mode can act like a bistable arch if there is prestress. Moreover,

arches with the fundamental buckling mode shape as their as-fabricated shape are found

to be bistable for pinned-pinned boundary conditions. For fixed-fixed boundary con-

ditions too, their corresponding fundamental buckling mode shape is bistable although

restricting their asymmetric mode is necessary, as shown in Fig. 3.2f. This prompts us to

explore arches with as-fabricated shape, h(x), as a weighted combination of the buck-

ling mode shapes of their corresponding straight column. For the case of a bistable arch

with revolute flexures, the buckling mode shapes of a column with rotary springs with

equivalent stiffness of the flexure at the ends will be considered as shown in Fig. 3.3. It

may be noted that we are not taking the translational stiffnesses of the revolute flexures

into account for computing the buckling mode shapes as we only study arch profiles

with ends at the same level (i.e., we consider only the loads that are perpendicular to the

line joining the ends). Buckling mode shapes, wi, for a column with rotary springs at

the ends can be obtained from a linear buckling analysis (Simitses and Hodges, 2006).
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Figure 3.3: Buckling of a straight beam with rotary springs at the ends

3.2.1 As-fabricated and deformed profiles

Let h(x) denote the arch-profile and wi denote the ith buckling mode shape of the

straight beam of the same boundary conditions. Since it is likely to obtain bistable

behaviour from a linear combination of wis, we write:

h(x) =
n∑
i=1

aiwi(x) (3.1)

where ai is the mode weight for wi(x) and n is the number of buckling modes consid-

ered. Suppose that a point transverse load applied at the mid-point of the arch deforms it

to a shape given byw(x). Since, buckling mode shapes form a basis set, we approximate

w(x) as follows by accounting for end-displacements:

w(x) =
m∑
i=1

Aiwi(x) +
(wB − wA)x

L
+ wA (3.2)

where Ai is the weight for each buckling mode shape in the deformed shape, wA and wB
are the deformations in transverse springs at A and B respectively, L is the span of the

arch and m is the number of mode shapes used for approximating the deformed profile.

It may be noted that m should not be smaller than n because to capture the as-fabricated

shape itself m should be equal to n.

3.2.2 Equilibrium equations

We continue our analysis of the generalized bistable arch shown in Fig. 3.4 in a normal-

ized framework to identify the decisive geometric parameters that define bistability. It

may be noted that all normalized quantities are denoted by uppercase symbols.

The potential energy of the system (PE) includes strain energy due to bending in the

beam (SEb), strain energy due to compression along the length of the arch (SEc), strain
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Figure 3.4: Model of a bistable arch with flexures at the ends

energy in the elastic flexures accounted for by the rotary and translational springs (SEs),

and the work potential (WP ) due to the external transverse force F applied at the mid-

point. As shown in Fig. 3.4, revolute flexures at the ends of the bistable arch have been

modeled by two equivalent rotary springs, κA and κB, two transverse springs, kAV and

kBV , and an axial spring, kH . Modeling with a single axial spring instead of two, one for

each revolute flexure, does not result in a loss of generality as two springs in series can

always be replaced with a single spring of equivalent stiffness. This analysis assumes

that the translational spring stiffness is much higher than the rotary stiffness, which is

justifiable in the case of compliant revolute flexures and, in particular, the split-tube

flexure (Goldfarb and Speich, 1999) used in this work.

The normalized as-fabricated profile,H(X), the normalized deformed shape,W (X),

and the normalized transverse deformations in the spring, WA and WB are given below.

Note that uppercase letters will be used for representing normalized expressions.

H(X) =
n∑
i=1

aiWi(X) (3.3)

Wj(X) =
n∑
i=1

AiWi(X) + (WB −WA)X +WA (3.4)

where

X =
x

L
hmid =

n∑
i=1

aiWi(
L

2
) W (X) =

w(X)

hmid
H(X) =

h(X)

hmid

WA =
wA
hmid

WB =
wB
hmid
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Note that hmid is assumed to be nonzero while writing Eqs. (3.3) and (3.4). For arches

with hmid = 0, a non-zero height of the arch should be used as the normalizing parame-

ter. The strain energy due to bending is given by

seb =
EI

2

∫ L

0

(
d2h

dx2
− d2w

dx2

)2

dx

By normalizing, we get

SEb =
sebL

3

EIh2mid
=

1

2

∫ 1

0

(
d2H

dX2
− d2W

dX2

)2

dX (3.5)

where I is the second moment of the area of cross-section and E is Young’s modulus.

The compression energy due to the axial force p is given by

sec = p(sinitial − s+ u)

where u is the deformation of the spring kH , s the length of the beam as it deforms and

sinitial the as-fabricated length of the beam. They are given by

s =

∫ L

0

√
1 +

(
dw

dx

)2

dx ≈
∫ L

0

[
1 +

1

2

(
dw

dx

)2
]
dx

sinitial =

∫ L

0

[
1 +

1

2

(
dh

dx

)2
]
dx

p = Ebt

(
1− s+ u

sinitial

)
(3.6)

By normalizing, we get

S =
sL

h2
=

∫ 1

0

[
L2

h2
+

1

2

(
dW

dX

)2
]
dX

Sinitial =
sinitialL

h2
=

∫ 1

0

[
L2

h2
+

1

2

(
dH

dX

)2
]
dX

SEc =
sepL

3

EIh2mid
=

1

2
P (Sinitial − S + U)

P =
pL2

EI
=

12L2

t2

(
1− S + U

Sinitial

)
(3.7)
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where U = uL
h2mid

. The strain energy in the springs is given by

ses =
1

2
κA

(
dw

dx
− dh

dx

)2
∣∣∣∣∣
x=0

+
1

2
κB

(
dw

dx
− dh

dx

)2
∣∣∣∣∣
x=L

+
1

2
kHu

2 +
1

2
kAVwA

2 +
1

2
kBVwB

2

By normalizing, we get

SEs =
1

2
KA

(
dW

dX
− dH

dX

)2
∣∣∣∣∣
x=0

+
1

2
KB

(
dW

dX
− dH

dX

)2
∣∣∣∣∣
x=1

+
1

2
KHU

2 +
1

2
KAVWA

2 +
1

2
KBVWB

2

(3.8)

where
KA =

κaL

EI
KB =

κbL

EI

KH =
khLh

2
mid

EI
U =

uL

h2mid

KAV =
kAVL

3

EI
KBV =

kBVL
3

EI

The work potential due to the transverse force f is given by

wp = −fumid

where umid is the deflection under the application of force f acting vertically downwards

at the mid-span of the beam. It is given by

umid = hmid − w
(
L

2

)
(3.9)

Normalization yields
WP = −FUmid

F =
fL3

EIhmid

(3.10)

Umid =
umid
hmid

(3.11)
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The normalized potential energy, PE, is given by

PE =SEb + SEc + SEs +WP

=
1

2

∫ 1

0

(
d2H

dX2
− d2W

dX2

)2

dX +
1

2
P (Sinitial − S + ∆H)+

1

2
KA

(
dW

dX
− dH

dX

)2
∣∣∣∣∣
x=0

+
1

2
KB

(
dW

dX
− dH

dX

)2
∣∣∣∣∣
x=1

+

1

2
KAH∆H

2 +
1

2
KAV ∆AV

2 +
1

2
KBV ∆BV

2 − FUmid

(3.12)

By substituting for P , S, Sinitial from Eqn. 3.7,

PE =SEb + SEc + SEs +WP

=
1

2

∫ 1

0

(
d2H

dX2
− d2W

dX2

)2

dX+

6Q2

{∫ 1

0

[
1

2

(
dH

dX

)2

− 1

2

(
dW

dX

)2
]
dX + U

}2

1

2
KA

(
dW

dX
− dH

dX

)2
∣∣∣∣∣
X=0

+
1

2
KB

(
dW

dX
− dH

dX

)2
∣∣∣∣∣
X=1

+

1

2
KHU

2 +
1

2
KAVWA

2 +
1

2
KBVWB

2 − F (Hmid −Wmid)

(3.13)

where Q = hmid

t
is a geometry parameter. Table 3.1 summarizes the normalizing factors

for these parameters. To obtain Eq. (3.13), the arch is assumed to be shallow (i.e.,(
dh
dx

)2
<< 1) while approximating the change in curvature of the beam.

Parameter Normalized quantity Normalizing factor
x X 1

L

h(x), w(x), wA, wB H(X),W (X),WA,WB
1

hmid

κA, κB KA, KB
L
EI

kAV , kBV KAV , KBV
L3

EI

kH KH
Lh2mid

EI

u U L
h2mid

f F L3

EIhmid

- Q hmid

t

Table 3.1: Normalized parameters used in the spring-restrained pinned-pinned arch

The potential energy expression in Eq. 3.13 shows the dependence of bistability on
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the geometry and the boundary conditions of the arch. Strain energy in the springs,

SEs, is dependent on the boundary conditions. The terms involving the normalized

as-fabricated shape, H(X), and the geometric quantity, Q, indicate the dependence of

geometry on bistability. The role of parameter Q is significant as Q times change in the

length of the arch gives the compression energy term, which is crucial to any bistable be-

haviour. The initial shape,Q, and the boundary conditions determine bistability, whereas

geometric parameters hmid, L, t and b decide the magnitude of the bistable characteris-

tics.

The equilibrium equations obtained from the principle of minimum potential energy

are:
∂PE

∂Ai
= 0 where i = 1, 2, 3, . . .m (3.14)

∂PE

∂U
= 0

∂PE

∂WA

= 0
∂PE

∂WB

= 0 (3.15)

By taking only the fundamental mode shape as the as-fabricated shape, the preced-

ing equations can be solved analytically for the cases of pinned-pinned and fixed-fixed

boundary conditions. On the other hand, getting analytical solutions for bistable arches

with flexures at their ends is computationally demanding. In the next section, we explain

the critical-point method that can be used to design flexure-based bistable arches as well

as pinned-pinned and fixed-fixed arches, which are the limiting cases of the flexure stiff-

nesses.

3.3 Critical-point method

If we take mode shapes to approximate the deformed shape, i.e. for larger values

of m, the accuracy of the solution improves at the expense of solving a larger sys-

tem of equations. It will be shown later that if we take only the first three mode

shapes, i.e. m = 3, the results will be closer to those obtained using the nonlinear

finite element analysis using continuum elements. This assumption leaves us with a

system of six equations (Eq. 3.14 with m = 3 and Eq. 3.15) and seven unknowns:

A1, A2, A3, U,WA,WB, and F . Using these, the parameters corresponding to the criti-

cal points mentioned earlier (see Fig. 3.1) are determined, as discussed next.
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3.3.1 Switching point

The force at the switching point (Fs) is the minimum force required to switch the bistable

arch to the second stable state. It is a critical factor in design. Switching from the

first stable state to the second can happen either with a symmetry-dominant deforma-

tion (symmetric switching) or with an asymmetry-dominant deformation (asymmetric

switching). A2 will have a larger magnitude in asymmetric switching than in symmetric

switching. The solid curve in Fig. 3.5 shows a typical force-displacement curve for sym-

metric switching and the dashed curve shows asymmetric switching. Fs is dependent on

the mode of switching of the bistable arch. Asymmetric switching lowers the switching

force significantly by taking a path with reduced compressive strain energy during the

deformation. Equations (3.14) and (3.15) satisfy both symmetric switching and asym-

metric switching conditions. An arch would prefer one mode of switching over the other

depending on its as-fabricated shape, Q, and boundary conditions. So, it is important

to identify the mode of switching between the two for a given arch. As noted earlier in

Chapters 1 and 2, for the cases of pinned-pinned and fixed-fixed boundary conditions

these two modes of switching can be described analytically. An analytical solution has

not been possible so far when springs are included. Therefore, it is done numerically by

solving for two different switching forces: one assuming symmetric switching (Fss at

uss) and the other assuming asymmetric switching (Fas at uas).
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Figure 3.5: Asymmetric mode of switching lowers the switching force

Fs will be equal to Fas if uas is less than uss as shown in Fig. 3.5. In this case the arch
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prefers asymmetric switching over symmetric switching. It can happen that Fs = Fss

if uss < uas. In some other cases, when only one mode of switching is present, Fs
would be the switching force corresponding to the only existing switching-mode. The

asymmetric arches in Fig. 3.2c and Fig. 3.2d have only asymmetric modes of switching,

and hence Fs is equal to Fas. The double-cosine arch with a restraint in the middle,

as in Fig. 3.2f, switches only symmetrically as the asymmetric mode of switching is

physically constrained. In this arch, Fs is equal to Fss.

Fss is the point where the force is maximum with respect to the displacement on

the force-displacement curve such that the equilibrium equations are satisfied. This

maximum will always be a symmetric switching force since Fas cannot be greater than

Fss. The finite variable optimization problem to obtain Fss can be written as:

Maximize
A1,A2,A3,U,WA,WB

F

Subject to

Λi :
∂PE

∂Ai
= 0 where i = 1, 2, 3

Λ4 :
∂PE

∂U
= 0

Λ5 :
∂PE

∂WA

= 0

Λ6 :
∂PE

∂WB

= 0

Data : a1, a2, a3, Q,KA, KB, KH , KAV , KBV

(3.16)

with the necessary conditions:

∂L

∂Ai
= 0 where i = 1, 2, 3

∂L

∂U
= 0

∂L

∂WA

= 0
∂L

∂WB

= 0

∂L

∂Λi

= 0 where i = 1, 2, 3, 4, 5, 6

(3.17)

where L is the lagrangian of the optimization problem Eq. (3.16). These equations can

be solved numerically using the Newton-Raphson method as

xn+1 = xn − [Hf(xn)]−1∇f(xn) (3.18)
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where

xn = [A1, A2, A3, U,WA,WB,Λ1,Λ2,Λ3,Λ4,Λ5,Λ6]
T

f =

[
dL

dA1

,
dL

dA2

,
dL

dA3

,
dL

dU
,
dL

dWA

,
dL

dWB

,
∂L

∂Λ1

,
∂L

∂Λ2

,
∂L

∂Λ3

,
∂L

∂Λ4

,
∂L

∂Λ5

,
∂L

∂Λ6

]T
Hf(xn) the Hessian of f(xn), and ∇f(xn) the gradient of f(xn).

An asymmetric switching force is the minimum amount of force required for the

arch to switch from State 1 to State 2 with an asymmetric switching path. In the case

of symmetric arches, this is also the point at which the arch begins to deflect asymmet-

rically. Starting from this point, two solutions can exist for the equilibrium equations; a

symmetric solution, where the change, |A2 − a2| remains negligible and an asymmetric

solution with a higher A2 along the deformation. This is one of the points where the

equilibrium equations have repeated roots with respect to A2, i.e., at this point, we have

d2PE

d2A2

= 0 (3.19)

Fas for symmetric arches is found by solving Eqs. (3.14), (3.15) and (3.19) numerically

using the Newton-Raphson method as

xn+1 = xn − [∇f(xn)]−1f(xn) (3.20)

where

xn = [A1, A2, A3, U,WA,WB, F ]T

f =

[
dPE

dA1

,
dPE

dA2

,
dPE

dA3

,
d2PE

d2A2

,
dPE

dU
,
dPE

dWA

,
dPE

dWB

]T
The initial values of the unknowns are taken to be their corresponding values in State

1 of the arch. In the case of asymmetric arches, where only asymmetric-switching is

present, Fas is found by solving Eq. (3.17).

3.3.2 Switch-back point

The switch-back force, Fsb, is the minimum force required to switch a bistable arch

from State 2 to State 1. Fsb can also be thought of as a measure of bistability. The

larger the switch-back force, the higher the stability of the arch in the second stable

state. Similar to Fs, Fsb also depends on the nature of switching. The existence of

asymmetric switching from State 2 to State 1 reduces the stability. As in the case of
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the switching point, we proceed by solving for two different Fsbs, corresponding to

symmetric and asymmetric switching. The symmetric and the asymmetric switch-back

points are found as described in the previous section using Eqs. (3.18) and (3.20). To

get the switch-back point, the initial guess corresponding to State 2 is taken. While

implementing the critical-point method, the second stable point (State 2) is determined

before the switch-back point so that it can be used as the initial guess in the numerical

procedure.

3.3.3 Second stable point

The second stable point corresponds to the second force-free equilibrium state of the

arch. Since F = 0 at this point, we have six equations and six unknowns, which can be

solved numerically as

xn+1 = xn − [∇f(xn)]−1f(xn) (3.21)

where
xn = [A1, A2, A3, U,WA,WB]T

f =

[
dPE

dA1

,
dPE

dA2

,
dPE

dA3

,
dPE

dU
,
dPE

dWA

,
dPE

dWB

]T
F=0

By taking x0 = [−a1, a2, a3, 0, 0, 0], it was observed that the numerical method does not

converge to a point corresponding to the unstable force-free equilibrium state, which

also satisfies the same equations. This is because of the broad basin of attraction at the

second stable point.

3.4 Design and optimization using the critical-point method

In this section, we first discuss the design and profile-optimization of flexure-based

bistable arches. Then, we illustrate the generality of the method by applying it to four

special cases of flexure-based bistable arches: (1) bistable arches with pinned-pinned

boundary conditions, (2) design of asymmetric bistable arches, (3) bistable arches with

fixed-fixed boundary conditions, and (4) limiting axial spring stiffness design for a

bistable arch.

3.4.1 Bistable arches with revolute flexures at the ends

An ideal revolute flexure has minimal rotary stiffness, with high axial and transverse

stiffnesses. It is important to understand how the torsion stiffness affects bistability. In
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Fig. 3.6, the bistable characteristics are plotted against a non-dimensional rotary stiffness

for a range of values of Q by taking the first buckling mode shape to be the as-fabricated

shape with equal torsion stiffnesses at the ends. A higher rotary stiffness implies that the

arch has to overcome more resistance at the boundaries. This would cause an increase

in the switching force and a reduction of the switch-back force and travel. We see

a decrease in desirable bistable characteristics as K increases, i.e., as we move from

pinned-pinned to fixed-fixed boundary conditions. When we design revolute flexure-

based bistable arches, it is advisable to restrict the normalized torsion stiffness K to

less than 5 to take advantage of the rotational compliance at the joints. As shown in

Figs. 3.6a and 3.6b, as Q increases, the switching force increases but the switch-back

force decreases. The travel is reduced as K increases only if Q is small as in Fig. 3.6c.

The increase in the rotary stiffness at the ends will restrict the travel. If the arch is

compliant enough to deform by overcoming the stiffness experienced at the ends, the

travel would be independent ofK. We observe this independence of the travel on torsion

stiffness when Q is 20 or larger.

We now discuss the design of a bistable arch with split-tube flexures at the ends for

the data given in Table 3.2 for maximum stability for a given hmid of 10 mm. Taking

t = 1 mm, b = 10 mm, and L = 200 mm, the non-dimensional rotational stiffness

is K = κL
EI

= 0.6; this retains characteristics comparable to that of a pinned-pinned

bistable arch. One may note that the linear and axial stiffness values are large enough

to justify the assumptions made in our analysis. By taking the first mode shape as the

as-fabricated shape, we find the critical points: Fs = 197.30, Fsb = −83.23, Utr =

2.00. In Fig. 3.7, the critical points obtained from the critical-point method are plotted

on the force-displacement curve obtained from the finite element analysis (FEA) using

continuum elements in COMSOL software.

Table 3.2: Geometric and material parameters

E κA κB
2.1× 109N/m2 0.00525Nm/rad 0.00525Nm/rad

kH kAV kBV
7.3× 105N/m 1.45× 106N/m 1.45× 106N/m

For low K values, since the switch-back force is independent of Q, we can optimize

the shape of the profile to achieve maximum stability. The bistable characteristics can be

optimized with respect to a1, a2 and a3, the unknown weights of the first three buckling

modes in the as-fabricated shape, using a numerical approach. By utilizing the fact

that the critical-point method is computationally fast, contour plots are constructed for a
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Figure 3.6: Effect of torsion stiffness on bistable characteristics
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Figure 3.7: Critical-point method compared to FEA in Comsol using continuum ele-
ments

range of a2
a1

and a3
a1

ratios taking a1 = 1. An arch is not bistable for any combination of a1,

a2 and a3. Each point inside the dashed contour in Fig. 3.8 gives combinations of a1, a2
and a3 that are bistable. Arches are bistable for a broader range of a3

a1
ratios as compared

to a2
a1

. The loss of bistability beyond certain combinations of a2
a1

and a3
a1

can be understood

from Fig. 3.8b. The switch-back force is a measure of the stability of the bistable arch

in the second stable state. As we approach the dashed contour, the Fsb decreases to zero

indicating an unstable State 2. Physically, this implies that even a slight disturbance can

bring the arch back from the second to the first equilibrium state. We also observe that

the ratios a3
a1

= 0.049 and a2
a1

= 0 (Profile A in Fig. 3.9) maximize the switch-back force,

the arch profile with the highest stability for the selected revolute flexure. Arch (e) in

Fig. 3.2 shows the optimized 3D printed bistable arch with compound split-tube flexures

and its two stable force-free equilibrium states.

We see in Fig. 3.8a that the switching force decreases as the a3
a1

and a2
a1

ratios increase.

But it does not have a minimum in the feasible space. The ratios a3
a1

= 0.192 and a2
a1

= 0

(Profile B in Fig. 3.9) maximize the travel as seen in Fig. 3.8c. But this increased travel

comes at the expense of a reduced switch-back force. So, it advisable to keep a lower

limit on the switch-back force while maximizing the travel in bistable arches.
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(a) Contour plot of the switching force in the feasible space

(b) Contour plot of the switch-back force in the feasible space

(c) Contour plot of the travel in the feasible space

Figure 3.8: Dependence of Fs,Fsb, and Utr on the as-fabricated shape
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       A       B

Figure 3.9: Optimal profiles of a bistable arch with split-tube flexure at the ends

3.4.2 Pinned-pinned bistable arches

The analysis for pinned-pinned arches is a special case of flexure-based arches with

κA = κB = 0 and very high translational and axial stiffness. The reduced number

of unknown displacements, as WA = WB = U = 0, makes the analysis for pinned-

pinned arches even faster than is the case with a flexure joint. Following a procedure

similar to the previous problem, geometric parameters can be designed from the non-

dimensional critical points obtained. Figure 3.10 shows a good agreement between the

critical-point method and FEA for t = 1 mm, b = 5 mm,E = 2.1 GPa and L =

100mm. Furthermore, a geometric profile optimization can also be carried out to obtain

the optimal bistable arches with pinned-pinned boundary conditions. For example, arch

(b) in Fig. 3.2 maximizes the travel between the two states for a given initial height.

a
2  

a
1   

a
1

 
a

3
= 0 = 0

Figure 3.10: Critical-point method compared to FEA in Comsol using continuum ele-
ments for pinned-pinned boundary conditions

3.4.3 Asymmetric bistable arches

Asymmetric arch profiles of bistable arches (Fig. 3.2c and Fig. 3.2d) have not been ex-

plored in the literature. One can observe that the point at the maximum height shifts

along the span as an asymmetric arch switches between the states. This shift can be

utilized in switch embodiments requiring offset contact points. They can be good can-

didates to utilize the bimodality in the bistable arches for two-port actuation as well.
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Asymmetric bistable arches can be designed in two ways: (1) by having a non-zero

a2 in the as-fabricated profile of a bistable arch, and (2) by having two different rotary

stiffnesses at the ends of the arch. We have already considered asymmetric arches with

non-zero a2
a1

as we optimized the as-fabricated profile for the case of split-tube flexure-

based bistable arches using the critical-point method. In Fig. 3.8, we observe that the

asymmetry in the initial profile decreases the switching and switch-back forces. Asym-

metry in the as-fabricated shape makes the choice between symmetric and asymmetric

switching easy for the arch, making it go directly into asymmetric deformation causing a

decrease in the switching force. As the arch is already asymmetric, a symmetric solution

is absent, i.e. Fs = Fas. Figure 3.11(a) compares the critical-point method to FEA for

an asymmetric bistable arch of t = 1 mm, b = 5 mm, E = 2.1 GPa and L = 100 mm

with pinned-pinned boundary conditions. The smooth FEA curve that is unlike the

curves for symmetric designs with two sharp points indicates the absence of multiple

switching solutions.
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a
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= 0 = 0
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a
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a
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3
= 0.12 = 0.1

(a)

(b)

Figure 3.11: Critical-point method compared to FEA in Comsol using continuum ele-
ments for asymmetric bistable arches with (a) asymmetric initial shape and (b) asym-
metric boundary conditions

The second way to design asymmetric bistable arches is to take unequal rotary stiff-

nesses at the two ends. Buckling mode shapes including the fundamental mode shape
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will be asymmetric for the straight column with unequal torsion stiffness at the ends. For

example, taking pinned-fixed boundary conditions with the fundamental buckling mode

as the as-fabricated shape yields the asymmetric bistable arch shown in Fig. 3.2d. The

critical-point method for this case with t = 1 mm, b = 5 mm, E = 2.1 GPa and L =

100mm also agrees quite well with FEA as shown in Fig. 3.11b. The sharp region at the

switch-back force is due to an instantaneous deformation of the arch into a symmetric

profile. The stability of the asymmetric bistable arches that belong to the second design

method is found to be better than that of the first.

3.4.4 Fixed-fixed double cosine bistable arches with restricted asym-
metric mode

For fixed-fixed boundary conditions, it can be shown that the first fundamental buckling

mode shape is not bistable unless its asymmetric mode of switching is restricted (Qiu

et al., 2004). This can be physically realized by taking two cosine-shaped arches parallel

to each other and joining them at the center. The analysis described in the last two

sections needs to be modified by taking into consideration two arches instead of one

with the second mode of deformation restricted. The bending energy and compression

energy components in Eq. (3.13) will become double and the strain energy in the springs

will be zero as the displacements at the boundary will be zero for fixed-fixed boundary

conditions. The total potential energy can be written as

PE = 2SEb + 2SEc +WP (3.22)

The equilibrium equations of the double cosine bistable arch with fixed-fixed boundary

conditions and a restricted asymmetric mode have multiple solutions w.r.t. A3. As

the asymmetric deformation is restricted, A2 will always be zero. Moreover, at the

point where multiple solutions exist, one of the solutions corresponds to the case when

A3 = 0. So, instead of Eq. (3.19), we have

A2 = 0

A3 = 0

d2PE

d2A3

= 0

(3.23)

Let us consider a design example of a bistable arch with a minimum travel, utr of

18 mm, a maximum switching force, fs of 15 N , a span not exceeding 100 mm and
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a depth not less than 1 mm. Let us assume the height, hmid to be equal to 10 mm to

achieve a travel greater than 18 mm. By taking the depth to be minimum we have

Q =
hmid
t

= 10

By substituting this into the equilibrium equations and taking the as-fabricated to be the

first buckling mode shape, we obtain from the critical-point method:

Fs =
fsl

3

EIhmid
= 1486.57

Utr =
utr
hmid

= 1.98

which implies that the travel, utr = 19.8 mm, which is greater than 18 mm. Solving for

width, we get b = 100Et3hmid

12fl3
= 11.67 mm. By taking b = 10 mm the switching force

can be reduced below 15 N . The FEA results juxtaposed with the critical points are

shown in Fig. 3.12(a) for the final fixed-fixed design. Note that in the case of fixed-fixed

bistable arches, the first five mode shapes were used for approximation, i.e., m = 5, for

improved accuracy.

Next, let us design for an axial spring attached to one of the ends of the designed

bistable arch. As we reduce the axial stiffness, the compression energy at the intermedi-

ate unstable equilibrium that helps the arch to have two stable states reduces, eventually

resulting only in snap-through but not bistability. The results from the critical-point

method for an axial stiffness KH = 3 × 105N/m attached to the fixed-fixed double-

cosine designed previously are shown in Fig. 3.12(b). The deviation of the critical points

from FEA is mainly because of the displacement in the axial spring. The reduction of the

bending energy of the arch due to this displacement is not accounted for in Eq. (3.13) to

simplify the model. As a result, the critical-point method over-estimates the switching

and switch-back forces when the axial displacement is significant. The limiting stiff-

ness, i.e., the minimum stiffness of the lumped axial spring required so that the arch is

bistable is found to be 1.19×104N/m (KH) as shown in Fig. 3.13. We can observe how

the switch-back force decreases and eventually becomes zero as the limiting stiffness

decreases. Note that the critical points are joined with lines only for ease in visualiza-

tion. They are neither considered to be approximate force-displacement curves nor are

they used for obtaining the limiting stiffness.
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K
H

(a)

(b)

Figure 3.12: Critical-point method compared to FEA in Comsol using continuum ele-
ments for fixed-fixed boundary conditions with (a) KH =∞ (b) KH = 3× 105N/m

Figure 3.13: Limiting horizontal stiffness of fixed-fixed double-cosine arch
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3.5 Closure

The motivation for developing bistable arches with revolute flexures was to make them

amenable to assembly-free fabrication. Such a bistable arch with compound split-tube

flexures at the pinned-pinned ends has been fabricated as shown in Fig. 3.2e. A semi-

analytical yet powerful critical-point design method has been presented to design bistable

arches with revolute flexures. The effectiveness of the method was illustrated for solv-

ing various bistable arch design problems. If needed, the accuracy of the results can be

improved by adding more terms in the number of mode shapes used in approximating

the deformed profile.

With the aid of the critical-point method, we studied the effect of the rotary stiffness

and the as-fabricated shape on the bistable characteristics. It was found that including

higher mode shapes in the as-fabricated geometric profile can lead to improved designs

with reduced a switching force and a larger switch-back force and travel. One of the im-

portant observations from the contours of feasible space is the possibility of asymmetric

bistable arches, i.e., arches with non-zero a2
a1

, which are rarely seen and utilized in the

literature.

Even though the critical-method point enables analysis, it does not help us design

bistable arches for any given shape. In the next chapter, we follow a completely ana-

lytical approach to derive a relationship between the stable arch-profiles and use such a

relationship for their design.
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Chapter 4

A bilateral relationship between stable
profiles of bistable shallow arches

Synopsis

In the previous chapter, we presented an analysis and design technique to find the crit-

ical bistable characteristics such as: switching and switch-back forces, switching and

switch-back displacements, and travel for a limited range of arch-profiles. In this chap-

ter, we examine bistability without considering the force-displacement characteristics.

The necessary and sufficient conditions derived here are at the force-free stable equilib-

rium states of the arch. The importance is given to design arch-profiles of any shape at

the force-free stable states using a closed-form analytical solution instead of obtaining

the force-displacement characteristics of the arch. We derive the necessary conditions

of the arch-profiles for ensuring bistability. We discuss the analysis using a bilateral

relationship, where given an initial profile, we obtain the toggled profile. We present the

design where as-fabricated initial shapes corresponding to a prescribed stressed toggled

profile are obtained analytically.

4.1 Introduction

Bistable arches have two distinct arch-profiles corresponding to the two stable states:

initial profile and toggled (inverted) profile (Fig. 4.1). The initial profile is the as-

fabricated shape of the arch, wherein the arch is stress-free and the toggled profile is

the profile of the bistable arch when it is in the stressed second stable state, i.e., in its

state of self-stress. These two profiles must be related to each other, i.e., an arch with an

51
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Initial profile
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State

Figure 4.1: Strain energy profile of a bistable arch. Initial-profile and toggled profile are
the arch-profiles corresponding to State 1 and State 2, respectively.

as-fabricated shape has a corresponding toggled profile. An analytical relation between

the two profiles not only provides insights into the behavior of bistable arches but also

helps in design. Incidentally, the design problem of obtaining a stress-free initial profile

from a given toggled profile (sans stress distribution) is a closed form analytical solution.

A relevant design problem is that of a compliant gripper or clamp, as shown in Fig. 4.2,

where a pair of bistable arches grasps a circular object. Here, the gripper requires a

Initial profile

Initial profile

Toggled profiles

Figure 4.2: Schematic of two bistable arches gripping a circular object.

toggled profile that matches the cylindrical profile at the mid-span for a substantive area

of contact. Numerical optimization approaches may be able to solve such problems,

albeit with considerable difficulty. An analytical relation between the arch-profiles, on

the other hand, can easily solve this and similar design problems as illustrated in this

chapter.

Bistability is due to the interaction of bending and compression energies in the arch

as it deforms. A typical strain energy profile of a bistable arch is shown in Fig. 4.1.

Strain energy, which comprises bending and compression energies, increases from zero

to reach a maximum and then decreases to attain a minimum in the second stable state.

We note that bistable arches show asymmetric-bistability when one of the stable equi-

librium states is stress-free: their two equilibrium states do not have equal strain energy.
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The arch when in State 1—its as-fabricated shape—has no strain energy. The second

stable state, State 2, has positive strain energy. Thus, it is not surprising that the ini-

tial and toggled profiles differ in shape. Equivalently, for a bistable mechanism with

symmetric-bistability, both the stable configurations are expected to be identical. For

example, a pre-loaded buckled beam with pinned-pinned boundary conditions shown in

Fig. 4.3 has two stable states with positive and equal strain energy. Therefore, the initial

and the toggled profiles are mirror images of each other; effectively, they are one and the

same. Thus, the difference between strain energies in the two equilibrium states gives

us a hint to decipher the relation between the two profiles.

Initial profile (pre-loaded)

Toggled profile

S
tr
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n
 e

n
er

g
y

Displacement 

State 1 State 2

Figure 4.3: Strain energy profile of a buckled beam. Here, strain energies in the stable
states are identical.

We assume the initial profile to be a weighted combination of all the buckling mode

shapes of the column to analytically derive the relation between the arch-profiles of two

force-free stable states. By using this relation, we describe the analysis and design of

the two stable arch-profiles of shallow pinned-pinned bistable arches, and thereafter we

show that these results are valid for fixed-fixed arches as well. It may be noted that not

every initial profile has a corresponding toggled profile, i.e., certain as-fabricated shapes

might not be bistable. Similarly, not every toggled-shape has a stress-free initial profile.

Hence, the existence of initial and toggled profiles is also addressed. We prove that the

components of fundamental buckling mode shapes should not be absent in the initial

profile of the arch for it to be bistable. Furthermore, insights gained from this relation,

which set basic guidelines for designing arch-profiles, are presented as the corollaries

from the relation. Since the relation is derived for force-free equilibrium states, the

solutions obtained from it are independent of the force-displacement characteristics of

the arch. In other words, once a pair of stable arch-profiles is obtained, bistability can

be achieved using an appropriate mode of actuation.
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First, the necessary and sufficient conditions for the force-free equilibrium states are

derived in terms of two sets of mode shape weights corresponding to the initial and

toggled profiles, ais and Ais respectively for pinned-pinned boundary conditions. The

necessary conditions for bistability and the analytical relation between the mode weights

are derived. The relation is presented in two forms: a closed-form equation for design,

and a simplified nonlinear expression in one variable for analysis. Furthermore, three

key results are deduced from the relation. They are concerned with symmetry in the

arch-profiles and special cases of changes in the signs and magnitudes of mode weights.

Analysis and design examples are illustrated, which are verified with 3D-printed proto-

types and finite element analysis (FEA). Additionally, the bilateral relationship, neces-

sary conditions, and corollaries are shown to hold good for fixed-fixed end conditions

as well. The design capabilities of analytical results for fixed-fixed arches are illustrated

through three design examples. One such example is that of a bistable gripper to grasp

a circular object shown in Fig. 4.4.

Figure 4.4: Schematic of a bistable gripper in the closed configuration.

4.2 Necessary and sufficient conditions for force-free equi-

librium states in bistable arches with pinned-pinned

boundary conditions

The initial profile, h(x), and the deformed profile, w(x), are taken as weighted com-

binations of all the buckling mode shapes of a straight pinned-pinned column. The

normalized as-fabricated profile, H(X), and the normalized deformed shape, W (X),

can be written as

H(X) =
h(XL)

hmid
=
∞∑
i=1

aisin(MiX) (4.1)

W (X) =
w(XL)

hmid
=
∞∑
i=1

Aisin(MiX) (4.2)
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whereMi = iπ, X = x
L

, L the span of the arch, and hmid, the mid-span height, as shown

in Fig. 4.5. Ai and ai are the unknown weights corresponding to the ith buckling mode

x=0 x=L

h
mid

t h(x)

w(x)

Figure 4.5: A bistable arch with pinned-pinned boundary conditions. The solid curve is
the as-fabricated shape, h(x) and the dashed curve is the deformed profile, w(x). L is
the span of the arch, t, in-plane depth and b, the out-of-plane width.

shape; they approximate the deformed profile and as-fabricated shape, respectively, to

the desired level of accuracy. The total strain energy comprises bending and compres-

sion energies.

For an arch with Young’s modulus, E, breadth, b, depth, t and second moment of

area for rectangular cross-section, I = bt3

12
, the strain energy due to bending is given by

seb =
EI

2

∫ L

0

(
d2h

dx2
− d2w

dx2

)2

dx

By normalizing, we get

SEb =
sebL

3

EIh2mid
=

1

2

∫ 1

0

(
d2H

dX2
− d2W

dX2

)2

dX

=
1

4

(
∞∑
i=1

a2iM
4
i +

∞∑
i=1

A2
iM

4
i − 2

∞∑
i=1

aiAiM
4
i

)
(4.3)

As the shallow arch deforms, the axial force, p, leads to compression energy, sec, which

is given by

sec =
1

2
p(sinitial − s) (4.4)

where s is the length of the arch as it deforms and sinitial, the as-fabricated arc-length of
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the arch. For a linear elastic material, we write

p = Ebt

(
sinitial − s

L

)
(4.5)

Assuming the arch to be shallow, i.e.,
(
dh
dx

)2
<< 1, arc-lengths can be approximated as

s =

∫ L

0

√
1 +

(
dw

dx

)2

dx ≈
∫ L

0

[
1 +

1

2

(
dw

dx

)2
]
dx (4.6)

sinitial =

∫ L

0

[
1 +

1

2

(
dh

dx

)2
]
dx (4.7)

Using Eqs. (4.1), (4.2) and (4.4) to (4.7), the normalized compression strain energy,

SEc, can be written as

SEc =
secL

3

EIh2mid
=

1

2
P (Sinitial − S) =

3h2mid
8t2

(
∞∑
i=1

a2iM
2
i −

∞∑
i=1

A2
iM

2
i

)2

(4.8)

where the normalized arc-lengths, S and Sinitial, and the normalized axial force, P , are

S =
sL

h2mid
=

∫ 1

0

[
L2

h2mid
+

1

2

(
dW

dX

)2
]
dX

=
L2

h2mid
+

1

4

∞∑
i=1

A2
iM

2
i (4.9)

Sinitial =
sinitialL

h2mid
=

L2

h2mid
+

1

4

∞∑
i=1

a2iM
2
i (4.10)

P =
pL2

EI
=

12h2midL
2

Lt2

(
Sinitial − S

L

)
=

3h2mid
t2

(
∞∑
i=1

a2iM
2
i −

∞∑
i=1

A2
iM

2
i

)
(4.11)

The normalized strain energy, SE, includes normalized bending energy and compres-

sion energy. By substituting for SEb and SEc from Eqs. (4.3) and (4.8), the strain energy

can be expressed as
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SE =
1

4

(
∞∑
i=1

a2iM
4
i +

∞∑
i=1

A2
iM

4
i − 2

∞∑
i=1

aiAiM
4
i

)
+

3h2mid
8t2

(
∞∑
i=1

a2iM
2
i −

∞∑
i=1

A2
iM

2
i

)2

(4.12)

The necessary conditions for the force-free equilibrium states are obtained as

∂SE

∂Ai
= 0 for i = 1, 2, 3, . . .∞ (4.13)

which leads to

1

4

(
2AiM

4
i − 2aiM

4
i

)
− 3h2mid

8t2
2

(
∞∑
k=1

a2kM
2
k −

∞∑
k=1

A2
kM

2
k

)
2AkM

2
k = 0

=⇒
(
AiM

2
i

)
− 3h2mid

t2

(
∞∑
k=1

a2kM
2
k −

∞∑
k=1

A2
kM

2
k

)
Ai = aiM

2
i for i = 1, 2, 3, . . .∞

=⇒ Ai(M
2
i − 3Q2C) = aiM

2
i for i = 1, 2, 3, . . .∞ (4.14)

where Q = hmid

t
, t, the in-plane depth and C =

∞∑
k=1

a2kM
2
k −

∞∑
k=1

A2
kM

2
k , which is the nor-

malized change of arc-length. The necessary conditions are satisfied by all the force-free

equilibrium states of a bistable arch. This includes two stable states and the in-between

unstable state shown in Fig. 4.1. However, our interest is in the two arch-profiles corre-

sponding to the two stable equilibrium states. Hence, we need to distinguish solutions

corresponding to the stable arch-profiles from that of the unstable arch-profile. The sec-

ond partial derivative test can be used to check if the solution obtained from Eq. (4.14) is

indeed a minimum. The Hessian matrix, H, is computed by differentiating strain energy

twice. The diagonal elements in the matrix, Hii, are obtained as

Hii =
∂2SE

∂A2
i

=
M4

i

2
− 3Q2M2

i

2

(
∞∑
k=1

a2kM
2
k −

∞∑
k=1

A2
kM

2
k

)
+ 3Q2A2

iM
4
i

=
M4

i

2
− 3Q2M2

i C

2
+ 3Q2A2

iM
4
i (4.15)

and the non-diagonal elements as

Hij =
∂2SE

∂Ai∂Aj
= 3Q2AiAjM

2
iM

2
j (4.16)
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The positive definiteness of H at the third equilibrium point ensures its stability, i.e., for

the arch to be bistable

vTHv > 0 (4.17)

for all nonzero vectors v.

4.3 Analytical relation between initial and toggled pro-

files of pinned-pinned bistable arches

We state and prove a few results in this section. We begin with conditions of bistability

on the fundamental mode-weights, a1 and A1. The analytical relation between the two

stable arch-profiles, deduced from Eq. (4.14) and the necessary conditions, is presented

in two forms: one for analysis and the other for design. The corollaries described subse-

quently improve our understanding of bistability and set certain guidelines for designing

bistable arches.

4.3.1 Results

4.3.1.1 Conditions on fundamental mode-weights

A pinned-pinned force-free shallow bistable arch should satisfy the following necessary

conditions.

1. The fundamental mode weight a1 is not zero in the initial profile of the arch.

2. The fundamental mode weight A1 is not zero in the toggled profile of an arch.

4.3.1.2 Relation between Ai and ai

The weight corresponding to the ith mode shape in the toggled profile, Ai, is only de-

pendent on the ith mode shape in the initial profile, ai, i, and ratio of weights of the

fundamental mode shape, a1
A1

. This relation can be expressed as

Ai =
ai

1− 1
i2

(
1− a1

A1

) (4.18)
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This relation between the weights of the mode shapes in the initial and toggled profiles

determines all the mode weights ais and Ais once a1 and A1 become known from the

equation presented next.

4.3.1.3 An equation in A1 (for analysis)

The analytical relation for analysis can be expressed as

3Q2

∞∑
i=1


1
i2

(
1− a1

A1

)
− 2[

1− 1
i2

(
1− a1

A1

)]2
 a2i = 1 (4.19)

Once Q and the as-fabricated profile (i.e., ais) are specified, Eq. (4.19) is a nonlinear

equation in only one variable, A1. Thus, A1 can be determined numerically and then the

rest of the coefficients can be found using Eq. (4.18), thereby giving the toggled profile.

If all the eigenvalues of the Hessian matrix (see Eqs. (4.15) and (4.16)) are positive, one

can conclude that the arch under consideration is bistable.

4.3.1.4 A formula for a1 (for design)

Designing the initial profile for a specified toggled profile entails determining ais for

a given set of Ais and Q. Unlike the equation for A1 in analysis, a1 for design of an

as-fabricated shape can be expressed in closed-form as

a1 = A1

∞∑
i=1

A2
i

i2
− 2

∞∑
i=1

A2
i − 1

3Q2

∞∑
i=1

A2
i

i2

(4.20)

After a1 is obtained from Eq. (4.20), the rest of the ais can be determined from Eq. (4.18).

This formula simplifies the design of the toggled profile considerably. It only involves

evaluating Eqs. (4.18) and (4.20) and checking the Hessian matrix (Eq. (4.17)) for posi-

tive definiteness.

Next, we state three corollaries deduced from Eqs. (4.19) and (4.20).

4.3.1.5 Corollaries

• 1a. For i > 1, Ai = 0 implies ai = 0 and vice versa.

1b. The toggled-profile of a bistable arch with a symmetric initial profile will also

be symmetric and vice versa.
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1c. For i > 1, Ai 6= 0 implies ai 6= 0 and vice versa.

1d. The toggled-profile of a bistable arch with an asymmetric initial profile will

also be asymmetric and vice versa.

• 2a. (a1A1) < 0

2b. (ai>1Ai>1) > 0

• 3a (inexact). Ai is approximately equal to ai for higher values of i.

3b (inexact). For arch-profiles composed of only ais with higher values of i (i ≥
m) along with a1, a21−8

∞∑
i=m

a2i− 4
3Q2 > 0 is necessary and sufficient for bistability.

4.3.2 Proofs and derivations

4.3.2.1 Conditions on fundamental mode-weights

1. If the fundamental mode weight a1 is zero in the initial profile of an arch, it cannot

be bistable.

This result can be shown from the necessary and sufficient conditions, Eqs. (4.14)

to (4.16). Consider a bistable arch with a1 = 0. Then, we have from Eq. (4.14)

A1(M
2
1 − 3Q2C) = 0 (4.21)

For this equation to hold good, either A1 has to be zero or 3Q2C should be equal

to M2
1 = π2. In the latter case, Eq. (4.14) simplifies to

Ai =
a2iM

2
i

M2
i − 3Q2C

=
aii

2π2

i2π2 − π2
=

aii
2

i2 − 1
for i = 2, 3, . . .∞ (4.22)

This implies that |Ai| is greater than |ai|. By using C =
∞∑
i=1

a2iM
2
i −

∞∑
i=1

A2
iM

2
i ,

when a1 is zero, A1M
2
1 can be written as

A2
1M

2
1 =
−M2

1

3Q2
+
∞∑
i=2

a2iM
2
i −

∞∑
i=2

A2
iM

2
i

=⇒ A2
1 =

−1

3Q2
+
∞∑
i=2

a2i i
2 −

∞∑
i=2

A2
i i

2 (4.23)

Since |Ai| is greater than |ai|, the right hand side of Eq. (4.23) is negative resulting

in imaginary solutions for A1. Thus, Eq. (4.21) has a real solution only when
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A1 = 0. From Eq. (4.16), we see that all the elements in the first row and column

except H11 are zero when A1 = 0. Hence, at the stable equilibrium points, H11

should be positive. Using Eq. (4.15),

H11 =
M2

1

2

(
M2

1 − 3Q2C
)
> 0

=⇒ 3Q2C < M2
1 (4.24)

Let us now consider two cases, one where 3Q2C is positive and other in which it

is negative. In both the cases, using Eq. (4.14) all the mode weights other than the

fundamental mode weights can be written as

Ai =
a2iM

2
i

M2
i − 3Q2C

(4.25)

In the first case, C is positive since the sign of 3Q2C is determined by C. Then,

Eq. (4.25) implies that |Ai| is greater than |ai|. However, this contradicts our

starting assumption that C is positive, since C =
∞∑
i=1

a2iM
2
i −

∞∑
i=1

A2
iM

2
i . Similarly,

in the second case of 3Q2C < 0, |Ai| should be less than |ai| and C should be

negative at the same time, which is not possible. Therefore, 3Q2C must be zero to

satisfy Eq. (4.24), which corresponds to ai = Ai, the as-fabricated shape. Thus,

the arch cannot have two stable arch-profiles with a1 = 0.

2. The fundamental mode weight A1 cannot be zero in the toggled profile of an arch.

When A1 = 0, Eq. (4.14) implies that a1 = 0. Hence, following the preceding

arguments, the arch has only one stable state when A1 = 0.

4.3.2.2 Relation between Ai and ai

For deriving this relation, it is important to note that in the stable force-free equilibrium

state of the arch, 3Q2C should be less than 4π2. To show this, let us assume that 3Q2C =

M2
j = j2π2 at the force-free equilibrium state. For the arch to be bistable, H11 should

be greater than zero, i.e.,

H11 =
M4

1

2
− 3Q2M2

1C

2
+ 3Q2A2

1M
4
1 =

π4

2

(
1− j2 + 6Q2A2

1

)
> 0 (4.26)

=⇒ j2 <1 + 6Q2A2
1 (4.27)
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Hence, from Eq. (4.27) we can say that the arch cannot be bistable when j2 > 1+6Q2A2
1.

According to Sylvester’s criterion, the determinant of the upper left 2×2 corner of H

should also be positive for the positive definiteness of H. This determinant can be

written as

H11H22 −H2
12 = π8

[
A2

1Q
2(24− 6j2) + 24A2

2Q
2(1− j2) + j4 − 5j2 + 4

]
(4.28)

Since Eq. (4.28) is quadratic in j2, its sign can change only twice as we increase j from

0 to∞. H11H22 − H2
12 equals to 18π8A2

1Q
2, −72π8A2

2Q
2, and −144π8A2

1A
2
2Q

4 when

j2 is 1, 4, and 1 + 6Q2A2
1, respectively. This means that H11H22−H2

12 is negative when

j is greater than 2 but less than
√

1 + 6Q2A2
1. Combining the result from Eq. (4.27), we

can say that j should be less than 2 when the arch is in a force-free stable equilibrium

state. Also, in the preceding section it was proved that 3Q2C 6= π2 in the second stable

state. Thus, for a bistable arch in its force-free equilibrium state, 3Q2C 6= k2π2, where

k is an integer.

As proved earlier, the necessary conditions for bistability imply that the component

of the fundamental buckling mode in the initial and toggled profiles is not zero for an

arch to be bistable, i.e., a1 6= 0 and A1 6= 0. Thus, from Eq. (4.14), we have

3Q2C =

(
M2

1 −
a1
A1

M2
1

)
(4.29)

Equations (4.14) and (4.29) help us write Ai in terms of ai, i, a1, and A1 as

Ai =
aiM

2
i

M2
i −M2

1

(
1− a1

A1

)
=

ai

1− 1
i2

(
1− a1

A1

) ∵ Mi = iπ

Hence, Eq. (4.18) is proved. Note that M2
i − M2

1

(
1− a1

A1

)
cannot be zero as 3Q2C

cannot be equal to i2π2 in the force-free equilibrium states.

To derive the results in Eqs. (4.19) and (4.20), C is written in terms of Ais using



A bilateral relationship between stable profiles of bistable shallow arches 63

Eq. (4.18) as follows:

C =
∞∑
i=1

a2iM
2
i −

∞∑
i=1

A2
iM

2
i

=
∞∑
i=1

a2iM
2
i −

∞∑
i=1

 ai

1− 1
i2

(
1− a1

A1

)
2

M2
i

=
∞∑
i=1

1− 1[
1− 1

i2

(
1− a1

A1

)]2
 a2i i

2π2

=
∞∑
i=1


1
i4

(
1− a1

A1

)2
− 2

i2

(
1− a1

A1

)
[
1− 1

i2

(
1− a1

A1

)]2
 a2i i

2π2

=

(
1− a1

A1

)
π2

∞∑
i=1


1
i2

(
1− a1

A1

)
− 2[

1− 1
i2

(
1− a1

A1

)]2
 a2i (4.30)

By inserting this expression in Eq. (4.14), we get

Ai =
ai

1− 3Q2C
i2π2

=
ai

1− 3Q2

i2

(
1− a1

A1

) ∞∑
i=1

{
1
i2

(
1− a1

A1

)
−2[

1− 1
i2

(
1− a1

A1

)]2
}
a2i

(4.31)

Comparing Eq. (4.31) with Eq. (4.18) and ignoring the trivial solution (Ai = ai), we get

Eq. (4.19), which is the relation that can be used for analysis of bistable arches. This is

a nonlinear equation in only A1, when ais are known. Equation (4.18) can be written as

ai = Ai

[
1− 1

i2

(
1− a1

A1

)]
(4.32)

To obtain the relation used for designing arches, we substitute Eq. (4.32) in Eq. (4.19)

1 = 3Q2

[(
1− a1

A1

) ∞∑
i=1

A2
i

i2
− 2

∞∑
i=1

A2
i

]
(4.33)

By rearranging the terms, we obtain a1 as in Eq. (4.20).
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4.3.2.3 Proofs of corollaries

1a. For i > 1, Ai = 0 implies ai = 0 and vice versa.

When ai is zero, Eq. (4.14) becomes

Ai(M
2
i − 3Q2C) = 0 (4.34)

Equation (4.34) implies that either Ai = 0 or 3Q2C = M2
i . However, we showed

in the preceeding section that the latter cannot be true. So, the only possible

solution to Eq. (4.34) is Ai = 0. To prove the inverse, from Eq. (4.14) we see that

ai = 0 when Ai = 0 .

To illustrate the utility of Result 1a, let us consider a sine-arch with h = 5 mm

and t = 0.5 mm. Since it is a pure sine-arch, a1 = 1 and the remaining ais

are zero. By numerically solving the nonlinear equation, Eq. (4.19), we obtain

A1 = 0.9967. From Eq. (4.18), since all the remaining ais are zero, Ais (i 6= 1)

are also zero. The eigenvalues of H, with the first five buckling mode shapes used

for approximation are, 0.04× 104, 0.30× 104, 1.09× 104, 2.80× 104, 2.89× 104,

which are all positive indicating that the obtained shapes form a bistable arch-

profile pair. Thus, we observe that a pure sine-arch has the same shape in both

the states, but the height of the inverted toggled profile is smaller than that of the

initial profile.

1b. The toggled profile of a bistable arch with a symmetric initial profile will also be

symmetric and vice versa.

In a symmetric bistable arch, all the even mode weights are zero, i.e., am =

0 for m = 2, 4, 6, . . .∞. From Result 1a, we know that the corresponding Ais

are also zero, i.e., the toggled profile is also symmetric. Similarly, from Result 1a,

ams are zero when Ams corresponding to even mode shapes are zero.

1c. For i > 1, Ai 6= 0 implies ai 6= 0 and vice versa.

As mentioned before in Result 1a, 3Q2C cannot be equal to M2
i such that the

resulting toggled profile is stable. Thus, from Eq. (4.14), if a mode weight is non-

zero in one of the stable states, its corresponding mode weight in the other stable

state is also non-zero.

1d. The toggled-profile of a bistable arch with an asymmetric initial profile will also

be asymmetric and vice versa.
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Bistable arches with asymmetric buckling modes in their as-fabricated shape are

called asymmetric bistable arches. When an even mode shape is present in one of

the stable arch-profiles, according to Result 1c, it would be present in the other

stable state as well. Hence, if one of the stable arch-profiles is asymmetric the

other profile is also asymmetric.

2a. (a1A1) < 0.

The fundamental buckling mode is always present in the stable arch-profiles (see

Section 4.3.1.1). Intuitively, a1A1 being negative means that the arch flips with

respect to this fundamental buckling mode. This can be seen from Eq. (4.20).

Since
∞∑
i=1

A2
i

i2
is always positive, the sign of a1 is determined by the sign of A1 and

∞∑
i=1

A2
i

i2
− 2

∞∑
i=1

A2
i − 1

3Q2 . The latter will be negative as A2
i

i2
is less than 2A2

i . Thus,

we have that (a1A1) < 0.

2b. (ai>1Ai>1) > 0. The signs of all the mode weights except the fundamental mode

weight remain unchanged as the arch toggles from one stable state to the other. In

Section 4.3.2.2, we observed that 3Q2C should be less than 4π2. Using Eq. (4.29),

the maximum value of 1− a1
A1

is less than 4. Hence, 1
i2

(
1− a1

A1

)
cannot be greater

than one, even when i = 2. Thus, from Eq. (4.18) we see that the sign of Ai is the

same as the sign of ai and vice versa, for i > 1.

3a. (inexact) Ai is approximately equal to ai for higher values of i.

Result 3a is an approximate result on the magnitude of higher mode weights (ai/Ai
with larger values of i). For higher values of i, the term 1

i2

(
1− a1

A1

)
can be

neglected in Eq. (4.18). Hence, Eq. (4.18) becomes

Ai ≈ ai (4.35)

In other words, the weights of higher buckling mode shapes in the toggled profile

and initial profile would be approximately equal. In Section 4.3.2.3, where we

proved that ai>1Ai>1 > 0, it was observed that 1 − ai
Ai

is less than 4. Hence, the

approximation ai ≈ Ai will have a maximum error of 4% if i is greater than 10.

The maximum error will come down to 1% for i > 20.

3b. (inexact) For arch-profiles composed of only ais with higher values of i (i ≥ m,

where m is the least value of i such that Result 3a is valid) along with a1, a21 −
8
∞∑
i=m

a2i − 4
3Q2 > 0 is necessary and sufficient for bistability.
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For arch-profiles with only corrugations on the sine-curved profile (all ais with

values of i other than i = 1 and i ≥ m are absent), Result 3a is valid for i ≥ m.

Using Eq. (4.35) in Eq. (4.19), the relation for analysis can then be approximated

as

A2
1 + a1A1 + 2

∞∑
i=m

a2i +
1

3Q2
= 0 (4.36)

When this quadratic equation in A1, Eq. (4.36), has two real roots the arch is

bistable. These two roots correspond to the unstable equilibrium and the stressed

second stable equilibrium. This can be expressed mathematically using the dis-

criminant of Eq. (4.36) as

a21 − 8
n∑

i=m

a2i −
4

3Q2
> 0 (4.37)

Consider a bistable arch with two higher buckling modes in the initial profile with

Q = 10 given in Fig. 4.6. The solid curve is the initial profile and the dashed curve

is the toggled profile. The nonzero mode weights in the as-fabricated shape are

0 0.2 0.4 0.6 0.8 1
-1.5

-1

-0.5

0

0.5

1

1.5
Initial profile

Toggled profile

Figure 4.6: An asymmetric initial profile and its toggled profile with a10 = a20 = 0.1
and Q = 10.

a1 = 1, a10 = 0.1, and a20 = 0.1, which satisfies Eq. (4.37). The toggled profile

has A1 = −0.9537, A10 = 0.1021, and A20 = 0.1005 as its mode weights. As the

value of i increases, from 10 to 20, we notice that the difference between Ai and

ai decreases. This result is useful when slight local modifications are needed in

an arch profile.
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4.4 Illustrative examples of analysis and design

In this section, we use the results presented in the preceding sections to analyze and de-

sign bistable arches. The examples illustrated here are organized into three subsections:

(1) Analysis of specified initial profiles, (2) design of toggled profiles, and (3) adding

higher buckling modes to bistable arches. The comparison of the obtained toggled pro-

files with finite element analysis (FEA) and 3D-printed prototypes concerned with the

examples are given at the end of this section.

4.4.1 Analysis of bistable arches with specified initial profiles

All ais are known when the initial profile is specified. In the first step of the analysis, it

should be ensured that a1 is non-zero (see the condition on fundamental mode-weights).

For example, a straight beam, i.e., an arch with all ais equal to zero, cannot be bistable.

A1 can be obtained by numerically solving Eq. (4.19). Note that Eq. (4.19) is a nonlinear

equation and may have multiple solutions. A numerical approach with an initial guess as

−a1 usually gives A1 corresponding to the toggled profile. Other solutions correspond

to in-between unstable arch-profiles. The remainingAis are determined from Eq. (4.18).

In the last step, by substituting ais and Ais in Eqs. (4.15) and (4.16), H is obtained. The

positive definiteness of the Hessian ensures that the Ais correspond to a stable toggled

profile.

Example 1

An angulated profile is shown in Fig. 4.7. When c = L
2

, a symmetric V-beam profile is

h
mid

L
c

Figure 4.7: Angulated arch-profile

obtained. Taking the first 30 buckling mode shapes, i.e., n = 30, the specified profile

can be written in terms of ais as shown in Fig. 4.8a. The value of n is decided based on a

convergence study. As given in Fig. 4.9, with higher values of n, h(x) fits tightly to the

specified profile. For n = 30, the specified arch-profile is approximated with sufficient

accuracy. For hmid = 5 mm, L = 100 mm, and t = 0.5 mm, the arch is bistable with

A1 = −0.77 as determined using Eq. (4.19).
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(a) Initial profile with c = 50 mm
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(b) Toggled profile with c = 50 mm
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(c) Initial profiles of elliptical arches
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(d) Toggled profiles of elliptical arches

Figure 4.8: Toggled profiles of the arches obtained using the relation for analysis.
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Figure 4.9: Convergence of h(x) to the specified-profile with higher values of n

As mentioned before, the in-between unstable solutions also satisfy Eq. (4.19). Fig-

ure 4.10 shows the unstable arch-profile along with its two stable arch-profiles when

c = L
2

. However, bistability is not observed for all the values of c. For example, when

c = L
4

and Q = 10, Eq. (4.19) does not have a root that gives a stable toggled profile.

The force-displacement characteristic at the mid-span when c = 25 mm is shown in

Fig. 4.11.
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Figure 4.10: Two stable arch-profiles and an unstable arch-profile for c = L
2
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Figure 4.11: Force-displacement curve showing snap-through but not bistability when
c = 25 mm, L = 10 mm, E = 1.2 GPa, b = 5 mm, and t = 0.5 mm

Example 2

Elliptical arches (see Fig. 4.12) can be bistable. The minor axis of the ellipse is varied

h
mid

L

Figure 4.12: Elliptical arch-profile

to change hmid with L = 100 mm for t = 0.5 mm. The initial and toggled arch-profiles

are shown in Figs. 4.8c and 4.8d, respectively. A1 when hmid is 10 mm, 7.5 mm, and

5 mm, is−0.9973,−0.9965 , and−0.9943 respectively. It may be noted that the toggled

profile is above the axis near the end-supports.

4.4.2 Design of specified toggled profiles

The next five examples illustrate the utility of Eq. (4.20). As the number of mode shapes

(n) used to represent the arch-profile was not truncated, Eq. (4.20) can be used for de-

signing arches of arbitrary profiles.
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Example 3

We seek an initial profile such that the toggled profile is an angulated beam shown

in Fig. 4.13. Unlike the example where angulated shapes were used as initial pro-

w
mid

L

c

Figure 4.13: Angulated profile in the second stable shape

files, bistable arches with toggled profiles as angulated shapes are possible for both

c = 25 mm and c = 50 mm. Figure 4.14b shows the designed initial profiles.

Example 4

A normally-closed valve based on a bistable arch is considered in this example. As

shown in Fig. 4.15, the toggled profile is desired to take a cup-shape. The initial profile

that gives the cup-shape for L = 100 mm and Q = 10 is given in Fig. 4.14d. Similarly,

a circular-valve can also be obtained instead of the cup-shape valve.

Example 5

A bistable arch design with a polynomial curve as its toggled profile is shown in Fig. 4.14f.

This example shows that the toggled profile need not be completely below the axis of

switching.

Example 6

This example considers a partially specified toggle-profile. When the toggled profile

is only partially specified, the rest of the profile can be selected arbitrarily. A design

example for a clamp application (see Fig. 4.2) illustrates this. It is desired that the initial

profile of the arch should be such that its toggled profile should wrap around a circular

object as in Fig. 4.2. The desired and approximated toggled profiles using n = 100

for a circular object with a 10 mm diameter are shown in Fig. 4.16b and Fig. 4.16a,

respectively. The arch is designed with L = 100 mm, wmid = 10 mm, and t = 0.5 mm.

The initial profile corresponding to the toggled profile given in Fig. 4.16b satisfies the

second partial derivative test.
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(c) Toggled profile of cup-valve
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(e) Polynomial curve as toggled profile
withW = X−0.6X2−X3−X4+1.6X5
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Figure 4.14: Initial profiles of arches obtained using the relation for design
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Figure 4.15: Schematic of a bistable cup-valve

4.4.3 Adding higher buckling modes to bistable arches

In this section, examples with higher-order buckling mode shapes are presented.
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(a) Desired clamp profile
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Figure 4.16: Design of a bistable clamp

Example 7

Bistable circular valves can benefit from two protrusions when they come into contact

with the valve-seat, providing a tight fit to prevent leakage. The toggled profile shown

in Fig. 4.17a shows such a design; its initial profile is given in Fig. 4.17b.

Example 8

Corollary 3 discusses the case when higher buckling mode shapes are added to the sine-

curve profile. In this example, the initial profile is obtained by adding the 49th mode to

the fundamental buckling mode, i.e.,

H(X) = a1 sin(πX) + a49 sin(49πX) (4.38)

For the arch to remain bistable, from Eq. (4.37), we have

a21 − 8a249 −
4

3Q2
> 0 (4.39)

The geometric parameters of the arch are taken as L = 100 mm, t = 0.5 mm, hmid =

5 mm, and a1 = 1. Thus, Eq. (4.39) is simplified to

1− 8a249 −
4

300
> 0

=⇒ a49 < 0.351

Figures 4.17c and 4.17d show the initial and toggled profiles with a49 = 0.34.
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(a) Valve-profile with protrusions
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(e) Initial profile with asymmetric corruga-
tions
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Figure 4.17: Design of bistable arch-profiles with higher mode weights

Example 9

The corrugations can also be added asymmetrically to the arch-profile. Figures 4.17e

and 4.17f show two force-free arch-profiles of a bistable arch with corrugations only on

the left half of the span.

All the examples considered here are verified using FEA with continuum elements

in Comsol (www.comsol.com). The toggled profiles obtained from FEA are compared

with Examples 4, 6, and 7 in Fig. 4.18. 3D-printed prototypes of the arches illustrated

in analysis and design with and without higher buckling modes are shown in Fig. 4.19.
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Figure 4.18: Comparison of a toggled profile with FEA
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(a1) Example 1 with c = 50 mm (a2) Example 1 with c = 50 mm

(b1) Example 2 with hmid = 5 mm (b2) Example 2 with hmid = 5 mm

(c1) Example 3 with c = 25 mm (c2) Example 3 with c = 25 mm

(d1) Example 6 (d2) Example 6

(e1) Example 7 (e2) Example 7

(f1) Example 9 (f2) Example 9

Figure 4.19: Initial and toggled profiles of 3D-printed prototypes. (a1)-(f1) are stress-
free as-fabricated profiles; (a2)-(f2) are the corresponding toggled profiles.
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4.5 Necessary and sufficient conditions for force-free equi-

librium states in fixed-fixed bistable arches

Now we show that the bilateral relationship and the results derived from it are valid

for fixed-fixed end conditions as well. The proofs for fixed-fixed boundary conditions

are similar, the key difference being M1 is 2π instead of π. Hence, the derivations are

presented succinctly. For arbitrarily curved arches with fixed-fixed boundary conditions

(see Fig. 4.20), the initial profile, h(x), and the deformed profile, w(x), are taken as the

weighted combinations of the buckling mode shapes of a straight fixed-fixed column.

The arch-profiles obtained from such a choice of basis set are kinematically admissible

and tend to show bistability.

x=0 x=L

h
mid

t
h(x)

w(x)

Figure 4.20: Fixed-fixed bistable arches with an arbitrary initial profile

Similar to the case of pinned-pinned end conditions, by taking Ai and ai as the

unknown weights corresponding to the ith buckling mode shape, the normalized as-

fabricated profile, H(X), and the normalized deformed shape, W (X), are written as

H(X) =
h(XL)

hmid
=
∞∑
i=1

aiWi (4.40)

W (X) =
w(XL)

hmid
=
∞∑
i=1

AiWi (4.41)

where

Wi(X) =

1− cos(MiX) i = 1, 3, 5 . . .

1− 2X − cos(MiX) + 2 sin(MiX)
Mi

i = 2, 4, 6 . . .
(4.42)

Mi =

(i+ 1)π i = 1, 3, 5 . . .

2.86π, 4.92π, 6.94π . . . i = 2, 4, 6 . . .
(4.43)

X = x
L

, L, the span of the arch, and hmid, the mid-span height. Note that Mi for

i = 2, 4, 6, . . . satisfies the equation tan(Mi

2
) = Mi

2
. The total strain energy, which



A bilateral relationship between stable profiles of bistable shallow arches 77

consists of bending and compression energies, is written in terms of the mode weights

as

SE =
1

4

(
∞∑
i=1

a2iM
4
i +

∞∑
i=1

A2
iM

4
i − 2

∞∑
i=1

aiAiM
4
i

)
+

3h2mid
8t2

(
∞∑
i=1

a2iM
2
i −

∞∑
i=1

A2
iM

2
i

)2

(4.44)

We note that the change in the basis set for fixed end-conditions has not changed the total

strain energy expression. By minimizing the strain energy with respect to the unknown

weights corresponding to the deformed profile, the necessary conditions for the force-

free equilibrium states are obtained as

∂SE

∂Ai
= 0 for i = 1, 2, 3, . . .∞ (4.45)

which simplify to

Ai(M
2
i − 3Q2C) = aiM

2
i for i = 1, 2, 3, . . .∞ (4.46)

C =
∞∑
k=1

a2iM
2
i −

∞∑
k=1

A2
iM

2
i (4.47)

where Q = hmid

t
, and t, is the in-plane depth. The Hessian matrix H, obtained by dif-

ferentiating Eq. (4.44) twice should be positive definite if the arch-profile pair obtained

from the necessary conditions is stable. The diagonal elements in the matrix, Hii, and

the non-diagonal elements, Hij , are obtained as

Hii =
∂2SE

∂A2
i

=
M4

i

2
− 3Q2M2

i C

2
+ 3Q2A2

iM
4
i (4.48)

Hij =
∂2SE

∂Ai∂Aj
= 3Q2AiAjM

2
iM

2
j (4.49)

The positive definiteness of H is checked by

vTHv > 0 (4.50)

for all nonzero vectors v

For cosine-curved bistable arches, the second asymmetric mode of deformation needs

to be constrained to ensure bistable operation. This restraint is physically realized by
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connecting two cosine-curved arches at the center. Such double-cosine arches, when

they switch between the stable equilibrium states, do not undergo asymmetric switching.

Nonetheless, the aforementioned analysis remains valid as the constraint does not affect

the arch-profiles in their stable states, but influences only the in-between deformation

between them. However, the profiles obtained from the design equations presented in

this work need to be made double-curved while fabricating them as shown in Fig. 4.21.

Figure 4.21: Double bistable arch with constrained asymmetric deformation.

4.6 Analytical relation between the initial and toggled

profiles of fixed-fixed bistable arches

By using the necessary conditions for equilibrium, i.e., Eq. (4.46), a bilateral relationship

between force-free arch-profiles can be obtained analytically. The key observation that

leads to this derivation is that the constant C is common in Eq. (4.46) for all the values

of i. By solving for C from Eq. (4.46) when i = 1, Ai

ai
is written in terms of A1

a1
and Mi.

This step in turn simplifies the expansion for C to arrive at the bilateral relationship.

We begin this section by stating and proving two conditions on fundamental mode

weights. Then, an upper limit on the term 3Q2C that corresponds to the compression

energy in the arch is obtained. Both these conditions are essential in deriving the bilat-

eral relationship. Further, the relationship is derived in forms amenable to analysis and

design. Subsequently, insights gained from the bilateral relationship are presented as

corollaries.

4.6.1 Conditions on fundamental mode-weights of fixed-fixed force-
free shallow bistable arch

1. The fundamental mode weight a1 is not zero in the initial profile of a bistable arch.

2. The fundamental mode weight A1 is not zero in the toggled profile of a bistable

arch.

To prove the first condition, consider Eq. (4.46) with a1 = 0. We have

A1(M
2
1 − 3Q2C) = 0 (4.51)



A bilateral relationship between stable profiles of bistable shallow arches 79

Here, 3Q2C cannot be equal to M2
1 = 4π2 as it results in imaginary solutions for A1.

When 3Q2C = 4π2, from Eq. (4.46) we have

Ai =
aiM

2
i

M2
i − 3Q2C

(4.52)

=
aiM

2
i

M2
i − 4π2

i = 2, 3, . . .∞ (4.53)

Thus, |Ai| is greater than |ai|, since Mi is greater than 2π for i greater than 1. Therefore,

we see from Eq. (4.47) that C is negative which contradicts our starting assumption

that C = 4π2

3Q2 . Further, by substituting a1 = 0 and 3Q2C = 4π2 in Eq. (4.47), we

get that A2
1 is negative. So, the only real solution for Eq. (4.51) is when A1 = 0.

However, we see next that these real solutions do not lead to stable arch-profiles. We

construct this argument on the stability of the arch-profiles based on the Hessian H. By

substituting A1 = 0 in Eqs. (4.48) and (4.49), we see that the only element that remains

non zero in the first row and column of H isH11. Hence, for the arch-profile to be stable,

H11 =
M2

1

2
(M2

1 − 3Q2C) > 0. This implies that

3Q2C < M2
1 (4.54)

3Q2C, and thereby C, can be positive, negative, or zero while satisfying this inequality.

When C is positive, Eq. (4.52) implies that |Ai| is greater than |ai|. This further implies

that C is negative, which is a contradicts the starting assumption that C is positive. A

similar situation arises when C is assumed to be negative. Hence, C should be zero

while satisfying Eq. (4.54). This solution, ai = Ai, corresponds to the starting as-

fabricated shape of the arch. Hence, the fundamental mode weight a1 is not zero in the

initial profile of a bistable arch.

To prove that the fundamental mode weight A1 is not zero in the toggled profile of a

bistable arch, we note that a1 = 0 when A1 = 0. We already showed that when a1 and

A1 are zero, the arch has only one stable state.

4.6.2 An upper limit on 3Q2C for fixed-fixed boundary conditions

The term 3Q2C is the measure of the change of length of the arch. We obtain an upper

limit on 3Q2C to aid in the derivation of the bilateral relationship and the corollaries

presented thereafter. Let us assume that 3Q2C = j2π2 at the force-free equilibrium

state. For the arch to be bistable, H11 and the determinant of the upper left 2×2 corner
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of H , H11H22 −H2
12, should be positive, i.e.,

H11 =
M4

1

2
− 3Q2M2

1C

2
+ 3Q2A2

1M
4
1

= π4
(
8− 2j2 + 48Q2A2

1

)
> 0

=⇒ j2 < 4 + 24Q2A2
1 (4.55)

H11H22 −H2
12 =C1j

4 + C2j
2 + C3 > 0 (4.56)

where C1, C2, and C3 can be expressed in terms of A1, A2, and Q. We observe that

Eq. (4.56) is a quadratic expression in j2. This expression takes the values 821.51π8A2
1Q

2,

−1680.59π8A2
2Q

2, and −9642.44π8A2
1A

2
2Q

4 when j is 2, 2.86, and
√

4 + 24Q2A2
1, re-

spectively. This suggests that H11H22 − H2
12 is negative when j is greater than 2.86

but less than
√

4 + 24Q2A2
1. This condition along with Eq. (4.55) implies that j should

be less than 2.86 when the arch is in a force-free stable equilibrium state. Also, in the

preceding section, while proving the conditions on the fundamental mode weights, it

was shown that 3Q2C 6= 4π2 in the second stable state. Thus, for a bistable arch in its

force-free equilibrium state, 3Q2C 6= M2
i .

4.6.3 Bilateral relationship for fixed-fixed boundary conditions

We first derive a relation between Ai and ai by expressing 3Q2C in terms of a1, A1, and

M1. In Section 4.6.1, we showed that A1 and a1 are non zero in the stable equilibrium

states of the bistable arch. By using Eq. (4.46), this helps us write 3Q2C as

3Q2C =

(
M2

1 −
a1
A1

M2
1

)
(4.57)

By substituting Eq. (4.57) back into Eq. (4.46), Ais for i > 1 can be written as

Ai =
ai

1− M2
1

M2
i

(
1− a1

A1

) (4.58)
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By using this relation, Eq. (4.47) is simplified as follows:

C =
∞∑
i=1

a2iM
2
i −

∞∑
i=1

A2
iM

2
i

=
∞∑
i=1

a2iM
2
i −

∞∑
i=1

 ai

1− M2
1

M2
i

(
1− a1

A1

)
2

M2
i

=
∞∑
i=1

1− 1[
1− M2

1

M2
i

(
1− a1

A1

)]2
 a2iM

2
i

=

(
1− a1

A1

)
M2

1

∞∑
i=1


M2

1

M2
i

(
1− a1

A1

)
− 2[

1− M2
1

M2
i

(
1− a1

A1

)]2
 a2i (4.59)

By substituting for C in Eq. (4.46), we get

Ai =
ai

1− 3Q2C
M2

i

=
ai

1− 3Q2M2
1

M2
i

(
1− a1

A1

) ∞∑
i=1


M2

1
M2

i

(
1− a1

A1

)
−2[

1−
M2

1
M2

i

(
1− a1

A1

)]2
 a2i

(4.60)

By comparing the denominators in Eqs. (4.58) and (4.60), we get

3Q2

∞∑
i=1


M2

1

M2
i

(
1− a1

A1

)
− 2[

1− M2
1

M2
i

(
1− a1

A1

)]2
 a2i = 1 (4.61)

Note that we have ignored the trivial solution corresponding to the initial profile (Ai =

ai) in writing Eq. (4.61). This equation can be written in terms of Ais by substituting for

ai from Eq. (4.58) as

3Q2

[(
1− a1

A1

) ∞∑
i=1

A2
iM

2
1

M2
i

− 2
∞∑
i=1

A2
i

]
= 1 (4.62)
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Upon rearranging the terms, we get a closed-form expression for a1:

a1 = A1

∞∑
i=1

M2
1A

2
i

M2
i
− 2

∞∑
i=1

A2
i − 1

3Q2

∞∑
i=1

M2
1A

2
i

M2
i

(4.63)

Equations (4.58), (4.61) and (4.63) capture the bilateral relationship between the

force-free profiles of a fixed-fixed bistable arch. Equation (4.61) is used for analysis, i.e.,

to obtain the stressed toggled profile for a given stress-free as-fabricated profile. This

equation reduces to a nonlinear equation in a single variable A1 once the as-fabricated

shape (ais) is specified. By using Eq. (4.58), the remaining Ais can be obtained. To

design bistable arches for a desired toggled profile, i.e., to obtain the values of ais given

Ais, the closed form analytical relation Eq. (4.63) is used. The bistability of the arch-

profile pairs obtained from analysis and design problems is checked for sufficiency con-

ditions using Eq. (4.50). Section 4.7 comprises examples using the bilateral relationship

for the design and analysis of fixed-fixed arch-profiles. We discuss a few useful insights

of the bilateral relationship before that.

4.6.4 Corollaries

In this section, we summarize the results and insights pertaining to the magnitude and

sign of the mode weights deduced from the bilateral relationship.

1a. For i > 1, Ai = 0 implies ai = 0 and vice versa.

When ai is zero, Eq. (4.46) becomes

Ai(M
2
i − 3Q2C) = 0 (4.64)

In Section 4.6.2, we showed that 3Q2C cannot be equal to M2
i when the arch is

in a stable equilibrium state. Thus, Equation (4.64) implies that Ai = 0. To prove

the converse, we see from Eq. (4.46) that ai = 0 when Ai = 0.

1b. The toggled profile of a bistable arch with a symmetric initial profile will also be

symmetric and vice versa.

From Corollary 1a, we know that when am = 0, the corresponding Am is also

zero for m = 2, 4, 6, . . .∞. , i.e., the toggled profile is symmetric when the initial

profile is symmetric. Similarly, the converse is also true.
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1c. For i > 1, Ai 6= 0 implies ai 6= 0 and vice versa.

As mentioned before in Result 1a, 3Q2C cannot be equal to M2
i such that the

resulting toggled profile is stable. Thus, from Eq. (4.46), if a mode weight is non

zero in one of the stable states, its corresponding mode weight in the other stable

state is also non zero.

1d. Toggled-profile of a bistable arch with asymmetric initial profile will also be asym-

metric and vice versa.

If a bistable arch is asymmetric, at least one mode weight corresponding to an

asymmetric mode is not zero in its as-fabricated shape. From Corollary 1c, we

have that the same mode will be non zero in the other stable state as well.

2a. (a1A1) < 0.

This can be deduced from the bilateral relationship for design. The term
∞∑
i=1

M2
1A

2
i

M2
i
−

2
∞∑
i=1

A2
i − 1

3Q2 in Eq. (4.63) is negative because M2
1

M2
i

is always less than 2. Thus,

the signs of a1 and A1 are different.

2b. (ai>1Ai>1) > 0. We proved in Section 4.6.2 that 3Q2C should be less than

2.862π2. This implies that the maximum value of 1− a1
A1

is less than 1.045 (from

Eq. (4.57)). Hence, 1
i2

(
1− a1

A1

)
cannot exceed unity for any value of i. Thus,

from Eq. (4.58) we see that the sign of Ai is determined by the sign of ai and vice

versa, for i > 1.

3a. (inexact) Ai is approximately equal to ai for higher values of i.

Corollary 3a is an approximate result that becomes accurate for larger values of i.

This result is obtained by neglecting the term M2
1

M2
i

(
1− a1

A1

)
in Eq. (4.58). Hence,

Eq. (4.58) becomes

Ai ≈ ai (4.65)

In Section 4.6.4, we observed that 1 − ai
Ai

is less than 1.045. Hence, the approxi-

mation ai ≈ Ai will have a maximum error of 3.5% if i is greater than 10.

3b. (inexact) For arch-profiles composed of only ais with higher values of i (i ≥ m,

where m is the least value of i such that Corollary 3a is valid) along with a1,

a21 − 8
∞∑
i=m

a2i − 4
3Q2 > 0 is necessary and sufficient for bistability.
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For arch-profiles with only higher mode shapes (i ≥ m) along with the funda-

mental mode shape, Corollary 3a is valid for i ≥ m. By substituting Eq. (4.65) in

Eq. (4.61), we get

A2
1 + a1A1 + 2

∞∑
i=m

a2i +
1

3Q2
= 0 (4.66)

For the arch to be bistable, Eq. (4.66) should have two real roots, i.e., the discrim-

inant needs to be positive. Thus, we have

a21 − 8
n∑

i=m

a2i −
4

3Q2
> 0 (4.67)

4.7 Illustrative Examples

4.7.1 Analysis

The nonlinear form of the bilateral relationship, i.e., Eq. (4.61), is used to obtain the tog-

gled second stable profile of the bistable arch for a given as-fabricated profile. Consider

the initial profile specified in Fig. 4.22. As mentioned before, the initial profile consid-

0 0.02 0.04 0.06 0.08 0.1

-0.02

-0.01

0

0.01

0.02

0.03 Specified-profile

Initial profile in terms of first 20 mode shapes

Figure 4.22: Specified and approximated initial profiles

ered here is a double curve to restrict the asymmetric switching mode in the arch. The

first step in the analysis is to represent this profile on the basis of buckling mode shapes

as in Eq. (4.40); here, the first 20 buckling mode shapes are used for the approximation.

Thus, we have the ais (i = 1, 2, . . . , 20) corresponding to this profile. Note that the num-

ber of mode shapes is taken to be 20 on the basis of a convergence analysis. Depending

on the arch-profile this number can vary, nonetheless, in this case we observe in Fig. 4.22

that by taking n = 20 specified-profile is well approximated. For hmid = 10 mm and

t = 0.5 mm, Q is 20. By numerically solving Eq. (4.61), A1 is obtained to be −0.5388.
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The remaining Ais are found using Eq. (4.58). The toggled profile is given in Fig. 4.23.

The matrix H is found to be positive definite. We know that every as-fabricated profile

might not exhibit bistability. Such cases would result in H with negative eigenvalues.

When compared to the bistable arch profiles with pinned-pinned boundary conditions,

one would come across more fixed-fixed profiles that are not bistable. This can be at-

tributed to the compliance at the ends for a pinned arch compared to a fixed arch. The

pinned arch by rotating at the ends reduces the compression energy stored in the second

stable state, thus, allowing a broader range of arch-profiles that are bistable.

0 0.02 0.04 0.06 0.08 0.1

-0.03

-0.02

-0.01

0

0.01

0.02
Arch profile in the second stable state

Figure 4.23: Toggled profile corresponding to the initial profile in Fig. 4.22.

In the next example, a quartic polynomial is taken as the initial profile of the arch.

The height, H(X) can be expressed as 8X2(X− 1)2 as shown in Fig. 4.24. The toggled

profile of the arch for Q = 20 is given in Fig. 4.25.
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Figure 4.24: As-fabricated profile of the arch.

4.7.2 Design

The bilateral relationship in the form given in Eq. (4.63) is a powerful design tool. Simi-

lar to the example in Section 4.7.1, the first step involves representing the desired toggled

profile in the form of Eq. (4.41). By taking Q = 20, ais are obtained from Eqs. (4.58)
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Figure 4.25: Toggled profile corresponding to the initial profile in Fig. 4.24.
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Figure 4.26: Specified arch-profile in the second stable state

and (4.63); the corresponding arch-profile to the toggled profile taken in Fig. 4.26 is

given in Fig. 4.27. The positive definitiveness of H is ensured for bistability.

0 0.02 0.04 0.06 0.08 0.1

-0.02

-0.01

0

0.01

0.02

0.03
Initial profile

Figure 4.27: Initial profile designed using Eq. (4.63).

Can we design an arch such that the inverted form of the arch-profile considered in

Fig. 4.22 is the toggled profile? Such an arch can be used as an initially-curved valve

mechanism as shown in Fig. 4.28. By taking the ais of the profile in Fig. 4.22 as the Ais

in the design equation Eq. (4.63), the initial profile obtained is shown in Fig. 4.30. Note

that the arch-profile in Fig. 4.22 and Fig. 4.29 are stress-free and stressed, respectively.

With the aid of the analytical equations for the stable profiles, arches with specific
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Figure 4.28: Schematic of a bistable valve mechanism.
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Figure 4.29: Specified arch-profile in the second stable state
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Figure 4.30: Initial profile designed using Eq. (4.63).

changes in slope at any point on the arch can be designed. The points of interest are

taken at X = 0.25 and X = 0.75. For the geometric parameters hmid = 13.46 mm

t = 0.5 mm, and L = 100 mm, an enclosing mechanism design using a bistable arch

is given in Fig. 4.31. When the arch is in the second stable state, the mechanism forms

an enclosure due to a 45o rotation of the vertical arms attached to the initial arch profile.

A 3D-printed model of the design is given in Fig. 4.32. Note that all the arch-profiles

designed using the analytical equations presented here have zero slopes at the end.

The 3D-printed prototypes of the design examples in their two stable states are given

in Fig. 4.33. The shape of the arch-profiles match the analytical prediction. The design

cases of the bistable valve and gripper considered are verified using finite element anal-

ysis (FEA) and the arch-profiles in the second stable state are compared in Fig. 4.34.
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Figure 4.31: Bistable arch with a change of angle of 45o at x = 0.25 mm for hmid =
13.46 mm t = 0.5 mm, and L = 100 mm.

(a)

(b)

Figure 4.32: 3D-printed gripper in its open (a) and closed (b) configurations.

The solid curve is obtained from the bilateral relationship and the dotted curve is ob-

tained from nonlinear FEA using continuum elements. The analytical prediction and

FEA show good agreement, whereas the the 3D-printed profile shows slight deviations

from the predicted profile. This is mainly due to the stiffening that happens at the center

of the arch due to the interconnection between the arches.
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(a)                                            (b)

  (a)                             b)

Figure 4.33: 3D-printed bistable arches with fixed boundary conditions
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Figure 4.34: Verification of the analytical profiles using FEA and 3D-printed prototypes.
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4.8 Closure

Bistable arches find a wide range of applications. Currently, only a limited variety of

arch-profiles are used and analyzed. The bilateral relationship of initial and toggled pro-

files in the two force-free equilibrium states of shallow bistable arches with the pinned-

pinned and fixed-fixed boundary conditions derived in this work fills this gap. Here,

the initial and toggled profile were considered to be weighted combinations of buckling

mode shapes without truncating any terms. Consequently, intricate arch-profiles can be

analyzed and designed. The corollaries presented further improve the understanding of

the changes in magnitudes and signs of the mode weights of the arch-profile as they

switch from one stable state to another. Design examples of bistable arches and mecha-

nisms using bistable arches are presented to illustrate the ease of design using the bilat-

eral relationship. We note that the analytical solutions are insightful in design because

they allow visualization of the other shape rather easily. They also indicate whether a

given stress-free arch-profile is bistable or not without having to perform finite element

analysis.

In the next chapter, we approach bistability in a generalized framework where the

arches are spatial. This way of modeling also captures spatial deformations in planar

arches. We show a few non-intuitive results for bistable arches that planar analysis fail

to capture.



Chapter 5

Analytical modeling of spatial
deformation pathways in planar and
spatial shallow bistable arches

Synopsis

We analyse spatial bistable arches and present an analytical model incorporating axial,

two transverse bending, and torsion energy components. We extend the St. Venant and

Michell relationship used in the flexural-torsional buckling of planar arches and use it

in modelling spatial arches. We study deformation pathways in spatial arches and their

effect on the critical characteristics of bistability and show that not considering spatial

deformation leads to incorrect inferences concerning the bistability of planar arches.

Thus, this model serves as a generalised framework for the existing analysis on planar

arches since they belong to a subset of spatial arches.

5.1 Introduction

Spatial deformation pathways in planar bistable arches reduce switching and switch-

back forces. A planar bistable arch can be actuated with an in-plane force so that it

remains in its plane throughout as it reaches its other planar stable state. In addition to

this planar deformation pathway, the same arch can be actuated to follow a spatial defor-

mation pathway as shown in Fig. 5.1a. A comparison between the force-displacement

characteristics corresponding to spatial and planar deformation pathways is given in

Fig. 5.1b. Our attempt to understand and analytically model spatial deformation path-

91
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Figure 5.1: (a) Planar and spatial deformation pathways of a planar arch; dashed lines
aid visualisation of the curvature of the arch during deformation (b) Switching forces
of a spatially-deforming bistable arch are found to be smaller than those of an arch
deforming in the plane.

ways in planar bistable arches lead us to a new and general class of structures, namely

spatial bistable arches. As shown in Fig. 5.2, the curvature of the spatial arch is not

restricted to a single plane. Two varying orthogonal curvatures of the arch can be seen

in the reflections of the arch in the xy and xz planes. Spatial arches exhibit only spatial

deformation pathways. Spatial arch-profiles of in-between and second stable states of

the arch are also given in Fig. 5.2. Since planar arches with spatial deformations belong

to a subclass of spatial arches, the analytical work presented in this chapter captures

three dimensional deformations in both spatial and planar bistable arches.

Figure 5.2: A pinned-pinned spatial arch in its as-fabricated stress-free, in-between
stressed, and second stressed stable states.
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First, using the modified St. Venant and Michell relationship we describe an analyti-

cal model that captures spatial deformation in shallow spatial arches that are not stressed

in their as-fabricated shape. The model is applicable to arches with varying as-fabricated

shapes with fixed-fixed as well as pinned-pinned boundary conditions. Second, we fo-

cus on the implications of spatial deformation pathways. We show that these pathways

reduce the force required for buckling and post-buckling deformations as compared to

planar pathways. In the context of bistability, this is sometimes desirable as it reduces

the force required for switching between the equilibrium configurations of the bistable

arch. Nonetheless, this also implies that these pathways reduce the stiffness and stability

of the arch. Thus, the geometric and material parameters that excessively favor spatial

deformations can adversely affect bistability; we illustrate this with examples. Further-

more, we study the effect of eccentric loading on the force-displacement characteristics

of spatially deforming arches.

For arches with arbitrary as-fabricated shapes and general boundary conditions, our

analytical model improves the understanding of bistability in four ways: (1) analysing

spatial bistable arches with reduced switching force; (2) designing planar arches with

reduced switching force owing to spatial bistability; (3) eliminating the loss of bistability

due to spatial deformation pathways in planar bistable arches; (4) understanding the

effect of eccentric loading on switching forces.

5.2 Analytical model for arches that deform spatially

We present an analytical model for spatial deformations in non-planar arches in the post-

buckling regime. Such a model also explains the out-of-plane deformations in planar

arches. Let us consider a spatial arch with breadth b, depth t, span L, and mid-span

height hmid as shown in Fig. 5.3. The projections of the central axis of the as-fabricated

stress-free shape of the spatial arch in the xy and xz planes are denoted as w0(x) and

u0(x), respectively. The projections of the deformed central line of the spatial arch in

the xy and xz planes are w(x) and u(x). The initial twist in the cross-section is taken

to be zero and the rotational displacement of the cross section is denoted by φ(x). We
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(a)                                                                              (b)

ϕX

Z

Y

Figure 5.3: A spatial arch with breadth, b, depth, t, span, L, and mid-span height in the
xy plane, hmid.

express these displacements as follows:

w0(x) = hmid

∞∑
i=1

aiwi(x) (5.1)

u0(x) = hmid

∞∑
i=1

biui(x) (5.2)

w(x) = hmid

∞∑
i=1

Aiwi(x) (5.3)

u(x) = hmid

∞∑
i=1

Biui(x) (5.4)

φ(x) =
∞∑
i=1

Ciφi(x) (5.5)

where wi, ui, and φi comprise a basis set that satisfies the boundary conditions of w, u,

and φ, respectively; in fact, they are the buckling mode shapes of a straight column with

corresponding boundary conditions. For the given ais and bis, we determine the mode

weights Ais, Bis, and Cis of the deformed profile by minimizing the potential energy.
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5.2.1 Extension of St. Venant and Michell’s relationship

Axial compression, transverse bending, out-of-plane bending, and torsional energies are

interrelated. We capture this interrelation by extending the St. Venant and Michell’s

relationship to spatial arches. It is helpful to first understand the relation as presented

by St. Venant and Michell for lateral torsional buckling, Ojalvo et al. (1969), in planar

arches. This relation, for an arch in the xy plane with curvature κpxy0 deforming out-

of-plane with displacement up, and rotation of cross-section φp, the effective change in

curvature in the xz plane ∆κpxz is given as follows:

∆κpxz =
d2up
dx2
− φpκpxy0 (5.6)

Note that the subscript p indicates that these equations are only valid for the planar

case. Equation (5.6) implies that the effective change in the curvature of projection of

the deformed arch-profile, in the xz plane, is a combined effect of the rotation of the

cross-section and deformation of the central axis. The first term is the curvature due

to the deformation of the arch in the xz plane. Since the coordinates of the deformed

central axis of the arch are up, the final curvature of the arch is d2up
dx2

. However, the term
d2up
dx2

also includes the contribution from the projection of the curvature of the central

axis due to the rotation of the cross-section. For a positive rotation, φp, this projection

has a positive and upward curvature with a magnitude of φpκpxy0, the second term in

Eq. (5.6). Thus, the effective change in curvature is the difference between these two

terms. Intuitively, this is equivalent to the change in the curvature of an arch with an

initial curvature φpκpxy0 with a deformed profile up.

By denoting the curvatures of w0(x), and u0(x) as κxy0, and κxz0, respectively, the

extended St. Venant and Michell’s relationship is given by

∆κxz =
d2u

dx2
− (κxz0 + φκxy0) (5.7)

∆κxy =
d2w

dx2
− (κxy0 − φκxz0) (5.8)

Equation (5.7) is the equivalent of Eq. (5.6) for spatial arches. The extra term κxz0 is

due to the out-of-plane curvature of the spatial arch. Similarly, Eq. (5.8) is the change

of curvature in the xy plane. However, here the sign of the term φκxz0 is negative. This

is because a positive rotation of the cross-section results in a projection of downward

curvature in the xy plane. Note that φ is assumed to be small (i.e., sin(φ) ≈ φ) in

Eqs. (5.7) and (5.8). Furthermore, by taking κxz0 = d2u0
dx2

, κxy0 = d2w0

dx2
, and ignoring
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higher order terms, Eqs. (5.7) and (5.8) are simplified as:

∆κxz =
d2u

dx2
− (κxz0 + φκxy0) =

d2u

dx2
− d2u0

dx2
− φd

2w0

dx2
(5.9)

∆κxy =
d2w

dx2
− (κxy0 − φκxz0) =

d2w

dx2
− d2w0

dx2
+ φ

d2u0
dx2

(5.10)

5.2.2 Total potential energy

For an arch with Young’s modulus E, and a second moment of area for a rectangular

cross-section about the z-axis and y-axis, Iz and Iy, the strain energy due to bending is

given by

SEb =
EIz

2

∫ L

0

(∆κxy)
2 dx+

EIy
2

∫ L

0

(∆κxz)
2 dx (5.11)

By substituting Eqs. (5.9) and (5.10) into Eq. (5.11), the bending strain energy becomes

SEb =
EIz

2

∫ L

0

(
d2w

dx2
− d2w0

dx2
+ φ

d2u0
dx2

)2

dx (5.12)

+
EIy

2

∫ L

0

(
d2u

dx2
− d2u0

dx2
− φd

2w0

dx2

)2

dx (5.13)

We note in Eq. (5.12) that the u, w, and φ contribute to bending strain energy in the pre-

ceding equation. As the shallow arch deforms, the axial force, f , leads to compression

energy, SEc, which is given by

SEc =
1

2
f(sinitial − s) (5.14)

where s is the length of the arch as it deforms and sinitial, the as-fabricated arc-length of

the arch. Here, we assume that the axial displacement of the arch is uniform along the

length of the arch. This assumption gives accurate results in planar arches and in spatial

arches as we show in subsequent sections. Thus, for a linear elastic material, we write

f = Ebt

(
sinitial − s

L

)
(5.15)
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By assuming the arch to be shallow, i.e.,
(
dw0

dx

)2
<< 1 and

(
du0
dx

)2
<< 1, arc-lengths

can be approximated as

s =

∫ L

0

√
1 +

(
dw

dx

)2

+

(
du

dx

)2

dx

≈
∫ L

0

[
1 +

1

2

(
dw

dx

)2

+
1

2

(
du

dx

)2
]
dx (5.16)

sinitial ≈
∫ L

0

[
1 +

1

2

(
dw0

dx

)2

+
1

2

(
duo
dx

)2
]
dx (5.17)

The rotation of the cross-sections, φ, results in torsional strain energy given by

SEt =
GJ

2

∫ L

0

(
dφ

dx

)2

dx (5.18)

where g is the shear modulus and J is the polar moment of inertia. A point force,

F , is applied at the center of the arch at a point eccentric to the xy plane by e. The

displacements of the midpoint along the y-axis and z-axis, and the work potential due

to these displacements are given by

δy = w0

(
L

2

)
− w

(
L

2

)
+ eφ

(
L

2

)
(5.19)

WP = −Fδy (5.20)

The potential energy, PE, includes bending, compression, and torsional energies, and

the work potential. Thus the total potential energy can be expressed as

PE =SEb + SEc + SEt +WP (5.21)

The equilibrium equations are obtained by minimizing the potential energy with respect

to the unknown mode weights, Ais, Bis, and Cis as follows:

dPE

dAi
= 0 (5.22)

dPE

dBi

= 0 (5.23)

dPE

dCi
= 0 (5.24)
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The analytical solutions for Eqs. (5.22) to (5.24) are obtained, as discussed later, for five

unknown mode weights. In the subsequent sections, we consider these analytical solu-

tions for varying boundary and loading conditions as well as for as-fabricated profiles.

5.3 Spatial arches

In this section, we analyse spatial arches with pinned-pinned and fixed-fixed boundary

conditions and understand the deformation pathways. An example problem is presented

for discussing the post-buckling analysis for each of the boundary conditions.

5.3.1 Hinged and fixed support

Consider an arch with pinned-pinned and fixed-fixed boundary conditions in the xy and

xz planes, respectively. As mentioned before, the buckling mode shapes of a column

with similar boundary conditions are taken as the basis functions to represent the arch-

profile as follows:

wi(x) = sin(iπ
x

L
) i = 1, 2, 3, . . . (5.25)

uj(x) =

1− cos(Mj
x
L

) j = 1, 3, 5 . . .

1− 2 x
L
− cos(Mj

x
L

) + 2
sin(Mj

x
L
)

Mj
j = 2, 4, 6 . . .

(5.26)

Mj =

(j + 1)π j = 1, 3, 5 . . .

2.86π, 4.92π, 6.94π . . . j = 2, 4, 6 . . .
(5.27)

φk(x) =

1− cos(Mk
x
L

) k = 1, 3, 5 . . .

1− 2 x
L
− cos(Mk

x
L

) + 2
sin(Mk

x
L
)

Mk
k = 2, 4, 6 . . .

(5.28)

Mk =

(k + 1)π k = 1, 3, 5 . . .

2.86π, 4.92π, 6.94π . . . k = 2, 4, 6 . . .
(5.29)

Note that Mj and Mk for j = k = 2, 4, 6, . . . satisfy tan(
Mj

2
) =

Mj

2
.
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We consider a class of spatial arches with as-fabricated shapes given by

w0(x) = hmid (a1w1(x) + a2w2(x) + a3w3(x)) (5.30)

u0(x) = hmidb1u1(x) (5.31)

The mode shapes used for describing the as-fabricated shapes would also be present in

the basis set of the deformed profile. Thus, for the initial profiles given by Eqs. (5.30)

and (5.31), the first three mode shapes are used to approximate the deformations in the

xy plane and one mode shape is used to approximate the deformed profile in the xz

plane as follows:

w(x) = hmid (A1w1(x) + A2w2(x) + A3w3(x)) (5.32)

u(x) = hmidB1u1(x) (5.33)

φ(x) = C1φ1(x) (5.34)

Note that with this choice of basis functions we have six unknowns, for which ana-

lytical solutions are obtained. The applied load is resisted by the stiffness of the arch,

which results in the arch having an undulating curvature in the loading plane. Hence,

we assume a larger number of mode shapes to express the deformed arch-profile in the

loading plane compared to the plane perpendicular to it, where undulations are absent.

Therefore, in this case, we use three mode shapes to capture the in-plane deformation

and one mode shape each for both out-of-plane deformation as well as rotation.

The bending strain energy, axial compression energy, torsional energy, and work

potential are obtained by substituting Eqs. (5.30) to (5.34) in Eq. (5.12), Eq. (5.14),

Eq. (5.18), and Eq. (5.20), respectively.
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SEb =
EIz

2

∫ L

0

(
d2w0

dx2
− d2w

dx2
+ φ

d2u0
dx2

)2

dx+
EIy

2

∫ L

0

(
d2u0
dx2
− d2u

dx2
− φd

2w0

dx2

)2

dx

=
Ebh2midt

3

24L3
π3

(
πA1

2

2
− 64A1C1b1

5
− 1πA1a1 + 8πA2

2 − 16πA2a2 +
81πA3

2

2

)
+

Ebh2midt
3

24L3

(
3264A3C1b1

35
− 81πA3a3 + 14πC1

2b1
2 +

64C1a1b1
5

− 3264C1a3b1
35

)
+

Ebh2midt
3

24L3

(
πa1

2

2
+ 8πa2

2 +
81πa3

2

2

)
− Eb3h2midtπ

3

24L3

(
45πC1

2a1a3
4

+ 10πC1
2a2

2

)
Eb3h2midtπ

3

24L3

(
8πB1

2 +
64B1C1a1

5
− 3264B1C1a3

35
− 16πB1b1 +

5πC1
2a1

2

4

)
+

Eb3h2midtπ
3

24L3

(
243πC1

2a3
2

4
− 64C1a1b1

5
+

3264C1a3b1
35

+ 8πb1
2

)
(5.35)

s =

∫ L

0

[
1 +

1

2

(
dw

dx

)2

+
1

2

(
du

dx

)2
]
dx

=L+
B1

2h2midπ
2

L
+
h2midπ

2
(
A1

2 + 4A2
2 + 9A3

2
)

4L
(5.36)

sinitial =

∫ L

0

[
1 +

1

2

(
dw0

dx

)2

+
1

2

(
duo
dx

)2
]
dx

=L+
b1

2h2midπ
2

L
+
h2midπ

2 (a1
2 + 4a2

2 + 9a3
2)

4L
(5.37)

SEc =
1

2
p(sinitial − s)

=
Ebh4midtπ

4
(
A1

2 + 4A2
2 + 9A3

2 + 4B1
2 − a12 − 4a2

2 − 9a3
2 − 4b1

2
)2

32L3
(5.38)

SEt =
GJ

2

∫ L

0

(
dφ

dx

)2

dx

=
C1

2GJπ2

L
(5.39)
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δy =w0

(
1

2

)
− w

(
1

2

)
− eφ

(
L

2

)
=− 2C1e− hmid (A1 − A3) + hmid (a1 − a3) (5.40)

WP =− Fδy
=− F (−2C1e− hmid (A1 − A3) + hmid (a1 − a3)) (5.41)

And the total potential energy is

PE = SEb + SEc + SEt +WP (5.42)

To obtain the F -δy characteristics we solve for six unknowns namely, A1, A2, A3, B1,

C1, and F using five equilibrium equations obtained by minimizing the total potential

energy with respect to each of the unknown mode weights (i.e., Eqs. (5.22) to (5.24)) and

Eq. (5.19). By substituting, Eqs. (5.30) to (5.34) in Eq. (5.21), the equilibrium equations

can be expressed as:

dPE

dA1

=Fhmid −
Ebh2midt

3π3
(
64C1b1

5
+ πa1 − πA1

)
24L3

+

A1Ebh
4
midtπ

4
(
A1

2 + 4A2
2 + 9A3

2 + 4B1
2 − a12 − 4a2

2 − 9a3
2 − 4b1

2
)

8L3
= 0

(5.43)

dPE

dA2

=
2Ebh2midt

3π4 (A2 − a2)
3L3

+

A2Ebh
4
midtπ

4
(
A1

2 + 4A2
2 + 9A3

2 + 4B1
2 − a12 − 4a2

2 − 9a3
2 − 4b1

2
)

2L3
= 0

(5.44)

dPE

dA3

=
Ebh2midt

3π3
(
3264C1b1

35
− 81πa3 + 81πA3

)
24L3

− Fhmid+

9A3Ebh
4
midtπ

4
(
A1

2 + 4A2
2 + 9A3

2 + 4B1
2 − a12 − 4a2

2 − 9a3
2 − 4b1

2
)

8L3
= 0

(5.45)
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dPE

dB1

=
Eb3h2midtπ

3
(
64C1a1

5
− 3264C1a3

35
− 16πb1 + 16πB1

)
24L3

+

B1Ebh
4
midtπ

4
(
A1

2 + 4A2
2 + 9A3

2 + 4B1
2 − a12 − 4a2

2 − 9a3
2 − 4b1

2
)

2L3
= 0

(5.46)

dPE

dC1

=
2C1GJπ

2

L
+ 2Fe

+
Ebb1h

2
midt

3π3 (816A3 − 112A1 + 112a1 − 816a3 + 245πC1b1)

210L3

+
Eb3h2midtπ

3

24L3

(
64B1a1

5
− 3264B1a3

35
− 64a1b1

5
+

3264a3b1
35

+
5πC1a1

2

2

)
+
Eb3h2midtπ

3

24L3

(
20πC1a2

2
)

+
Eb3h2midtπ

3

24L3

(
243πC1a3

2

2
− 45πC1a1a3

2

)
= 0

(5.47)

To understand the nature of deformations, let us take the as-fabricated shape to con-

stitute only the fundamental buckling mode shape, i.e., only the first mode shape, in both

the planes of the arch. So, we substitute a1 = 1, b1 = 0.5, hmid = 5 mm, b = 2 mm,

t = 0.5 mm, L = 100 mm, and the remaining ais and e are taken to be zero in Eqs. (5.19)

and (5.43) to (5.47). The E and ν of the material are taken as 2.1 GPa and 0.3, respec-

tively. We solve for F using Eqs. (5.43) to (5.47), for δy ranging from 0 mm to twice

the height of the arch, i.e., 10 mm. The force-displacement characteristics obtained after

ignoring complex solutions are shown in Fig. 5.4a.

In Fig. 5.4a, the points O and T refer to the first and second stable states of the

arch, respectively. Corresponding to each combination of paths between O and T, there

are multiple deformation pathways that the arch can take to switch between these sta-

ble states. Note that on pathways OABCFHIT, OABDEFHIT, and OABDGHIT the

arch switches symmetrically, i.e., with A2 = 0. And it switches asymmetrically along

OACEGIT.

It is not straightforward to predict the preferred deformation pathway from the F -δy
curves in Fig. 5.4a. We infer this by visualizing the potential energy landscape of the

arch given in Fig. 5.4c. Each curve in the landscape corresponds to the potential energy

curve along δy for a constant force. The extremum of the curve is the equilibrium posi-

tion of the arch for the assumed force value. Hence, when there are multiple pathways

having the same force value for a given displacement, there will be as many extrema for

that displacement. Thus, by generating potential energy curves for the force values in
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Figure 5.4: (a) Force-displacement characteristics, (b) asymmetric deformation path-
way, (c) potential energy landscape for the OACEGIT pathway, (d) deformation path-
way from ABAQUS, and (e) time-lapse using high-speed photography (the hook that
pushed the arch can be seen in the figures) for a spatial bistable arch with pinned-pinned
boundary conditions.

the F -δy curve, each deformation pathway can be compared by observing the locations

of the extrema across these curves. The solid curves (cyan) passing through point O in

Fig. 5.4c correspond to the force-displacement curve OABDGH. And the solid curves

(red) passing through the displacement at point T follow the force pathway TIHFCB.

The dashed curves (magenta) are for the force values along ACEGI and the short green

curve passing through E corresponds to the BDEFH pathway.
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The points of extrema on the curves in Fig. 5.4c are annotated with a circular marker.

It is helpful to visualise the marker to be a ball on the hill or valley formed by the po-

tential energy curve. When the arch is in the stable equilibrium state at O, the force

is zero; so, the ball is resting on the black solid curve (labeled the strain energy) at O.

The ball rolls along the minima on cyan curves from point O to point A. Since there are

two pathways for the force value at point A, the ball has the option to either continue

rolling on the extrema of solid curves or jump to the maxima on the dashed curve. In

Fig. 5.4c, we observe that the dashed potential energy curve at A (an enlarged view is

shown in the inset) is positioned below the solid curve. Thus, the ball rolls from the

minimum on the solid curve to the maxima on the dashed curve. It continues on the

dashed curve until I, where the asymmetric solution ceases to exist. Note that the so-

lution pathway does not change at the points C, E, and G since the potential energy of

the respective intersecting pathways is larger than the potential energy of asymmetric

deformation pathway ACEGI at these points. Hence, the pathway that the arch takes is

OACEGIT. That is to say the arch deforms symmetrically (OA and IT) near its stable

states and asymmetrically (ACEGI) in between, as shown in Fig. 5.4b. The predicted

deformation pathway from the model is reproduced using finite element analysis (FEA)

software ABAQUS ABAQUS (2015), in Fig. 5.4d. See Section 5.5 for a quantitative

validation using FEA. Furthermore, a 3D-printed prototype switching asymmetrically

along OACEGIT is depicted in Fig. 5.4e using high-speed photography. The prototype

is made using Verowhite, a material used in the Objet260 Connex 3D-printer. The de-

formed configurations were captured using a high-speed camera, Photron SA5, at the

speed of 2000 frames per second.

Now, if we consider the switch-back deformation of the arch, similar arguments are

valid as the arch retraces the path while switching back and follows TIGECAO. How-

ever, this is not always the case; bistable arches can switch and switch-back along two

different pathways. Let us consider a case where the asymmetric mode of switching is

constrained, i.e., the arch cannot deform along the pathway ACEGI anymore. Hence,

the arch can only take the deformation pathways shown in Fig. 5.5a. Let us observe the

implications of this restriction in the potential energy landscape given in Fig. 5.5b. The

ball starts from point O on the solid cyan curve and continues to deform along the curve

OABDGH since the extrema on the BCFHIT pathway are at a higher potential energy at

B. The pathway does not change at point D too since the potential energy corresponding

to BDEFH is at a larger value. At point H, it switches to the pathway BCFHIT and

achieves the second stable state along the curve HIT. While switching back, the arch
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Figure 5.5: (a) Force-displacement characteristics, (b) potential energy landscape, (c)
time-lapses of switching and (d) switch-back for symmetric deformation pathways of a
pinned-pinned spatial bistable arch.

retraces the switching curve till point H since there is no other pathway the arch can

assume until this point. At point H, since the pathway HGDBAO is at a higher poten-

tial energy, the ball continues to roll along TIHFCB. At point B, it returns to BAO and

reaches the initial stress-free at point O. Again, note that the pathway does not change

due to HFEDB at point F. Thus, the pathways for switching and switch-back are OAB-

DGHIT and TIHFCBAO, respectively. The time lapses of arch switching and switching-

back from the model and ABAQUS are given in Fig. 5.4c and Fig. 5.4d, respectively.

The FEA simulation in ABAQUS is carried out with a symmetric constraint with respect

to a plane parallel to the yz plane passing through the mid-span of the arch. A physical

intuition for the lack of smoothness in the force-displacement characteristics at point H

while switching, and at point B while switching back, is evident in these time lapses.

At these points, the curvature of the arch snaps symmetrically and flips its curvature—a

sudden movement—resulting in sharp points on the F -δy curve. In the next subsection,

we consider spatial bistable arches with fixed-fixed boundary conditions. For the sake of
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brevity, we restrict our discussion to the force-displacement characteristics and resulting

deformation pathways without examining into their potential energy landscape.

5.3.2 Fixed fixed support

For a spatial arch with fixed supports, deformations in both the xy and xz planes have

fixed-fixed boundary conditions. Hence, similar to the case of the pinned-pinned arch,

uj and φk are taken as Eqs. (5.26) and (5.28), respectively, and wi as:

wi(x) =

1− cos(Mi
x
L

) i = 1, 3, 5 . . .

1− 2 x
L
− cos(Mi

x
L

) + 2
sin(Mi

x
L
)

Mi
i = 2, 4, 6 . . .

(5.48)

Mi =

(i+ 1)π i = 1, 3, 5 . . .

2.86π, 4.92π, 6.94π . . . i = 2, 4, 6 . . .
(5.49)

We consider fixed arches with first harmonics in their as-fabricated shapes given by:

w0(x) = hmid (a1w1(x) + a2w2(x) + a3w3(x)) (5.50)

u0(x) = hmidb1u1(x) (5.51)

w(x) = hmid (A1w1(x) + A2w2(x) + A3w3(x)) (5.52)

u(x) = hmidB1u1(x) (5.53)

φ(x) = C1φ1(x) (5.54)

The equilibrium equations obtained by minimizing the potential energy Eq. (5.21) and

simplifying using Eqs. (5.50) to (5.54) can be written as follows:

dPE

dA1

=2Fhmid −
2Ebh2midt

3π4 (a1 − A1 + C1b1)

3L3
+

2A1Ebh
4
midtπ

2

L2

(
B1

2 − b12
)
π2

L
+

A1Ebh
4
midtπ

2

L2

(
2π2A1

2 − 4A2
2 + 8π2A3

2

L
− A2

2M2
2 (cos (M2) + 3)

2L (cos (M2)− 1)

)
−

A1Ebh
4
midtπ

2

L2

(
2π2a1

2 − 4a2
2 + 8π2a3

2

L
− M2

2a2
2 (cos (M2) + 3)

2L (cos (M2)− 1)

)
= 0

(5.55)
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dPE

dA2

=
EM2

4bh2midt
3 (A2 − a2)

24L3
−

A2Ebh
4
midt

(
8 cos (M2) + 3M2

2 +M2
2 cos (M2)− 8

)
4L2 (cos (M2)− 1)

(
2π2a1

2 − 4a2
2 + 8π2a3

2

L

)
+

A2Ebh
4
midt

(
8 cos (M2) + 3M2

2 +M2
2 cos (M2)− 8

)
4L2 (cos (M2)− 1)

(
M2

2a2
2 (cos (M2) + 3)

2L (cos (M2)− 1)

)
−

A2Ebh
4
midt

(
8 cos (M2) + 3M2

2 +M2
2 cos (M2)− 8

)
4L2 (cos (M2)− 1)

(
2π2A1

2 − 4A2
2 + 8π2A3

2

L

)
+

A2Ebh
4
midt

(
8 cos (M2) + 3M2

2 +M2
2 cos (M2)− 8

)
4L2 (cos (M2)− 1)

(
A2

2M2
2 (cos (M2) + 3)

2L (cos (M2)− 1)

)
−

A2Ebh
4
midt

(
8 cos (M2) + 3M2

2 +M2
2 cos (M2)− 8

)
4L2 (cos (M2)− 1)

(
2B1

2π2

L
− 2b1

2π2

L

)
= 0

(5.56)

dPE

dA3

=
4Ebh2midt

3π4 (8A3 − 8a3 + C1b1)

3L3
+

4A3Ebh
4
midtπ

2

L2

(
2π2A1

2 − 4A2
2 + 8π2A3

2

L
− A2

2M2
2 (cos (M2) + 3)

2L (cos (M2)− 1)

)
−

4A3Ebh
4
midtπ

2

L2

(
2π2a1

2 − 4a2
2 + 8π2a3

2

L
− M2

2a2
2 (cos (M2) + 3)

2L (cos (M2)− 1)

)
+

4A3Ebh
4
midtπ

2

L2

(
2B1

2π2

L
− 2b1

2π2

L

)
= 0 (5.57)

dPE

dB1

=
2Eb3h2midtπ

4 (B1 − b1 + C1a1 − 2C1a3)

3L3
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B1Ebh

4
midtπ

2
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2B1
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4
midtπ

2
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2π2A1

2 − 4A2
2 + 8π2A3
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L
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2M2
2 (cos (M2) + 3)

2L (cos (M2)− 1)
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−

B1Ebh
4
midtπ

2

L2

(
2π2a1

2 − 4a2
2 + 8π2a3

2

L
− M2

2a2
2 (cos (M2) + 3)

2L (cos (M2)− 1)

)
= 0

(5.58)
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dPE

dC1

=2Fe+
2C1GJπ

2

L
+
Ebb1h

2
midt

3π4 (8A3 − 4A1 + 4a1 − 8a3 + 7C1b1)
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2a3π
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4a3π
4 + 320M2
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4a1b1π
4
)
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(
640M2
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4a3b1π
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6
)

α
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(5.59)

where α =
Eb3h2midt

96L3sin(M2
2 )

2
(M2

4−5π2M2
2+4π4)

sin
(
M2

2

)2. The force-displacement curve for

the numerical values of E = 2.1 GPa, ν = 0.3, a1 = 0.5, b1 = 0.5, hmid = 5 mm,

b = 2 mm, t = 0.2 mm, and L = 100 mm is shown in Fig. 5.6a.

The arch, when unconstrained, takes the deformation pathway OAT. This pathway

corresponds to an asymmetric solution given in Fig. 5.6b. However, it can be observed

in Fig. 5.6a that OAT cuts the axis F = 0 only twice, indicating snap through but

bistability. Incidentally, this case is similar to that of a planar fixed-fixed arch, where the

asymmetric mode needs to be restricted for the arch to be bistable. Thus, by constraining

the asymmetric mode of deformation in the arch, we facilitate the arch to take the path

OABCT. In this deformation pathway, the arch switches symmetrically as shown in

Fig. 5.6c and retraces the same curve during switching back. The constraining of the

asymmetric mode is physically achieved by connecting two arches at the mid-span as

shown in the 3D-printed prototype in Fig. 5.6d.

5.4 Extensions using the spatial arch model

In this section, we illustrate that the spatial arch model described in the preceding section

can be easily extended to: (1) spatial arches with as-fabricated shapes other than the

fundamental profile, (2) lateral-torsional buckling in planar arches, and (3) arches with

eccentric loading.



Analytical modeling of spatial deformation pathways in planar and spatial shallow
bistable arches 109

0 0.002 0.004 0.006 0.008 0.01
-0.02

-0.01

0

0.01

0.02

O

T

A

B

C

-4

-2

0

2

4

0.1

10
-3

0.05

5

10
-3

00

-4
-2
0
2
4

0.1

10-3

0.05

5
10-3

00

(a)

(c)(b) (d)

(m)

(N
)

(m)

(m)

(m)

(m) x (m)
(m)x (m)

y
 (

m
)

y
 (

m
)

1 cm

Figure 5.6: (a) Force-displacement characteristics and (b and c) deformations pathways
of a fixed-fixed spatial arch with parameters: a1 = 0.5, b1 = 0.5, hmid = 5 mm,
b = 2 mm, t = 0.2 mm, and L = 100 mm. (d) The two stable states of the arch in a
3D-printed prototype.

5.4.1 As-fabricated profiles other than the fundamental shapes

The equilibrium equations derived for spatial arches in Section 3(a) consider the first

three modes in the as-fabricated shape. Let us consider a spatial arch with a1 = 0.5,

a3 = 0.2, b1 = 0.5, hmid = 5 mm, b = 2 mm, t = 0.5 mm, and L = 100 mm. Here,

an additional third mode (a3) is added to the starting shape of the hinged spatial arch

considered previously. The force-displacement curve of the arch is shown in Fig. 5.7a.

In comparison with Fig. 5.4a, we see that this arch can only switch symmetrically. The

straight line shown in Fig. 5.7 corresponds to the asymmetric mode of switching. How-

ever, the arch cannot deform in this mode of switching as the line cuts the curve corre-

sponding to symmetric deformation only once. Thus, reaching any of the stable states

becomes impossible once the arch starts deforming along this pathway. Furthermore,
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Figure 5.7: Force-displacement characteristics and deformation time-lapses of a spatial
arch with as-fabricated starting shapes with (a and b) a3 = 0.2 and (c and d) a7 = 0.1.

unlike in the previous examples, in this case, the asymmetric pathway is not reducing

the force required for deforming. The arch-profiles in various stages of deformation

between the stable states in the symmetric switching are depicted in Fig. 5.7b.

Arch-profiles with mode shapes other than the first three mode shapes can also be

analysed using the model. However, we need to ensure that all the mode shapes used

for constructing the as-fabricated shape should be used in approximating the deformed

profile as well. We noticed in the three examples presented earlier that the arch can either

switch symmetrically or asymmetrically. To capture these two pathways of switching,

A1 and A2 are essential in approximating the deformed profile. We have to use the

mode weights B1 and C1 for approximating u(x) and φ(x). Since we can solve for five

unknown mode weights, an additional mode weight can be added to w(x), e.g., Ai. This

enables us to use an additional ai in the as-fabricated shape along with a1 and a2, and

represent it as w0(x) = hmid (a1w1(x) + a2w2(x) + aiwi(x)). For example, the F -δy
relations of a spatial arch with a1 = 0.5, a7 = 0.1, b1 = 0.5, hmid = 5 mm, b = 2 mm,

t = 0.5 mm, and L = 100 mm is given in Fig. 5.7c. The deformation pathway taken by
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the arch is OABT and the arch deforms as given in Fig. 5.7d.

5.4.2 Lateral torsional buckling in planar arches

A planar arch is a special case of a spatial arch with its curvature limited to a single

plane. For instance, by taking all the bis to be zero, the as-fabricated shape reduces to

the xy plane. When the out-of-plane bending stiffness of the planar arch is comparable

to the in-plane bending stiffness of the arch, the arch may deform out-of-plane and

undergo lateral-torsional buckling. The compression energy formed in a planar arch

when it deforms out of the plane is smaller than its in-plane deformation. This causes a

reduction of the minimum force required to switch the bistable arch. We consider such

an example next.

The force-displacement characteristics for a planar arch with a1 = 1, hmid = 5 mm,

b = 0.9 mm, t = 0.5 mm, L = 100 mm, and with fixed-fixed boundary conditions

are given in Fig. 5.8a. The path OAT represents the in-plane asymmetric switching that

needs to be restricted so that the arch can attain the other stable state. When an arch is

constrained to not take the asymmetric deformation pathway, it is expected to follow in-

plane switching shown in Fig. 5.8a and indicated by the pathway OCDT. However, due

to the presence of the lateral-torsional deformation, i.e., spatial deformation pathway,

the arch prefers the force-displacement profile given by OBET. Thus, the arch switches

with reduced switching force as indicated in Fig. 5.8a. The in-plane deformation corre-

sponding to OBET is shown in Fig. 5.8b. Note that ignoring the spatial deformation in

this problem leads to about a 30% error in the prediction of the actual critical force.

A contrasting case arises when the switching force reduces in such a way that it

affects the bistability of the arch. Figure 5.8d shows a force-displacement curve where

the out-of-plane deformation (Fig. 5.8c) path, AE, makes the arch not bistable. Note

that if this arch with a1 = 0.5, b1 = 0, hmid = 5 mm, b = 0.6 mm, t = 0.5 mm, and

L = 100 mm were to be analysed as a planar arch, it would have shown bistability with

force-displacement pathway OCDT. These observations are applicable to planar arches

with pinned-pinned boundary conditions as well.

5.4.3 Eccentric load

When an arch is loaded eccentric to the xy plane at a distance e, it experiences a force

as well as a moment. The moment causes the cross sections to rotate more compared

to the case of an arch with only a point load. In the case of a planar arch, the moment
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Figure 5.8: (a) Force-displacement characteristics and time-lapse of deformation of a
planar arch with a1 = 1, b1 = 0, hmid = 5 mm, b = 0.9 mm, t = 0.5 mm, and
L = 100 mm, which shows bistability in the presence of a spatial deformation pathway.
(b) Force-displacement characteristics and time-lapse of deformation of a planar arch
with a1 = 1, b1 = 0, hmid = 5 mm, b = 0.6 mm, t = 0.5 mm, and L = 100 mm, which
is not bistable due to the presence of a spatial deformation pathway.

favors the lateral-torsional mode of deformation. Figure 5.9a shows a comparison of a

planar pinned sine-curved arch with and without eccentric loading. The dashed curve

corresponds to the case with eccentric loading with e = 10mm for an arch with hmid =

5 mm, b = 0.4 mm, t = 0.5 mm, L = 100 mm, E = 2.1 GPa, and ν = 0.3. We

observe that eccentric loading reduces the switching and switch-back forces. The F -

δy characteristic plot shown in Fig. 5.9b is of a spatial arch with a1 = 1, b1 = 0.5,

hmid = 5 mm, b = 2 mm, t = 0.5 mm, L = 100 mm, E = 2.1 GPa, ν = 0.3, and

e = 10mm . Here, the switching force increases due to the additional torsional energy

in the cross-sections due to the moment arising from eccentricity. This effect is not seen

in Fig. 5.9a because of the smaller width considered there. It can be observed that the

third point, where the force is zero, is not the same for both the loading cases in Fig. 5.9b.

This is because of the rotation of the cross sections of the arch. Due to the rotation, the
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Figure 5.9: Comparison of force-displacement characteristics with (dashed curve) and
without (solid curve) eccentric loading for spatial and planar pinned arches.

points attached eccentric to the arch move vertically. In this case, the spatial arch in its

second stable state has a positive rotation causing the point of application of load to go

up. Hence, the dashed force-displacement curve shows a smaller travel of the midpoint

of the arch between the two stable states.

5.5 Comparison with finite element analysis

The force-displacement characteristics obtained from the analytical modelling show

good agreement with the finite element analysis (FEA). A comparison of illustrative

examples discussed in this work with FEA is given in Fig. 5.10. The solid curves rep-

resent results from the analytical model and the dashed curves are obtained from FEA

done in ABAQUS. In ABAQUS, continuum tetrahedral elements are used with quasi-

static dynamic-implicit analysis for all the four cases. In Fig. 5.10a, asymmetric and

symmetric deformation pathways of a spatial arch with hinged and fixed support dis-

cussed in Section 3a (Fig. 5.4) are compared. In obtaining the analytical solution, five

mode shapes are used. The symmetric and asymmetric deformations, wherein the mag-

nitude of force ranges from 0.04 N to −0.03 N , have mean errors of 0.0012 N and

0.0015 N , respectively. The analytical approach solves this problem within a CPU time

of 187 seconds compared to 14151 seconds of FEA and thus, it is 70 times faster than

FEA. However, this speed varies from problem to problem. Nonetheless, the analytical

method always solves the problem much faster than FEA.

Note that the error from the numerical solution is larger at the points where the arch

switches from one deformation pathway to the other. By using a larger number of mode
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Figure 5.10: Comparison of force-displacement characteristics obtained from analytical
modelling with FEA in ABAQUS for (a) pinned-pinned spatial (b) fixed-fixed spatial
arch (c) fixed-fixed planar arch with spatial deformation, and (d) pinned-pinned arch
with an eccentric load.

shapes for approximating the deformed profiles, this error can be minimised as shown

in Fig. 5.11. With five mode shapes, the force-curve shows closer agreement compared

to the one with four mode shapes.

The cases of the fixed-fixed spatial arch (Fig. 5.6), fixed-fixed planar arch with spa-

tial deformations (Fig. 5.8), and the pinned-pinned spatial arch with eccentric loading

(Fig. 5.9a) are shown in Figs. 11b-11d, respectively. The geometric and material pa-

rameters considered are the same as the ones in their respective examples considered in

Sections 3 and 4.

5.6 A note

The result from the optimisation problem that led us to study spatial deformation path-

ways suggested that, for a given volume, a spatial distribution of material reduces the

switching forces more than in the optimal in-plane solutions. Figure 5.12 shows a com-

parison between the pinned spatial arch considered in Section 3a and a planar pinned-

pinned arch of the same volume.
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modelling with FEA in Abaqus for a varying number of mode shapes.

The reduction in forces can be accounted for by reduced axial compression in the

spatial arch and the reduced travel is due to the residual torsional energy in the spatial

arch. The results from the model validate that the spatial deformation pathways reduce

the switching forces in a bistable arch. This is relevant in two scenarios: while designing

arches of reduced switching forces and while designing planar arches that should not

deform out of plane.

5.7 Closure

We discussed the analysis of doubly curved spatial arches that are bistable. The ana-

lytical model captures the coupling between in-plane and out-of-plane bending, and the

torsion with an extension of the St. Venant and Michell relationship that was given for

arches with spatial deformation pathways. We observed that the spatial deformation

pathways reduce the switching forces in certain bistable arches. In particular, it was

shown that this reduction in the switching forces in planar arches can also sometimes

cause the arch to lose its bistability.

The desirable features of bistable structures such as two force-free stable states,

negative structural stiffness, change in shape in the two stable states, snap-through ac-

tion, and nonlinear force-displacement characteristics, find a wide range of applications.

Furthermore, spatial bistable arches will enrich the list of applications when the force
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Figure 5.12: (a) Spatial and planar arches with the same volume and pinned-pinned
boundary conditions, and (b) comparison of their force-displacement characteristics.

needed to switch between the stable states ought to be minimal.

With this chapter we conclude our development of the theory of bistable arches.

An alternative method of designing bistable arches using kinetoelastostatic maps is de-

scribed in Appendix B. In the next chapter, with help of the theory developed on bistable

arches, we look at the design of two applications using them.



Chapter 6

Applications

Synopsis

In this chapter, we present the design of two applications using bistable arches: an

electrothermally actuated microswitch and a mechanical OR gate. The electrothermally

actuated two-terminal bistable microswitch has bimodal bistability which is obtained by

using a pair of arches, a V-beam electrothermal actuator, and a novel initially retract-

ing actuator. We use the analytical model of bistable arches to decide the geometric

parameters of these components.

The OR gate is designed using pinned-pinned bistable arches. The compliant OR

gate consists of five bistable arches arranged in such a way that the central arch acts as

the output with 0 and 1 stable states while two pairs of arches, with their own 0 and 1

states, act as inputs. The arch-profiles of all the arches are designed so that the forces of

switching and switching back between the two stable states and the travel between the

two stable configurations are as desired.

6.1 Application 1 - A two-terminal bistable electrother-

mally actuated microswitch 1

MEMS-based Radio-frequency (RF) switches play an important role in communication

systems (Varadan et al., 2003). These switches are used for routing and selection oper-

ations in communication modules. Typical applications include filter selection and an-

tennae selection (Sanayei and Nosratinia, 2004) in reconfigurable RF systems. Another

1Work done with Dhananjay Yadav
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class of applications that relies on switches is redundancy selection, where the switch

is used to transfer operations from a main system to a redundant system if the main

system malfunctions. Even with relatively a long switching time, RF MEMS switches

can be employed in redundancy applications (Daneshmand and Mansour, 2011). Such

RF switches can be implemented in various technologies such as sub-miniature relays,

microelectromechanical (MEMS) switches, gallium-arsenide (GaAs) or CMOS FET

(Complementary Metal Oxide Semiconductor Field Effect Transistor) switches, and

even PIN diodes. Mechanical switches tend to handle the highest power, offer the low-

est insertion loss and best isolation, due to which the development of MEMS relays has

attracted considerable attention in recent years. MEMS switches are typically cantilever

type structures that require a continuous voltage supply to maintain the active state. The

ON and OFF states are maintained for long durations in some of the aforementioned

applications. In such cases, employing bistability will obviate the need for a continuous

power supply, thus making the switch efficient in terms of power consumption.

We present a two-terminal bistable switch with a distributed compliant design that

limits the maximum stress, thus increasing the potential for high reliability. A double

cosine arch is used as the bistable element. There are two actuators that share a single

pair of terminals to pull and push the bistable arch. Thus, the actuation is two-terminal,

which is mechanically decoupled but electrically coupled. For push-on and push-off

capability, the design requires that the secondary actuator have an atypical transient be-

havior, which is realized by a novel initially-retracting microactuator (Yadav and Anan-

thasuresh, 2018), which initially retracts and then moves forward while continuing the

application of a constant voltage. Electrothermal actuation is used because in compari-

son with other actuators such as electrostatic, piezoelectric, etc., it has a larger force and

stroke at a lower driving voltage (Moulton and Ananthasuresh, 2001). The disadvantage

of using electrothermal actuation is its high power usage, which is less of a concern be-

cause the bistable switch requires power for a few milliseconds, just to switch in between

states.

6.1.1 Design

Figure 6.1a shows the schematic of the proposed device. The design comprises three el-

ements: a pair of cosine arches, a V-beam thermal actuator and an initially-retracting ac-

tuator (Yadav and Ananthasuresh, 2018). The top arch acts as a displacement-amplifier

of the input given by the primary V-beam thermal actuator and the bottom double-cosine

arch serves as the bistable element. The initially-retracting actuator at the left end of the
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bistable arch acts as the secondary actuator and pulls it to the left when a voltage pulse

is applied.

V

Displacement
amplifier

Initially-
retracting
actuator

V-beam
actuator

Bistable arch
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(a)
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V
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F: Electrically floating terminal

τ1 τ2< t < 

t > τ2

Figure 6.1: Schematic of the proposed device and its working.

Figure 6.1b-e explain the working of the mechanism. The initial state depicted in

Fig. 6.1a is the OFF state. This is the as-fabricated or stress-free state of the bistable



120 Applications

arch. In anticipation of its application as an electrical switch, we designate this state as

the OFF state and the second stable state as the ON state. A voltage pulse applied be-

tween the two terminals, simultaneously actuates the V-beam actuator and the initially-

retracting actuator, causing the bistable arch to switch into its second stable ON state as

shown in Fig. 6.1b and Fig. 6.1c. To switch back into the OFF state, we use the bimodal

switching property of the arch. Bimodality enables the arch to trace different paths to

switch between states. Therefore, instead of applying a transverse force, an axial force

generated by the initially-retracting actuator is applied to switch the arch back into the

OFF state. This can be observed in Fig. 6.1d-e. In doing so, we ensure that two trans-

verse electrothermal actuators, which occupy more space and power, are not necessary

for the working of the device. The voltage is applied between the same two terminals to

produce the required axial force. Thus, this design retains two-terminal actuation while

avoiding a highly stressed flexural hinge joint.

In the proposed design, the secondary actuator has to pull the arch beyond a cer-

tain threshold displacement (Uth) for the arch to lose bistability when switching from

the ON to the OFF state as shown in Fig. 6.1d. The magnitude of Uth depends on the

geometric parameters of the arch, whose closed-form analytical expression is derived in

a later section. Since both the actuators share the same terminals, the primary actuator

also gets activated during the switch-OFF process. This implies that the response time

of the secondary actuator should be less than that of the primary actuator to prevent the

displacement-amplifier from obstructing the switch-back of the bistable arch. Contrary

to this, while switching from the OFF to the ON state, the axial displacement of the

arch should be less than Uth for the arch to attain the second stable state. But since the

response time of the secondary actuator has to be less than that of the primary actua-

tor, a traditional electrothermal secondary actuator will pull the arch beyond threshold

displacement by the time the primary actuator responds. So, there is a need for a new

kind of actuator that can actuate beyond Uth for small durations of time and then at-

tain a steady state lower than Uth for a constant voltage supply. In order to satisfy this

requirement, an initially-retracting actuator was conceptualized.

An initially-retracting actuator consists of an integrated pair of V-beam electrother-

mal actuators of different lengths, each of which actuates in opposite directions oper-

ating as an antagonistic pair as shown in Fig. 6.2a. Shorter beams heat up faster than

longer beams, which results in the initial retraction of the actuator. Fig. 6.2b depicts

the transient behavior of the initially-retracting actuator. The steady-state displacement

can be configured to be positive, zero, or negative by varying the geometric parameters
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Figure 6.2: Initially-retracting actuator: (a) schematic, (b) transient behavior, and (c)
plot depicting desired transient profile vs. possible with V-beam actuator.

of the integrated pair of short and long beams. The solid line in Fig. 6.2c, represents

the desired transient behavior for bistable switch applications. In this case, the actuator
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Figure 6.3: Lumped model of a spring restrained arch.

crosses Uth at time t = τ1 and falls below Uth at time t = τ2. This implies that, for

switching from the ON to the OFF state, a voltage pulse of duration greater than τ1 but

less than τ2 should be applied and for switching from the OFF to the ON state, the pulse

duration should be greater than τ2. The exact duration of the pulse in the latter case

depends on the geometry of the primary actuator.

6.1.2 Analytical Model

In this section, we analytically model the integrated components of the switch to find the

critical design parameters. First, the mathematical expressions for threshold axial dis-

placement (Uth) to be applied at the end of the arch to lose bistability and the threshold

axial stiffness (Kth) for the arch to be bistable are derived. Following this, two opti-

mization problems are posed to calculate the optimum dimensions of each actuator for

minimizing the power consumption during switching.

6.1.2.1 Modeling the bistable arch

Figure 6.3 shows the lumped model of a spring-restrained arch, where P is the axial

force exerted by the secondary actuator and K its inherent axial stiffness. F is the force

due to the displacement-amplifier. While switching from the ON to the OFF state, the

only actuating force on the arch is the axial pull by the initially-retracting actuator. In

this case, the displacement amplifier does not come in contact with the arch i.e., F = 0.

The dimensions of the bistable arch are listed in Table 6.1. Following the same notations

and normalizing factors in Table 3.1, we represent the as-fabricated and deformed shape
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Parameter Value
Bistable arch length (L) 2000 µm

Width of bistable arch (t) 8 µm

Gap between curved beams 8 µm

Central offset (h) 30 µm

Depth 25 µm

Table 6.1: Arch Parameters

of the arch, respectively as follows:

H(X) =
1

2
(1− cos(2πX)) (6.1)

W (X) =
A1

2
(1− cos(2πX)) +

A3

2
(1− cos(4πX))

+
A5

2
(1− cos(6πX)) (6.2)

We analyze the double cosine bistable arch with external forces from the primary and

the secondary thermal actuators denoted by F and P , as shown in Fig. 6.3. The stiffness,

K, of the secondary thermal actuator, is modeled as a linear spring. The potential energy

of the system is derived by a summation of the strain energy in the arch, compression

energy in the spring and the work potential due to the actuator forces. The normalized

strain energy due to bending in the arch is given by

SEb =
1

2

1∫
0

(
d2H

dX2
− d2W

dX2

)2

dX

= π4
(
(1− A1)

2 + 16A2
3 + 81A2

5

) (6.3)

where H(X) and W (X) are given by Eqs. (6.1) and (6.2), respectively. The normalized

compression energy due to the change in length of the beam is

SEc = 6Q2(Sinitial − S − U)2 (6.4)

whereQ is the geometric constant equal to the height to depth ratio of the beam (hmid/t),

Sinitial the total arc length of the stress-free beam, S the total arc length of the deformed

beam, and U the axial displacement at the end. By using the shallow beam assumptions,
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the arch-length can be written as

Sinitial =

1∫
0

[
L2

h2
+

1

2

(
dH

dX

)2
]
dX =

L2

h2
+
π2

4
(6.5)

S =

1∫
0

[
L2

h2
+

1

2

(
dW

dX

)2
]
dX

=
L2

h2
+
π2

4

(
A2

1 + 4A2
3 + 9A2

5

)
(6.6)

By using these expressions, the strain energy term simplifies to

SEc = 6Q2

(
U +

π2

4

(
A2

1 + 4A2
3 + 9A2

5 − 1
))2

(6.7)

The strain energy in the axial spring is

SEs =
1

2
KU2 (6.8)

where K is the normalized spring stiffness. The work potential due to F and P is

WP = −F (1− A1 − A5)− PU (6.9)

where (1− A1 − A5) is the transverse displacement of the arch at the mid-span.

By using the preceding equations, the potential energy, PE, of the system can be

written with all its constituent terms as follows

PE = 2SEb + 2SEc + SEs +WP (6.10)

where SEb and SEc are taken twice since two arches are used in a double cosine con-

figuration. By differentiating the potential energy with respect to the unknown weights,

A1, A3, and A5, and the unknown displacement, U , we get the following governing
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equations:

∂PE

∂A1

= 4π4 (A1 − 1) + 12π2Q2A1Ψ = 0 (6.11)

∂PE

∂A3

= 64π4A3 + 48π2Q2A3Ψ = 0 (6.12)

∂PE

∂A5

= 324π4A5 + 108π2Q2A5Ψ = 0 (6.13)

∂PE

∂U
= 24Q2Ψ− P +KU = 0 (6.14)

where, Ψ =

(
U +

π2

4

(
A2

1 + 4A2
3 + 9A2

5 − 1
))

Equations (6.12) and (6.13) imply that A3 and A5 are equal to zero. This is true for all

the higher mode shapes too, if considered. From this we can conclude that under pure

axial load, the arch remains in the as-fabricated mode shape. By nullifying A3 and A5

in Eq. (6.11), we get a cubic equation in A1.

A3
1 +

(
4

π2
U +

4

3Q2
− 1

)
A1 −

4

3Q2
= 0 (6.15)

Equation (6.15) should have more than one real root for the arch to be bistable. For a

cubic to have all real roots, the discriminant should be greater than zero. By applying

this, we get the value of Uth as follows:

Uth =
π2

4

(
1− 4

3Q2
−
(

12

Q4

) 1
3

)
(6.16)

Equation (6.16) is in a normalized form. For U less than Uth, Eq. (6.15) will have three

real roots for A1; two for stable equilibrium states and one for unstable equilibrium. By

rearranging and simplifying Eq. (6.14), we get the axial force P as follows:

P = KU + 24Q2U + 6Q2π2
(
A2

1 − 1
)

(6.17)

We replace A2
1 in the right hand side of Eq. (6.17) implicitly in terms of U using

Eq. (6.15) with the help of a symbolic manipulation program. Fig. 6.4 shows the plot

of axial force (P ) vs. axial displacement (U) for different values of K. In this figure,

we can see that snap-through occurs at 0.57 µm, the threshold axial displacement (Uth)

for the arch with dimensions listed in Table 6.1. In Fig. 6.4, we also observe that the
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Figure 6.4: Analytically obtained axial force (P ) vs. axial displacement (U ) of the
bistable arch.

green curve corresponding to K = 10 kN/m, undergoes snap-through without crossing

the zero ordinate before, denoting the absence of a second stable state. For increasing

values of stiffness, the arch becomes bistable and the corresponding curves cross the

zero ordinate before the snap-through region. So, for the arch to be bistable, P should

be greater than zero for U = Uth in Eq. (6.17). By satisfying this condition, we get the

normalized threshold stiffness as follows:

Kth =

(
32 + 552

27
(12Q2)

1
3

)
(

1− 4
3Q2 −

(
12
Q4

) 1
3

) (6.18)

The initially-retracting actuator is designed such that its lumped stiffness K is greater

than Kth in the preceding equation.
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6.1.2.2 Optimization of the initially-retracting actuator

Electrothermal actuators use low actuation voltage but consume more power as com-

pared to other microactuators. So, it is important to find optimum actuator parameters to

minimize the power requirement. We mentioned that the stroke of the initially-retracting

actuator has to exceed Uth momentarily and drop down at a steady state. In Fig. 6.4, we

observe that all the curves are predominantly straight lines and change curvature slightly

upon nearing the snap-through region. The slopes of these curves are less than the cor-

responding stiffness K in each case. This difference is due to the inherent axial stiffness

of an arch in its stressed state. That stiffness is calculated by fitting a straight line for

P in Eq. (6.17) with K = 0, which turns out to be -5105 N/m. Hence, we model the

arch as a spring with this negative stiffness attached to the actuator. The stiffness of the

initially-retracting actuator should be 33 kN/m to get a minimum contact force of 100

µN in the ON state. We get this specific stiffness by plotting the transverse force vs. the

transverse displacement curve of the arch for a range of stiffness and ensuring that the

switch-back force is 100 µN. Based on these criteria, we pose an optimization problem

for an initially-retracting actuator to get the transient behavior depicted in Fig. 6.2c.

Minimize
l1,l2,N1,N2,d1,d2

Power

Subject to:

a. τ ≤ 1 ms

b. −Umax ≤ −0.6 µm

c. Uss ≤ 0.5 µm

d. Stiffness (K) = 33 kN/m

e. Temperature ≤ 750 K

f. Axial load in beam ≤ 0.8×Critical buckling load

g. Maximum stress ≤ 0.5×Yield strength

The first condition ensures that Umax occurs by the specified time of 1 ms. If no upper

bound on time is specified, the optimization algorithm keeps increasing the length of

the beams to minimize power such that the displacement constraints are satisfied but

the actuator becomes slow. The expressions for τ , displacement, stiffness, temperature,
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maximum stress and axial load in the beams are derived in Yadav and Ananthasuresh

(2018) and summarized in Appendix A. The results of this optimization study are listed

in Table 6.2.

Initial guess Optimized values Units
Longer
beams

Shorter
beams

Longer
beams

Shorter
beams

Offset 10 10 12 15 µm

Width 10 10 10 10 µm

Length 500 200 620 443 µm

Number 12 12 10 11 -

Power 0.84 0.44 W

Table 6.2: Optimized values of an initially-retracting actuator

6.1.2.3 Optimization of the V-beam actuator

As discussed previously, the time response of the primary V-beam actuator should be

slower than the initially-retracting actuator. The primary actuator has to push the displacement-

amplifier that in turn pushes the bistable arch until it toggles to the second stable state.

After the displacement-amplifier makes contact with the arch, the whole switch acts as

a single degree of freedom system. The displacement-amplifier is made of four parallel

cosine arches. So, its deformed shape can also be taken as a linear combination of higher

cosine mode shapes. Similar to Palathingal and Ananthasuresh (2017a), the stable equi-

librium state of the system can be found by the principle of minimum potential energy,

accounting for the energies of both the bistable arch and the displacement-amplifier.

PE = PEarch + PEamp + λ (darch − damp + g) (6.19)

Equation (6.19) represents the total potential energy of the system, where the last term

on the right hand side is added to satisfy the unilateral constraint of the contact between

the arch and displacement-amplifier in accordance with the method of Lagrange multi-

pliers. The contact force between them is captured by the Lagrange multiplier λ. Fig. 6.5

shows the plot of axial force by the V-beam actuator vs. the axial displacement of its

tip. At point A in Fig. 6.5, there is a sudden change in the slope of the curve because the

displacement-amplifier comes in contact with the arch at this point, after covering the

initial gap g between them. At point C, the contact between them breaks as the bistable
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Figure 6.5: Axial force vs. axial displacement of displacement-amplifier for switch ON.

arch snaps-through to the second stable state. Point B just indicates the maximum force

point that occurs in between this transition. Points B and C denote the force and dis-

placement constraints that the V-beam actuator has to meet in order to switch the arch.

Similar to the case of the V-beam actuator design, we pose an optimization problem for

the V-beam actuator as follows:

Minimize
l,N,d

Power

Subject to:

a. θ ≤ 5 ms

b. −(Ft=τ − kvuB) ≤ −7.3 mN

c. −(Ft=3τ − kvuC) ≤ −4.5 mN

d. Temperature ≤ 750 K

e. Axial load in beam ≤ 0.8×Critical buckling load

f. Maximum stress ≤ 0.5×Yield strength

θ denotes the time constant of the V-beam actuator. The upper limit on θ is kept five
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times more than τ to ensure that the V-beam actuator starts pushing the bistable arch

after the initially-retracting actuator has attained a steady state. F denotes the force

generated by the V-beam actuator at that instant, whereas kv symbolizes its stiffness.

The expressions for these quantities are summarized in Appendix A. Table 6.3 lists the

result of this optimization study.

Initial guess Optimized values Units
Offset 15 14.5 µm

Width 10 10 µm

Length 2000 1410 µm

Number 100 50 -

Power 0.50 0.35 W

Table 6.3: Optimized values of V-beam actuator

6.1.3 Testing and Discussion

The design of the switch based on the optimized values of the parameters, was verified in

finite element analysis software, ABAQUS. Subsequently, the switches were fabricated

using SOIMUMP’s bulk micromachining process (www.memscap.com). A Silicon-on-

Insulator (SOI) wafer of a 25 µm thick device layer, a 2 µm buried oxide layer and a

400 µm substrate layer was used in the process. Fig. 6.6 shows the SEM images of the

fabricated switches. The minimum feature size is 8 µm, the width of the bistable arch,

(a) (e)(d)

(b) (c)

8 µm

Stable state 1 Stable state 2

100 µm 20 µm

100 µm 200 µm

Figure 6.6: SEM images of the fabricated switch showing critical dimensions: (a) full
view, (b)-(c) two stable states of the switch, (d) initially-retracting actuator, and (e)
bistable arch.
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as shown in Fig. 6.6d. Coplanar waveguide (CPW) lines are present at the bottom end

for conducting RF signals. The extended ladder structure of the arch bridges the gap

between the CPW lines on the left and right hand side by forming a lateral contact. In

this layout, the switch has a Single Pole Double Throw (SPDT) configuration. Various

tests were performed on the switches to verify their working and operating conditions.

It was observed that a 100 ms pulse of 11.8 V, switches the arch from the OFF to the ON

state and a 25 ms pulse of 11.8 V switches it back from the ON to the OFF state. Fig. 6.7a

and Fig. 6.7b show the fabricated switch in the OFF and the ON states, respectively.

Initially-
retracting 
actuator CPW lines

Displacement-amplifier

Bistable arch

G
S
G
G
S
G

G
S
G
G
S
G

Stable state 1 Stable state 2

P1 P2 P1

P3

P2

P4

V-beam
actuator

(a) (b)

Figure 6.7: Image of fabricated switch in (a) stable state 1 (OFF), and (b) stable state 2
(ON). In stable state 1, connection between ports P1 and P2 is closed while P3 and P4

are open and in stable state 2, vice versa.

Fig. 6.8a and Fig. 6.8b show the thermal imaging results for the V-beam and initially-

retracting actuator, respectively. Thermal imaging was carried out using an FLIR SC5200

thermal camera, to check whether the temperature of the thermal actuators was under

the limit. The maximum temperature of the V-beam actuator was recorded as 77.8 ◦C,

whereas that of the initially-retracting actuator reached 148.3 ◦C. The dynamic response

(a) (b)
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75.65
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70.93

68.38

65.69

62.83

59.79

56.52

52.98

49.14
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40.15
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142.52

139.41

136.16

132.76

129.18

125.40

121.40

117.14

112.57

107.64

102.28

Figure 6.8: Thermal imaging of (a) V-beam actuator and, (b) initially-retracting actuator.
(Temperature scale in ◦C)
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of both the actuators was recorded using Polytec MSA-500, a Laser Doppler Vibrome-

ter (LDV). The stroboscopic video microscopy feature of MSA-500 was utilized for the

in-plane motion detection of the planar device. Fig. 6.9a and Fig. 6.9b show the compar-

ison between analytical, FEA and experimentally obtained transient displacements for

the V-beam and the initially-retracting actuator respectively. The differences between

the analytical, FEA and experimental results arise owing to the following factors: (1)

to simplify analytical modeling the natural convection coefficient is assumed to be con-

stant, which in reality is dependent on temperature distribution; (2) material properties

such as specific heat, elastic modulus, thermal conductivity, density, thermal expansion

coefficient, resistivity, vary locally after doping, however in FEA and analytical analysis

uniform material properties of single-crystal silicon is assumed; (3) the analytical heat

transfer problem is modeled as a one-dimensional whereas in reality is two-dimensional.
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Figure 6.9: Comparison of analytical, FEM and experimentally measured transient dis-
placement of (a) V-beam actuator, and (b) initially-retracting actuator.

6.2 Application 2 - A mechanical OR gate using pinned-

pinned bistable arches 2

The earliest logic gates were mechanical. Nonetheless, they remained reasonably large

in size, comprising revolute joints. To be used in logical circuits, they should be suffi-

ciently small so as to accommodate several of them in a small area. Since manufactur-

ing at small scales essentially requires structures to be monolithic, all kinematic joints

should be avoided using a compliant design. We present a design of logic gates using

2Work done with Deepayan Banik
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compliant bistable arches. From the point of view of designing at micro or nano scales,

one needs to be able to do the same at larger scales first, because manufacturing mi-

cromechanisms is not only expensive but also time-consuming. Here, we have tried to

achieve the design of an OR gate in the macro scale first using pinned-pinned arches.

At the micro scale, we ought to use fixed-fixed arches that can be easily realized using

photolithography.

6.2.1 The OR logic

According to the OR logic, when either of the two inputs is 1, the output must also be

1. The shape of the bistable arch corresponding to its as-fabricated shape represents

the binary digit 0, while the toggled state corresponds to binary digit 1. We identify

two positions on the bistable arch to give input displacements, namely, Location 1 and

Location 2. A threshold displacement given at either of these locations should switch

the arch to its second state (binary 1) from its as-fabricated state (binary 0). Also, when

both the input displacements are given at both the locations, the arch should still be in

the second state, exhibiting the OR logic.

6.2.2 The design for the mechanical OR gate

With the aid of the analytical techniques described in the earlier chapters, we check the

bistability of a few standard combinations of modes and their mode weights. The shape

of arch that shows the OR gate logic is taken as a combination of the first and the fifth

buckling modes as it provides for two valleys (Locations 1 and 2) to accept inputs as

shown in Fig. 6.10. The length of the arch is 100 mm, the thickness is 1 mm, the weight

of the first and the fifth modes are 10 and 2.5 respectively while the in-plane depth is

5 mm. Locations 1 and 2 are at 25 mm along the length of the arch from either ends.

Thus, the shape of the arch is given by the following expression

h(x) = 10 sin (
πx

100
) + 2.5 sin(

5πx

100
) (6.20)

From the bilateral relationship for analysis, Eq. (4.19), we obtain the toggled shape of

the arch as given in Fig. 6.10 and the corresponding expression is

h(x) = −8.25885 sin (
πx

100
) + 2.74253 sin(

5πx

100
) (6.21)
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Figure 6.10: The as-fabricated (middle) and toggled (bottom-most) shapes with travel
(top-most). The arrows represent the direction of actuation.

6.2.2.1 Switching of the arch from binary 0 to binary 1

We use smaller bistable arches for providing the input to the arches as depicted in

Fig. 6.11. In order to decide the parameters of arches corresponding to inputs 1 and

2, we need to obtain the displacement required at Locations 1 and 2 for the output arch

to toggle to its other state.

Figure 6.11: Schematic arrangement of the input and output arches

Figure 6.12 shows the force-displacement characteristic obtained from FEA for ac-

tuation along Location 1 which is positioned eccentrically for receiving inputs. Note that

the displacement is assumed to be positive in the downward direction while the force is
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assumed to be negative in the same direction. In Fig. 6.12, we note that the abscissa

at the point where the curve cuts the x-axis for the second time (position for unstable

equilibrium) gives us the travel (T1) required for switching from binary 0 to binary 1,

which is 13.25 mm.

Figure 6.12: Force-displacement curve for eccentric actuation (location 1 or 2).

When both locations 1 and 2 are actuated simultaneously, the switching is perfectly

symmetric. The force-displacement curve corresponding to this mode of actuation is

given in Fig. 6.13. Thus, when both the inputs are acting together, a displacement of 10

Figure 6.13: Force-displacement curve for symmetric eccentric actuation (location 1 and
2).

mm is required to toggle the arch. However, T1 (13.25 mm) is greater than 10 mm. So,

inputs 1 and 2 should have a travel of at least T1 at their mid-points. By taking arches of

span 70 mm, thickness 0.7 mm, out-of-plane width 5 mm, and weights of the first and

the fifth modes as 8 and 2, this can be achieved. These parameters are arrived at using



136 Applications

Eq. (4.19) and a verification of the design using FEA is given in Fig. 6.14. The travel at

the mid-point of the arch is 14.25 mm, which satisfies our design requirement.

Figure 6.14: Force-displacement curve for actuation at the mid-point of the input arches
1 and 2

6.2.2.2 Switching of the arch from Binary 1 to Binary 0

According to the OR gate logic, we need to apply a displacement (T2) at locations 1’

and 2’ shown in Fig. 6.10 to switch it back to 0. That is to say, the output arch should

return to State 1 (binary 0) when both the inputs are reverted to their as-fabricated shapes

(binary 0). This is necessary for an OR gate. We do this by using input arches 3 and 4

positioned below the toggled configuration of the arch as shown in Fig. 6.15. Locations

1’ and 2’ receive actuation given by inputs 3 and 4, respectively. Note that, according to

OR logic, both inputs 3 and 4 must be made 0 for the output arch to return to 0.

Figure 6.15: Schematic arrangement of the input and output arches for reverse actuation.

From Fig. 6.13 we note that the value of T2 is 4.4 mm. If we try to design an

arch with such a small travel at the mid-point, then the entire size of the arch has to
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Figure 6.16: 3D-printed prototype of the OR gate design

be reduced to such an extent that it would result in a loss of bistability and structural

strength. Hence, the plungers in these arches are located eccentrically (8.6 mm from the

corresponding end), which allows for a smaller travel. These arches are of span 50 mm,

thickness 0.5 mm, out-of-plane width 5 mm, with weight of the first and the fifth modes,

5 and 1.25 respectively. By using equation Eq. (4.19), we find the travel at this location

to be 4.65 mm, which is slightly greater than T2 (4.44 mm).

In Fig. 6.16, the different configurations of the entire assembly have been displayed.

The models for all the arches are 3D-printed using ABS (Acrylonitrile Butadiene Styrene).

It must be noted here that inputs 1 and 3 have to be actuated simultaneously and the same

is true for inputs 2 and 4. Figure 6.16a shows the initial undeformed state of the assem-

bly corresponding to binary 0. In Fig. 6.16b, one of the inputs has been actuated to

1 causing the output to switch to 1 as well. When both the inputs are actuated, as in

Fig. 6.16d, the output remains in the toggled state. Finally, in Fig. 6.16c, we see that,

as one of the inputs is reverted to 0, the output arch does not switch back to 0, just as it

should, to maintain the OR logic. Figure 6.16a also represents the state when both the

inputs have been switched back to 0 causing the output to return to 0 as well.
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6.3 Closure

An improved design of a push-on, push-off bistable micromachined switch is presented

here. The design has three features: (i) avoiding a flexural joint and thus eliminating

the possibility of high stress; (ii) mechanical decoupling of the push-on and push-off

actuations that facilitates design of the two actuators independently to a large extent; and

(iii) incorporating a novel initially-retracting actuator to achieve consistent switching

back. The design also illustrates the importance of analytical modeling for the bistable

arches to determine the design parameters. The efficacy of the design is demonstrated

using a micromachined prototype that is successfully tested.

The OR gate design presented here is preliminary and a lot of work lies further in

this direction. The way logic has been demonstrated in this work paves way for the

designing of AND, NAND and NOR gates which could result from modifications of the

current design itself. This mechanism has to be designed at micro-scales because that is

where the real utility of the system lies.

In the next chapter, building on our understanding of bistable arches, we study

bistable shells and an application based on them.



Chapter 7

Bistable shells

Synopsis

First, we discuss bistability in shells and present their shape optimization for maximum

travel. The optimization is done numerically and semi-analytically. We compare the

shell with maximum travel with the arch with maximum travel, discussed in Chapter

3. Second, we present a passive monolithic compliant grasping mechanism that works

based on an everting bistable shell. It comprises grasping arms made of beam segments

that work in conjunction with the bistable shell. The grasper is capable of picking up a

stiff object of any shape up to a maximum size and weight.

7.1 Introduction

Bistable shells can maintain two force-free equilibrium states as shown in Fig. 7.1. Many

of the existing bistable shells in engineered devices and the natural world rely on pre-

stress for their bistable behaviour. However, the bistable shells considered here are

stress-free in their as-fabricated state and stressed in their everted state. In this work, we

consider shallow, thin shells that can be bistable without pre-stress.

A cross section of a bistable shell is shown in Fig. 7.2. The shell of as-fabricated

profile, h(r), deforms to w(r) on the application of a point force, F , at r = 0. The

height of the shell is H , the radius of the planform R and the thickness t. A shallow

shell is one whose height is much smaller than its planform, i.e., H << R. A thin shell

is one whose thickness is much smaller than its height, i.e., t << H . There is scope

for the shape optimization of shallow-thin shells in view of the switching and switch-

back forces as well as the distance travelled by points of interest between the two stable

139
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Figure 7.2: A section of a bistable shell
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states. In the next section, we present our preliminary results on the shape optimization

of bistable shells for maximum travel. Our aim is to understand bistability in shells

before designing a gripper based on bistable shells.

In the subsequent section, we use the ability of bistable shells to maintain two struc-

tural orientations without consuming power and thereby conceptualize a passive gripper.

We use a bistable shell attached with grasping arms as the critical element to design a

gripper that is passive and yet is capable of picking up objects of a variety of shapes.

The gripper is a monolithic design that combines a compliant mechanism, a bistable

shell, and grasping arms. The bistable shell everts by pushing on the object to enable

the grasping arms to envelop the object. The compliant mechanism releases the grasped

objects by transmitting the input force to the bistable shell.

7.2 Shape optimization for shell travel

Similar to arches, bistability in shells arises from the interplay between compression

and bending energies. Our aim is to analytically model bistability in shells for a range

of as-fabricated shapes with pinned-pinned boundary conditions, to obtain the optimal

shapes for a specified bistable characteristic. To simplify the problem, the travel of the

mid-point, Wtr shown in Fig. 7.3, of an axisymmetric shell is taken as the objective

function for a chosen thickness t. Two approaches are followed to pose and solve the

r

z

W
tr

Figure 7.3: Travel of the mid-point of the shell between two stable states of a bistable
shell

optimization problem for maximizing the travel with constraints on the switching and

switch-back forces. The first approach that entails numerical optimization is given next.
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7.2.1 Numerical approach

The shape of the shell is a taken as a linear combination of basis functions that are

chosen based on pinned-pinned boundary conditions. Thus, the as-fabricated shape is

expressed as

h(r) =
∑

n=1,3,5

an sin(
nπ

2

(
1 +

r

R

)
) (7.1)

where an denotes the mode weight corresponding to the nth sine mode shape, similar

to the case of pinned-pinned bistable arches. Thus, the optimization variables are the

weights in the linear combination. We only consider odd mode shapes because of the

axisymmetric assumption and take the first three mode weights, a1, a3, and a5, as design

variables.

The optimization problem can be stated as:

Maximize
a1,a3,a5

Wtr

Λ1 :a1 − a3 + a5 = H

Λ2 : |a3| <
H

2

Λ3 : |a5| <
H

2

Data : E, ν, t,H,R

where the constraint a1 − a3 + a5 = H is to ensure that the height remains constant and

the bounds on a3 and a5 limits the area of interest. In this approach, a sensitivity analysis

is challenging because the analytical expressions for gradients are not easily tractable.

Hence, we use an optimization toolbox in Matlab 2016b in conjuction with a Comsol

Matlab livelink to carry out computations without gradients. The function written in

Matlab calculates the travel from FEA carried out in Comsol. The fmincon() routine

in Matlab calls Comsol FEA engine iteratively to improve the travel. For a radius of

30 mm, a thickness of 0.8 mm, a height of 5 mm, a Young’s modulus of 2.1 GPa and a

Poisson’s ratio of 0.3, the optimal profiles obtained are given in Fig. 7.4.

The values of the design variables in the three cases are: (a) a1 = 4.5, a3 = −2, a5 =

−1.5, (b) a1 = 3.6, a3 = −1.2, a5 = 0.2, and (c) a1 = 1, a3 = −2, a5 = 2. These

multiple solutions are due to different initial guesses. This indicates the existence of

multiple local minima. Certain initial guesses could not converge confirming that the

shell is not bistable for all combinations of a1, a3, and a5, as to be expected. Next, we

present our second approach, which is semi-analytical wherein the deformation of the
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(a) (b) (c)

Figure 7.4: Optimal bistable shells that maximize travel at the mid-point between the
two stable states.

shell is also expressed as a linear combination of the basis functions used for defining

the shape of the shell.

7.2.2 Semi-analytical approach

This approach follows the methods developed for shallow arches, and we take the de-

formed shape of the shell as:

w(r) =
∑

n=1,3,5

An sin(
nπ

2

(
1 +

r

R

)
) (7.2)

where An is the mode weight corresponding to the nth sine mode shape. The axial

deformation in the arch is taken as

w(r) =
∑

n=1,3,5

Cn sin(
nπr

2R
) (7.3)

where Cn is the mode weight corresponding to the nth sine mode shape. Thus, we can

write the compression energy as

SEc =

∫ R

0

πt (σrεrσθεθ) rdr (7.4)



144 Bistable shells

where the radial strain εr, circumferential strain εθ, radial stress σr snd circumferential

stress σθ are given by

εr =
du(r)

dr
+

1

2

[(
dw(r)

dr

)2

−
(
dh(r)

dr

)2
]

(7.5)

εθ =
u(r)

r
(7.6)

σr =
E

1− ν2
(εr + νεθ) (7.7)

σθ =
E

1− ν2
(εθ + νεr) (7.8)

Thus, the bending energy can be written as

SEb =

∫ R

0

πEt3

6(1− ν2)
[
(χr + χθ)

2 − 2(1− ν)χrχθ
]
rdr (7.9)

where χr and χθ are the change in curvatures given by d2w(r)
dr2
−d2h(r)

dr2
and 1

r

(
dw(r)
dr
− dh(r)

dr

)
,

respectively. Since we are interested in the travel of the shell corresponding to the sec-

ond stable state where F = 0, the work potential is zero. So, the potential energy, PE,

comprises only bending and compression energies. By minimizing PE with Ai and Cj
we get the second stable state of the shell.

Thus, we can write the optimization problem as:

Maximize
a1,a3,a5

Wtr

λi :
dPE

dAi

λj :
dPE

dCj
(7.10)

Λ1 :a1 − a3 + a5 = H

Λ2 : |a3| <
H

2

Λ3 : |a5| <
H

2

Data : E, ν, t,H,R

By solving numerically, we obtain two solutions where a1 = 5, a3 = −2.5, a5 = −1.5

and a1 = 1.5, a3 = −2.5, a5 = 2 as depicted in Fig. 7.5a and Fig. 7.5b, respectively.

To understand the problem better, the design space is generated as shown in Fig. 7.6.

A point in this space corresponds to a shape of the shell. In the white region the shell
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(a) (b)

Figure 7.5: Optimal bistable shells that maximize travel at the mid-point between the
two stable states obtained using a semi-analytical approach.

is not bistable, or in other words it is monostable. Note that the design space of the

a
5

a
3

Monostable

T
1

T
2

Figure 7.6: Design space of arches with contours indicating the travel of shells

shells is much larger than that of the arches discussed in Chapter 3. Points T1 and

T2 are the optimal solutions corresponding to a1 = 5, a3 = −2.5, a5 = −1.5 and

a1 = 1.5, a3 = −2.5, a5 = 2, with a travel of 20.1 mm. Note that this is almost double

the travel of the shell with a1 = 1, a3 = 0, a5 = 0.

Interestingly, the optimal travel values in shells are much larger than those in arches

of similar geometric parameters. If we imagine a shell revolved from an arch shown in



146 Bistable shells

Fig. 7.7 and obtain the optimal shell by revolving the optimal arch, the travel is only

11.2 mm.

Optimal arch for maximum travelInitial shape of the shell Optimal shell for travel

Figure 7.7: Optimal shell obtained from revolving an arch with optimal travel

Our model gives reasonable accuracy in computing the travel. As mentioned before,

the travel is obtained based on the equilibrium configuration of the arch at the second

stable state, where the strain energy of the shell is minimal. However, our energy expres-

sions fail to accurately capture the strain energy values in the in-between configurations

of the shell. Thus, our model needs improvements to find the switching and switch-back

points. Hence, we have relied on FEA for designing a gripper using the bistable shell de-

scribed in the next section. The gripper illustrates the utility of bistable shells as passive

universal grippers.

7.3 A passive universal gripper using a bistable shell 1

In this section, we first explain the working principle of the gripper. And then, an anal-

ysis of the bistable shell, switching mechanism, and grasping arms is presented. We use

FEA in ABAQUS software to obtain force-displacement characteristics for the selected

shape of the shell. The switching mechanism is designed by incorporating the force

needed to switch the shell and the maximum actuation force available. The results from

the preliminary grasping trials using a 3D-printed prototype are given subsequently.

7.3.1 Working principle

The bistable compliant gripper consists of a switching compliant mechanism, a bistable

shell, and grasping arms as shown in Fig. 7.8. The switching mechanism is the connect-

ing element between the actuator and the bistable shell. It switches the bistable shell

from its stress-free configuration to the second stable everted configuration of the shell
1Work done with Mytra V. S. Balakuntala
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Figure 7.8: A compliant monolithic grasping mechanism based on a bistable shell. The
mechanism consists of three parts, (1) switching mechanism, (2) bistable shell, and (3)
grasping arms.

resulting in the opening of the grasping arms. Figure 7.9 shows the grasping arms open-

ing and closing in conjuction with the bistable shell. As illustrated in Fig. 7.10, these

three parts work in the following three steps to grasp and release objects: (1) the in-

put force applied on the switching mechanism switches the bistable shell and opens the

grasping arms to grasp the object of interest (see Fig. 7.10(a)-(c)); (2) the everted shell

upon contact with the object returns to the stress-free configuration causing the grasp-

ing arms to close around the object and grasp it (see Fig. 7.10(d)-(f)); (3) the switching

mechanism is actuated again to release the object.

The design of the switching mechanism and the grasping arms is dependent on the

bistable characteristics of the shell. These characteristics determine the topology and

size of the switching mechanism, and the dimensions of the grasping arms as explained

Figure 7.9: Bistable shell with contracting mechanism and grasping arms attached.
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 (a)                                 (b)                              (c)        

 (d)                                 (e)                              (f)        

Figure 7.10: Working of the grasping mechanism simulated in Abaqus.

in the next two subsections. We systematically approach the analysis of the gripper

considering the design of the bistable shell first, followed by the switching mechanism

and the grasping arms.

7.3.2 Bistable shell

The two force-free stable equilibrium configurations of the bistable shell correspond to

the open and closed positions of the gripper. The critical static characteristics of the

shell are the switching (Fs) and switch-back (Fsb) forces, the switching displacement

(us), and the travel (utr). These characteristics are labeled in the force-displacement

curve given in Fig. 7.1. Fs is the minimum force required by the shell to switch from

the stress-free stable configuration to the stressed everted shape. Fsb is the maximum

force that can be resisted by the shell in the everted state before switching back to its as-

fabricated initial shape. us is the minimum displacement the shell needs to be actuated to

initiate its eversion and utr is the total displacement of the point of interest between the

two stable states. Note that the bistable shell considered here is bistable solely because

of its as-fabricated shape, not because of pre-stress. This is preferred as the gripper in

its closed configuration, which is its default position, is stress-free.

In the case of planar arches, it is known that a single cosine arch does not show
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bistability for fixed-fixed boundary conditions. Here, we show that a shell formed from

a revolved cosine profile is bistable for fixed-periphery boundary conditions. The height

of the shell at a distance r from the center, h(r), is taken as:

h(r) =
H

2

[
1− cos

(
2π − 2πr

R

)]
(7.11)

where H is the height at the midpoint of the shell and R the radius of the planform. We

analyze the shell for an uniform thickness, t = 1 mm,H = 7 mm, andR = 30 mm using

a quasi-static FEA in Abaqus. The dimensions were selected for realizing a prototype

design that can be actuated by hand. Young’s modulus and Poisson’s ratio of Verowhite

and TangloPlus mixture, a 3D printing material used in Objet Conex 260 for prototyping,

were taken as E = 1.2 GPa and ν = 0.3 respectively. For a point load applied at the

center of the shell with edge fixed, the force displacement characteristics obtained are

shown in Fig. 7.11. Note that umid is the deformation at the point of application of the

load, F . The curve intersects the umid axis, F = 0, at three points corresponding to two

stable and one in-between unstable states, indicating bistability. Two important design

(0,0) (0.0111,0) (0.0137,0)

Figure 7.11: Bistable shell with contracting mechanism and grasping arms attached.

considerations for the prototype gripper, and has a sufficiently high Fsb

Fs
ratio and a low

Fs. An ideal Fsb

Fs
of one implies that the forces required to switch from one state to the

other are identical. Fs is kept low so that the gripper can be actuated by hand. The

dimensions of the shell were arrived at iteratively for Fsb

Fs
> 0.5 and Fs < 35 N.
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7.3.3 Switching mechanism and grasping arms

The switching mechanism transmits the force from the actuator to the center of the

bistable shell. Hence, the parameters that affect the switching mechanism design are the

force and output displacement from the actuator, and the switching force and displace-

ment of the shell. For the bistable shell considered here, Fs = 20N and us = 11.12 mm.

The switching mechanism selected here attaches to the edge of the shell as shown in

Fig. 7.8. The force is applied at the protruding part at the top of the central axis of the

mechanism. This initiates a contact at the top of the shell. When the deformation at this

point of contact exceeds us, the shell everts to the second stable state. For other cases

where force or displacement amplification is required, the switching mechanism could

be designed to be a force or displacement amplifying compliant mechanism without

affecting the aforementioned grasping functionality.

Four symmetrically arranged rectangular beams that are attached to the bottom sur-

face of the bistable shell act as the grasping arms that hold objects. In the as-fabricated

state of the arch, the grasping arms assume a horizontal configuration. When the shell

is in the second stable state, the grasping arms protrude outwards as shown in Fig. 7.9.

The grasping arms should be wide apart when the shell is in the second stable state.

This is important to hold objects of larger size. This determines the length of the arms

and the position at which they are attached to the bottom surface of the shell. For the

prototype considered here, beams of length 12 mm attached at a distance of 15 mm from

the shell edge satisfy these constraints. When the everted shell comes in contact with

stiff objects, it switches back to its initial state. In the process, the grasping arms come

together and hold the object firmly. By taking the width of the beam as 5 mm and the

depth as 1 mm the grasping arms are compliant enough to wrap around the object, while

at the same time, stiff enough to support the weight of the object.

7.3.4 Results and performance

The 3D-printed prototype of the bistable shell and grasping arms in Object Conex 260

is given in Fig. 7.12(a)-(e). The figure illustrates the grasping of a wide range of objects

such as: (a) ring (b) paper clip (c) aluminum cylinder (d) mini motor (e) plastic spoon. A

complete 3D-printed prototype of the grasping mechanism is given in Fig. 7.12(f)-(h).

In Fig. 7.12(f), the gripper with an everted shell comes in contact with a screwdriver,

which acts as the object here. The grasping mechanism holds the screwdriver by the

bistable shell in Fig. 7.12(g). In Fig. 7.12(h), the gripper releases the screwdriver by
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(a) (b) (c)

(d) (e)

(f) (g) (h)

Figure 7.12: Grasping arms can capture objects of varying sizes, shapes, and weights:
(a) ring (b) paper clip (c) aluminum cylinder (d) mini motor (e) plastic spoon. 3D-printed
prototype made in Object Conex 260. The grasping mechanism (f) grasps a screwdriver,
(g) holds, and (h) releases it using the switching mechanism.

actuating at the actuating point of the switching mechanism.

One can note here that the gripper is able to grasp objects with a length larger than

the span of the planform of the shell; for example, the plastic spoon in Fig. 7.12(e).

This is possible due to the free space left in between the grasping arms by limiting their

number to four. If one increases the number of grasping arms, the gripping performance

improves but limits the size of the objects that can be grasped due to the reduction in the

free space between the grasping arms.

7.4 Closure

Bistable shells are explored with a shape optimization problem to maximize the travel.

Optimal bistable shell profiles are obtained with numerical and semi-analytical approaches.

Furthermore, a monolithic compliant grasping mechanism based on the bistability of a

bistable shell is proposed and illustrated with the aid of a 3D-printed prototype. The

salient features of the grasping mechanism include: lower power consumption, ability

to grasp objects of a variety of shapes, grasping of stiff objects initiated from contact,
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and a completely monolithic design. Both the optimization on shells and the gripper de-

sign have scope for improvement. In the next chapter, we summarize the contributions

of this thesis and briefly discuss the scope for future work.



Chapter 8

Closure and future work

8.1 Summary

In the preceding chapters, we discussed the analysis, design, and optimization of bistable

arches. The statics of the arch such as the force-displacement relationship, arch-profile

relationship, and deformation pathways were studied. The key step in the analytical

methods developed is to express both the as-fabricated and deformed profiles of the arch

with buckling mode shapes of a straight column with the corresponding boundary con-

ditions of the arch. This helped us derive the potential energy and equilibrium equations

of the arch for multiple design and analysis cases.

For bistable arches with general boundary conditions, where analytical solutions are

intractable, we proposed a semi-analytical strategy to find the critical points on the force-

displacement curve. We illustrated with examples that by using using critical points, we

could design and analyze arches for any given boundary conditions. Furthermore, we

obtained optimal profiles of arches for a minimal switching force, a maximum switch-

back force and a maximum travel between two configurations.

The closed-form analytical expression is derived for designing arch-profiles. It

makes the design extremely easy because just by substituting the mode-weights of the

required toggled arch-profile, the as-fabricated shape can be obtained. By checking the

positive definiteness of the Hessian matrix, the stability of the obtained design can also

be ensured. The bilateral form of the relationship is used for analysis. Here, unlike

the critical-point method, the analysis is done without considering the switching and

switch-back forces.

A generalized framework of analysis has been developed for spatial arches. Since

planar arches are a subset of spatial arches, this model can reproduce the results of planar

153
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analysis and at the same time capture spatial deformation pathways in planar arches as

well. We illustrated the importance of spatial analysis in planar arches without which

the analysis would lead to incorrect results.

We used the planar analytical model to design a bistable arch that can be used in

a bistable RF-MEMS switch. The arch is designed so that it switches with a specified

point load at the mid-span and switches back with a specified displacement at one of its

ends. Thus, we realize a two-terminal electrically coupled but mechanically decoupled

switch.

Furthermore, we also presented our studies on bistable shells. Profiles of bistable

shells that maximize travel were obtained using numerical and approaches. By attaching

flexible beams, which act as grasping arms, to a bistable shell we designed a passive

gripper. The gripper is also universal as it can grasp objects of varying shape and size.

In the next section, we list the contributions of this thesis.

8.2 Contributions of the thesis

• A general model of a bistable arch with revolute flexures at the ends, which can

be used to design bistable arches of multiple boundary conditions.

k
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κ
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k
BV

κ
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x=0 x=L

h
mid

t h(x)

Figure 8.1: Model of a bistable arch with flexures at the ends



Closure and future work 155

• A computationally effective design method for planar bistable arches using three

critical points on the force-displacement curve.
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Figure 8.2: Critical points on the force-displacement curve.

• Shape optimization for improving the travel and the switch-back force of the arch

using the critical-point method.

       A       B

Figure 8.3: Optimal profiles of a bistable arch with split-tube flexure at the ends

• A design method for a new class of asymmetric bistable arches with potential

applications owing to their bimodal nature.
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(a)                                                                                    (b)

Figure 8.4: Asymmetric bistable arches with (a) asymmetric initial shape and (b) asym-
metric boundary conditions designed using the critical-point method.
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• An upper bound on the axial compression energy in arches for them to be bistable.

For pinned-pinned arches, 3Q2C ≤ 4π2

For fixed-fixed arches, 3Q2C ≤ 8.17π2

• Conditions on fundamental mode weights in the arch-profiles of bistable arches.

1. If the fundamental mode weight a1 is zero in the initial profile of an arch, it

cannot be bistable.

2. The fundamental mode weight A1 cannot be zero in the toggled profile of an

arch.

• A bilateral relation between the stable states of bistable arches for design and

analysis for pinned-pinned and fixed-fixed boundary conditions.

3Q2

∞∑
i=1


M2

1

M2
i

(
1− a1

A1

)
− 2[

1− M2
1

M2
i

(
1− a1

A1

)]2
 a2i = 1 (8.1)

a1 =A1

∞∑
i=1

M2
1A

2
i

M2
i
− 2

∞∑
i=1

A2
i − 1

3Q2

∞∑
i=1

M2
1A

2
i

M2
i

(8.2)

Ai =
ai

1− M2
1

M2
i

(
1− a1

A1

) (8.3)

• Results on the symmetries of shapes in the two stable states of arches.

– 1a. For i > 1, Ai = 0 implies ai = 0 and vice versa.

1b. The toggled-profile of a bistable arch with a symmetric initial profile will

also be symmetric and vice versa.

1c. For i > 1, Ai 6= 0 implies ai 6= 0 and vice versa.

1d. The toggled-profile of a bistable arch with an asymmetric initial profile

will also be asymmetric and vice versa.

– 2a. (a1A1) < 0

2b. (ai>1Ai>1) > 0

– 3a (inexact). Ai is approximately equal to ai for higher values of i.
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3b (inexact). For arch-profiles composed of only ais with higher values of

i (i ≥ m) along with a1, a21 − 8
∞∑
i=m

a2i − 4
3Q2 > 0 is necessary and sufficient

for bistability.

• A new class of bistable arches, namely, spatial bistable arches.

Figure 8.5: A pinned-pinned spatial arch in its as-fabricated stress-free, in-between
stressed, and second stressed stable states.

• An analytical model that captures the coupling between in-plane and out-of-plane

bending, and the torsion with an extension of the St. Venant and Michell relation-

ship that was given for arches with spatial deformation pathways.

(a)                                                                              (b)

ϕX

Z

Y

Figure 8.6: A spatial arch with breadth, b, depth, t, span, L, and mid-span height in the
xy plane, hmid.
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• Analysis on spatial arches with varying as-fabricated shapes and boundary condi-

tions for mid-point and eccentric loading.

• Analysis on spatial deformation pathways in planar arches, which is a special case

of the initial profile of spatial arches.
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Figure 8.7: Symmetric deformation pathways of a pinned-pinned spatial bistable arch.

8.3 Future work

In this thesis, we discussed the statics of bistable arches. However, in certain applica-

tions where the high-speed switching of bistable arches is desirable, dynamic studies are

required. Considering dynamics would predict smaller switching and switch-back forces

compared to a quasi-static analysis. Even though the dynamics of the snap-through

buckling of arches have been well studied, dynamic bistability is not well explored,

especially for arches with varying shapes and general boundary conditions.

Interconnected bistable arches are an unexplored area of study. Imagine two arches

with pinned-pinned boundary conditions, which are connected at one of their pin joints.
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If these two arches are bistable unattached, would they be bistable when connected?

Conversely, can two arches that are not bistable be connected to make interconnected

bistable arches? Answers to these questions would help in designing intricate intercon-

nected bistable systems.

Our work on bistable shells is preliminary and there is scope for further investiga-

tion. An analytical model that can accurately capture compression and bending energies

would be one, which is very challenging due to the involved nonlinearity. The presented

design of the universal passive gripper can also be improved. The cosine profile is not

the only shape that shows bistability with fixed-fixed boundary conditions. For example,

selecting the fundamental buckling mode of a circular plate with fixed-fixed boundary

conditions as the as-fabricated shape also shows bistability. Furthermore, optimizing the

arch-profile that fits into design constraints can improve the function of the grasper.

The gripper presented here holds objects that are stiff. However, the grasping of del-

icate objects cannot be initiated from contact as it would apply excessive force on them.

One possibility in holding such soft objects is to initiate the contraction of grasping arms

actively, i.e., not from contact with the object. This functionality could be achieved by

redesigning the switching mechanism and the bistable shell. The profile, orientation,

cross-section parameters and the number of grasping arms can significantly improve the

gripping performance. An optimal design that considers the compliance, strength, and

volume of the grasping arms could be an addition to the present design.
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Appendix A

An analytical model of electrothermal
actuator

The analysis of a generic electrothermal actuator involves three energy domains: electri-

cal, thermal and elastic. In the electrical domain, the current distribution is determined

for an applied voltage, which causes Joule heating. By accounting for Joule heating as

internal heat generation and considering heat transfer through convection and conduc-

tion (Mankame and Ananthasuresh, 2001), the temperature distribution is calculated in

the thermal domain. Non-uniform temperature distribution will give rise to a thermally-

induced strain to cause deformation, which is used in the elastic domain. Table A.1

lists the constants involved in the modeling of a V-beam electrothermal actuator and the

design parameters are denoted by:

V : Voltage
b : Out of plane thickness of beams
w : In-plane thickness of beams
d : Central offset of beams
l : Length of beams
N : Number of beams

The transient temperature distribution (Maloney et al., 2003) along the beams of the

V-beam actuator is given by

T = T∞ +
∞∑
n=1

ξn
γn + β

[1− e−(γn+β)t] sin
(nπx

l

)
(A.1)

where, ξn =
2

cpnπ

V 2

ρl2
[1− cos(nπ)], γn =

n2π2ks
l2cp

, β =
h

bcp

161



162 An analytical model of electrothermal actuator

Parameter Value Unit

c Specific heat, silicon 700 J/kg-K

E Elastic modulus, silicon 170 GPa

ks Thermal conductivity, silicon 130 W/m-K

p Density, silicon 2330 kg/m3

T∞ Ambient temperature 298 K

α Thermal expansion coefficient 2.6 x 10-6 K-1

ρ Resistivity, silicon 2.5 x 10-4 Ω-m

Table A.1: Parameters Involved In Actuator Modeling

The axial stiffness, kv, and the transient force, Fv, generated by the V-beam actuator are

given by

kv =
16wbE(d2 + w2)

l3
N (A.2)

Fv =
4αwbEdN

πl

∞∑
n=1

1

n

ξn
γn + β

[1− cos(nπ)]
(
1− e−(γn+β)t

)
(A.3)

The transient force is obtained by using Maizel’s theorem (Kovalenko, 1969). For the

converging series, Eq. (A.3), the first term gives the time constant, θ, of the V-beam

actuator as

θ =
1

γ1 + β
(A.4)

The axial load and the maximum stress in the actuator are represented respectively as

Faxial = Fv
dl

4N(d2 + w2)
(A.5)

σmax = Fv
l

Nb(d2 + w2)

(
3 +

d

4w

)
(A.6)

The power consumption of the V-beam actuator is obtained as

Power =
V bwN

ρl
(A.7)

The initially-retracting actuator is composed of an integrated pair of V-beam actua-

tors with different lengths opposing each other’s motion. So, the resultant force of the

initially-retracting actuator is the difference of the forces due to the two embedded ac-

tuators, individually given by Eq. (A.3). Similarly, the total axial stiffness and power
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w d

b

Figure A.1: Geometric parameters of an actuator beam.

consumption of the initially-retracting actuator will be a summation of the respective

quantities of the two embedded actuators. Hence, the displacement of the initially-

retracting actuator is given by

u =
Fv1 − Fv2

kv1 + kv2 + kext
(A.8)

where the subscripts 1 and 2 denote the values for the two embedded actuators and kext is

the stiffness of the object being actuated i.e., the arch in this case. The time of inflection,

τ , for the initially-retracting actuator is obtained by solving for the time instant, where

the derivative of Eq. (A.8) with respect to time is zero. The expression for τ is given by

τ =
cpl21l

2
2

π2ks(l22 − l21)
log

(
w1d1N1l

3
2

w2d2N2l31

)
(A.9)

The maximum temperature and stress occur in the set of smaller beams in the initially-

retracting actuator.
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Appendix B

Design of bistable arches using a
non-dimensional kinetoelastostatic map

A kinetoelastostatic (KES) map is an excellent tool to design the size of the compliant

mechanism once its shape and topology are fixed (Bhargav et al., 2013). The map is

called kinetoelastostatic because it considers elastic deformation kinematics under static

conditions. The map uses non-dimensional quantities so that the intrinsic behaviour of

the mechanism is captured without being affected by its size and material as well as by

the forces acting on it. Thus, a few force and stress curves plotted against displacement

on the KES map can be used to obtain similar design curves for a large number of

mechanisms with different sizes and material properties.

We demonstrate the construction and utility of a KES map for bistable arches using a

design example of a fixed-fixed arch. Consider a double-cosine arch with span L, height

h, thickness t, out of plane width b, Young’s modulus E, and slenderness ratio s = L
t
. A

KES map for displacement at the mid-point, umid, can be generated by plotting u
L

against

η = Fs2

Etb
for different L

h
ratios as shown by the solid curves in Fig. B.1. Similarly,

the dashed curves in Fig. B.1 are the KES map for stress, where σs
E

is plotted against

η = Fs2

Etw
. Tp generate each curve on the map, an analysis for the corresponding L

h
is

required. In this case, the analysis is done in finite element software Comsol. However,

as mentioned before, these few analyses give us the benefit of numerous FEA analyses

for arches with various sizes and material properties.

Consider the design of a fixed-fixed arch with the following design requirements:

• L ≤ 30 mm

• Travel of the mid-point of the arch (utr) ≥ 13 mm
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Figure B.1: Kinetoelastostatic map for fixed-fixed bistable arches.

• Switching force = 50 N

• Material of the arch - spring steel

Let us take the span of the beam to be L = 30 mm. The travel of the midpoint of the

arch is the distance traveled by the midpoint between the two stable states of the arch.

On the KES map, this corresponds to the third point of intersection of the solid curves

on the vertical axis at η = 0. Usually this measure is a little less than twice the height of

an arch. To get a travel greater than 13 mm, let us take the height, h = 7.5 mm. Thus,

the L/h ratio can be obtained as:

L

h
=

30

7.5
= 4 (B.1)

We select the values of L and h such that a curve of that L
h

exists on the map. If that is

not possible, we can obtain the curve of the required L
h

ratio by interpolating between

the existing L
h

curves.

Thickness t, and width b, can be calculated once we obtain the η value. For L
h

=

4, the η value corresponding to the switching force, Fs, is marked by the point A in
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Fig. B.1. At point A, we note that η = 22.79. Now to obtain t and b we have:

η =
Fss

2

Ebt
=
FsL

2

Ebt3
(B.2)

=⇒ 22.786 =
50× (30e− 3)2

210e9× bt3
(B.3)

=⇒ bt3 = 9.4e− 15 mm4 (B.4)

Thus, for b = 1 mm, t should be 0.21 mm, which completes our design.

The maximum stress in the mechanism can be obtained from the stress-curve cor-

responding to L
h

= 4. The maximum σs
E

value for L
h

= 4, denoted by point B on the

dashed curve in Fig. B.1, is 6.62, i.e.,

σs

E
= 6.62 (B.5)

=⇒ σ = 9268 MPa (B.6)

The verification of this design in Comsol Multiphysics is given in Fig B.2. It is evident

that the travel is greater than 13 mm and the switching force is 50 N. The maximum

stress obtained from Comsol is 9824 MPa.

 u
mid 
(m)

F
 
(N)

Figure B.2: Force-displacement curve for a bistable arch designed using a KES map
simulated in Comsol Multiphysics 5.0
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