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teacher and Vāsudēvaṅ mās. .
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Abstract

In this work, radiation and transmission of sound through flexible perforated panels
set in infinite rigid baffles are investigated. The treatment is largely analytical using
Fourier transforms and contour integrations. Numerical calculations are only used
occasionally. The work is largely divided into three parts: the first part involves
radiation and transmission studies using the one-way coupled formulation, the second
part investigates the same problems using the two-way coupled (or the fully-coupled)
formulation and the third part involves derivations of closed form expressions for the
modal coupling coefficient using contour integration.

In the first part, the panel with perforations is placed in a baffle that is perforated
or unperforated. Having an unperforated or a differently perforated baffle presents
challenges. It causes a certain coupling of wavenumbers leading to an integral equation.
In the literature so far, the baffle has been taken to be similarly perforated, thus, simpli-
fying the situation. The perforations are arrays of circular holes and are mathematically
modeled using a perforation ratio. An existing model for a circular hole that transmits
sound is used and the collective array is modeled using a perforate impedance. Since,
there is an escape of fluid through the perforations as the panel vibrates (radiating or
transmitting sound) an averaged fluid particle velocity over the panel surface is derived
using fluid continuity and momentum equations. This averaged fluid velocity is then
used along with impedances to compute the pressures and sound powers. In addition,
the presence of the holes shifts the resonance frequencies and modifies the modeshapes.
This shift is accounted for using the Receptance method. The entire derivation is done
in the wavenumber domain (spatial Fourier transform). And at the end, numerical
calculations are done. For the radiation and transmission problems, the results are
presented in terms of the radiation efficiency and the transmission loss, respectively.

It is observed that the perforations reduce the in vacuo natural frequencies of
the panel. For the radiation problem, analytical expressions for the radiated power
and radiation efficiency are derived in an integral form and numerical results are
obtained for different perforation parameters such as perforation ratio, hole diameter
and number of holes. It is observed that a reduction in the perforate impedance leads
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to a decrease in the radiated power and also in the radiation efficiency. The effects of
resistive and reactive hole impedances on the sound radiation are also discussed. For
the transmission problem, it is found that the perforate impedance acts in parallel
to the panel impedance and for a real-world scenario, where the perforate impedance
is less than the panel impedance, a reduction in the transmission loss (TL) can be
achieved with perforations on the panel. For small holes at lower frequencies the
resistive impedance dominates over the reactive impedance. This results in a higher
TL at lower frequencies for a micro-perforated panel as compared to that for a panel
of same perforation ratio but with larger holes.

In the second part, the same two problems of radiation and transmission of sound
through perforated panels set in rigid baffles are studied using the two-way coupled or
fully coupled formulation. In addition to the details presented for the one-way cases
above, here two equations are derived where the average fluid particle velocity and
the panel velocity depend on each other. Thus, a coupled problem needs to be solved.
Due to the inclusion of the fluid loading, a modal coupling coefficient arises in the
formulation. This coupling coefficient is indicative of the degree of coupling between
the in vacuo panel modes caused by the acoustic fluid. In several of the earlier studies
on unperforated panels, in the literature, largely the self modal coupling has been
investigated. Only a few studies have presented studies on the cross modal coupling.
These studies were restricted to the low frequencies. The formulation is reduced to a
single coupled equation and the system of equations (including the modal coupling
coefficient) are solved numerically. Again, the results are presented in terms of the
radiation efficiency and the transmission loss. The natural frequencies are identified
from the peaks in the mean panel quadratic velocity spectrum and compared with
results from the literature.

It is observed that the radiation efficiency decreases with the increase in the perfo-
ration ratio, irrespective of the surrounding acoustic medium. For a given perforation
ratio, the water-loaded panel radiation efficiency is found to be less than that for a
panel immersed in air. It is also observed that for a light fluid like air, a one-way
coupled formulation is adequate. Further, a fully coupled model for the transmission
problem is also developed. It is observed that the TL of a perforated panel acquires
negative values at low frequencies. This apparent anomaly is resolved by taking into
account the additional power component that flows from the baffle region onto the
panel at low frequencies.

In the last part of the thesis, approximate expressions in closed form are obtained
for the modal coupling coefficient using the contour integration. Analytical expressions
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valid for any given fluid loading conditions are derived for the modal interactions
between the corner modes, single and double edge modes and the acoustically fast
modes. This is further used to evaluate the natural frequencies and the radiation
efficiency of the perforated panel. The results agree very well with those obtained
earlier in the thesis using the numerical integration. Also, plots of the resistive and
reactive parts of the modal coupling coefficient are presented and discussed.
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Chapter 1

Introduction

1.1 Motivation for research

Thin panels are commonly used in industrial applications such as machine casings,
walls and roofs of machine shops, hulls of ships and fuselages of airplanes. However,
it is commonly known that these panels are efficient sound radiators. More recently,
panels with perforations are being used in order to reduce sound radiation and also to
facilitate sound absorption. Their applications can be found in machine enclosures,
safety guard coverings of fly wheels and belt drives, diesel generator housings, jet
engine exhaust liners, etc. In applications like underwater sonar acoustic domes and
exhaust mufflers, perforated panels are subjected to heavy fluid loading conditions.
The structural acoustics of these perforated panels will constitute the central theme of
this thesis for which a motivation is provided in this section.

Looking at the geometry of these perforated panels, the size of perforations can vary
from sub-millimeters (as in micro-perforated panels (MPP)) to several millimeters as
in the wall panels. The holes in the panels are uniformly arranged in a specific lattice
pattern. In most of the applications, the perforated panels are thin in construction
so that their vibration cannot be ignored in determining the sound radiation and
transmission characteristics. The main advantages of perforated panels over the
acoustic liners and fillers are their wide-band sound attenuation, robust construction,
durability and aesthetic appeal.

In the literature, there are a few mathematical models of perforated panels available
with slight differences among themselves, specially with regard to how the subsystems
are modeled. The list is as follows:

• There are models for perforations (holes) in infinite rigid baffles [1].
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• There are models for perforations in infinite flexible panels [2].

• There are models for perforations in finite membranes fixed on a rim [3].

• There are models of a finite panel set in an infinite rigid baffle with the same
perforation ratio [4] (having a similar perforation in the baffle causes a significant
simplification in the problem formulation).

• Further, there exist perforated panel models with perforations having a purely
imaginary impedance or a complex impedance depending on the hole size [4, 5].

All the above studies use only one-way coupling (except for the membrane study).
Thus, these models can be improved by incorporating more realistic situations such as
unperforated baffles, resonance shifts in the panel due to perforations and full coupling
(or two-way coupling) between the panel vibrations and the surrounding acoustic field.
Further, if this study with the above augmented assumptions could be conducted using
analytical or semi-analytical methods such that closed form solutions could be had,
then understanding the physics will be further facilitated. Thus, the total intent of this
thesis is to incorporate the above assumptions/improvements into the current existing
literature on the structural acoustics of perforated panels.

1.2 Objective

In this thesis, a simply supported finite flexible perforated panel set in an infinite rigid
baffle which is either unperforated or has a perforation ratio different from the panel
(see Fig. 1.1) is considered. This assumption being realistic complicates the problem
formulation significantly. It is the intend of this thesis to study the sound radiation
and transmission through such a panel. Moreover, in the model, the resonance shifts
in the panel caused by the introduction of perforations are accounted for. Lastly, the
model developed is based on a fully coupled formulation, i.e., the panel vibration and
the developed pressure influence each other simultaneously. The investigation is largely
analytical or semi-analytical in nature with numerics brought in at the very last step.
The main results involve the radiation efficiency or the transmission loss as a function
of the various system parameters. The specific objectives are:

• First, using a one-way coupled formulation in the wavenumber (spatial Fourier
Transform) domain, the radiation and the transmission problems are separately
studied. The radiation efficiency and the transmission loss are obtained as
functions of the system parameters.
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Fig. 1.1 Schematic of a perforated panel set in an unperforated baffle.

• Next, the same two problems (of radiation and transmission) are studied using a
fully coupled formulation.

• Lastly, the modal coupling coefficients are classified according to their respective
modal wavenumbers and approximations are obtained in closed form for each of
the cases using contour integrations.

1.3 Organization of Thesis

In chapter 2, the relevant literature on the structural acoustics of unperforated and
perforated panels is reviewed. It also contains additional background material that
will facilitate the reading of this thesis. The intent of this is that the reader should not
need to refer too much outside material in order to follow the work.

The original work reported in this thesis is organized into three parts.

• The first part is devoted to the one-way coupled analysis and is presented in
chapters 3 and 4.

– In chapter 3, a one-way coupled formulation in the wavenumber domain
for the sound radiation from a finite flexible perforated panel set in a rigid
baffle is developed. The formulation is general so that both the panel and
the baffle can have different perforation ratios. A harmonic point force
excitation of the panel is considered. The model is based on the in vacuo
modeshapes and natural frequencies of a simply supported perforated panel.
The dependence of the radiation efficiency on the various system parameters
is discussed.
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– In chapter 4, the sound transmission loss of the perforated panel subjected
to an incident acoustic plane wave is studied. The development in this
chapter is similar to that of chapter 3.

• The second part is devoted to the two-way coupled analysis presented in chapters
5 and 6. The fluid loading is captured by the modal coupling coefficient in the
panel equation of motion. And the modal coupling coefficient is expressed as
a double integral over the wavenumber domain. In this part of the thesis, the
double integral is evaluated numerically.

– Chapter 5 discusses the panel vibration response to a harmonic point force
excitation and the associated radiation efficiency. The shift in the resonance
frequencies of the fluid-loaded perforated panel from its in vacuo values is
also computed.

– Chapter 6 develops the fully-coupled formulation for the transmission of a
plane acoustic wave through a perforated panel.

• Chapter 7 is devoted to finding closed form expressions for the modal coupling
coefficients. Individual approximate expressions are obtained depending on the
panel modal wavenumbers. The expressions are general in the sense that they
can be used for panels of any given perforation ratio and fluid loading conditions.

• In chapter 8, conclusions are drawn from all the important results obtained in
the thesis. The avenues for future work are also briefly mentioned in this chapter.

Appendices are provided at the end of the thesis which detail the step by step
derivation of the expressions given in the main text.



Chapter 2

Background and literature survey

2.1 Introduction

This chapter presents material that will facilitate the reading of the thesis. The idea
being that the reader should not need to refer too much outside material in order to
follow the current work. In addition, in this chapter a survey of the relevant literature
is presented.

Initially, a brief introduction to the structural acoustic analysis is presented in
section 2.2. The mathematical modeling of a typical structural acoustic problem is
also discussed in this section. In section 2.3, some key results for the infinitely long
flexible panel are discussed. A detailed review of the studies on the sound radiation
and transmission characteristics of finite unperforated panels is presented in section
2.4. The one-way and the two-way coupled models for the finite unperforated panel
are also discussed here. Next, in section 2.5, an overview of the pertinent literature on
the sound radiation and transmission characteristics of perforated panels is presented.
In sections 2.6, 2.7 and 2.8, some of the important concepts and methods which will
be used later in this thesis are discussed.

2.2 Structural acoustics

In structural acoustics, two standard methods are adopted in solving for the unknown
variables in the fluid and the structural domains. The first method assumes the structure
to be present in vacuum and the velocity response is computed. The structure is then
placed in the acoustic medium and the velocity obtained earlier is used to compute the
acoustic pressure. This is called the uncoupled or the one-way coupled formulation.
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In the second method, the fluid domain and the structural domain PDEs are solved
simultaneously, i.e., the fluid pressure and the structural velocity are simultaneously
unknowns. This is known as the coupled or the two-way coupled formulation and is
used when the fluid loading cannot be ignored [6, 7].

2.2.1 Mathematical modeling

The governing differential equation for the structure can be represented as [8]

Lus = f , (2.1)

where L represents a differential operator specific to the structure model, us the
generalized displacement vector and f the generalized force vector. The generalized
force is composed of the direct excitation by any mechanical loading on the structure,
denoted as fs, and the force exerted by the surrounding acoustic medium at the
fluid-structure interface, denoted as fint [9]. Thus we have

f = fs + fint. (2.2)

The pressure field p in the acoustic medium satisfies the Helmholtz equation

(∇2 + k2)p = 0. (2.3)

The kinematic boundary condition at the fluid-structure interface insists that the fluid
and the structural velocity at the interface in the normal direction be the same, i.e.,

u̇s|int = u̇a|int (normal to the interface). (2.4)

The sound radiation problem

For a sound radiation problem, a direct mechanical force excites the structure and
the pressure field in the acoustic medium is generated by the structural vibrations
alone (radiated pressure field). The associated pressure loading on the structure can
be represented as fint = frad. Thus,

f = fs + frad. (2.5)
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In the one-way coupled formulation, the structure domain equation (Eq. (2.1)) is
solved neglecting the radiated pressure loading from the acoustic domain, i.e., f = fs.
Now, the acoustic pressure field can be obtained using Eqs. (2.3) and (2.4).

In the two-way coupled formulation, we do not neglect the radiated pressure
field. We solve Eqs. (2.1), (2.3) and (2.5) with the boundary condition Eq. (2.4),
simultaneously.

The sound transmission problem

For a sound transmission problem, the structure is excited by an acoustic wave alone.
No direct mechanical loading on the structure is considered for the transmission problem,
i.e., fs = 0. The total pressure in the acoustic medium consists of the contributions
from the incident and the radiated pressure fields. Hence, we can write fint = finc + frad.
Thus,

f = finc + frad. (2.6)

In the one-way coupled formulation, we have f = finc (by neglecting the radiated
pressure field). We can compute the structural velocity by solving Eq. (2.1). And the
acoustic pressure field is obtained by solving Eqs. (2.3) and (2.4).

In the two-way coupled formulation, we solve Eqs. (2.1), (2.3) and (2.6) with the
boundary condition Eq. (2.4), simultaneously.

2.3 Structural acoustics of planar structures of in-
finite extent

2.3.1 Sound radiation from an infinite panel in an unbounded
acoustic fluid

A 2-D problem is considered where an infinite 1-D panel is in contact with an infinite
acoustic half-space on one side (y > 0) and has vacuum on the other side [7]. The
equation of motion of the panel is

D
∂4v

∂x4 +mp
∂2v

∂t2
= f̃ eikxx−iωt − p(x, 0, t),

where D is the bending stiffness of the panel, mp is the mass per unit area of the panel,
v is the displacement of the panel in the y direction. Next, f̃ is the complex amplitude
of the external force of wavenumber kx and frequency ω and p(x, 0, t) represents the
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acoustic pressure acting on the panel surface. The wave impedance of the acoustically
loaded panel is given by

Zw = Zwp + Zwf ,

where
Zwp = i

ω

(
Dk4

x −mpω
2)

is the in vacuo panel wave impedance and

Zwf = ρ0ω

ky

, where ky =





√
k2 − k2

x if kx < k

i
√
k2

x − k2 if kx > k

represents the acoustic impedance.
When kx < k or when the phase speed of the forcing field is greater than the speed

of the acoustic wave, Zwf is purely real and indicates that the acoustic fluid acts as
a damper to the panel vibrations. The vibrational energy from the panel is radiated
away in the form of acoustic plane waves at an angle cos−1(kx/k) to the panel surface.
When kx > k, the acoustic impedance is negative imaginary and the surrounding fluid
acts as an inertia loading on the panel. The added inertia is equivalent to the mass
of a fluid layer of thickness 1/|ky|. In this case, only evanescent waves are generated
in the acoustic medium, which decay exponentially. To summarize, for a fluid-loaded
infinite panel, the sound radiation occurs only when the phase speed of the forcing field
is greater than the speed of sound in the acoustic medium. When it is less, only the
surface waves exist in the acoustic medium and the fluid loading is inertial in nature.

2.3.2 Sound transmission through an infinite panel in an un-
bounded acoustic fluid

This is again a 2-D problem consisting of an infinite 1-D panel having an acoustic
half-space on either side. An acoustic plane wave of wavenumber k and frequency
ω is incident on the panel at an angle ϕ to the normal as shown in Fig. 2.1. The
trace wavenumber (along the panel surface) of the incident acoustic plane wave is
kz = k sinϕ and the wavenumber normal to the panel surface is kx = k cosϕ. Following
the incidence of the plane wave, the panel vibrates and pressure waves are transmitted
to the other half-space. The sound power transmission coefficient, a ratio of the power
transmitted per unit area of the panel to the total incident power per unit area of the
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panel is given by

τ =
∣∣∣∣

2Zwf

2Zwf + Zwp

∣∣∣∣
2

,

where
Zwp = i

ω

(
Dk4

z −mpω
2)+ Dηk4

z

ω

is the in vacuo panel wave impedance and

Zwf = ρ0ω

kx

represents the acoustic impedance.

Fig. 2.1 Transmission of an acoustic plane wave through an infinite flexible panel.

The transmission coefficient is found to be the maximum when the reactive part of
2Zwf + Zwp vanishes and is referred to as the coincidence condition. At coincidence,
the free bending wavenumber in the panel (kb = (mω2/D)

1/4) is equal to the trace
wavenumber in the acoustic medium (kz). Thus, for a given angle of incidence of the
plane wave, the coincidence frequency is given by

ωco =
(mp

D

)1/2
(

c

sinϕ

)2

,

where c is the speed of sound in the acoustic medium of density ρ0.
When kz < kb, i.e., the trace wave speed of the incident acoustic field is greater

than the phase speed of the free bending waves in the fluid, the power transmission
coefficient is dominated by the inertia term and we can approximate

τ ≈ 1

1 +
(

ωmp cos ϕ

2ρ0c

)2 .
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Now, when kz > kb, the stiffness term dominates in the power transmission coefficient
and we can approximate

τ ≈ 1

1 +
(

Dk4 sin4 ϕ cos ϕ
2ρ0cω

)2 .

At coincidence, i.e., kz = kb, the transmission coefficient is controlled by the structural
damping η.

In [10], Junger summarizes the evolution of analytical solutions of the fluid-loaded
panel response. For a flexible panel of infinite extent, the flexural vibration field can be
expressed using a single wavenumber component [7]. However, for a finite panel, there
exist flexural waves of many wavenumbers due to the reflections from the boundary.
The next section presents the structural acoustics of finite unperforated panels.

2.4 Structural acoustics of finite unperforated pan-
els

The radiation and transmission of sound related to rectangular panels has been discussed
extensively in the literature. For the radiation problem, the panel set in an infinite
rigid baffle is excited by an external force and the acoustic pressure field generated by
the panel vibration is obtained by solving the Helmholtz equation with the boundary
condition imposed at the panel-fluid boundary [7]. The resulting sound power can be
evaluated by integrating the sound intensity either over a hemisphere enclosing the
panel or over the surface of the vibrating panel [11]. The results are presented in terms
of the radiation efficiency which is defined as the ratio of the sound power radiated by
the panel to that of a uniformly vibrating baffled piston having the same surface area
as that of the panel [7], i.e.,

σ = W
1
2ρ0cab < |vp|2 >

,

where W is the radiated power from the panel of dimensions a × b, < |vp|2 > is
the spatially averaged squared velocity of the panel and ρ0 is the density of the
acoustic medium in which the sound propagates at a speed c. Another quantity which
is discussed in the literature is the radiation resistance and it can be obtained by
multiplying the radiation efficiency by the acoustic impedance of the medium and the
surface area of the panel.
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On the other hand, for a sound transmission problem, the panel is excited by an
incident acoustic plane wave. The quantities of interest are the transmitted sound
power, the sound transmission coefficient and the sound transmission loss. The sound
transmission coefficient (τ) is the ratio of the power transmitted by the panel (Wt) to
that incident on it (Wi). The sound transmission loss is defined as

TL = 10 log10

(
Wi

Wt

)
= 10 log10

(
1
τ

)
.

2.4.1 The one-way coupled analysis

The sound radiation problem

As discussed before, in the one-way coupled analysis, the effect of the radiated pressure
field is neglected while computing the panel response. For a finite panel, the flexural
vibration can be expressed as a superposition of the in vacuo natural modes. Each
mode is associated with a certain wavenumber in the panel. Maidanik classified the
panel modes with respect to their modal wavenumbers in the wavenumber space [12].
The modal radiation in each of these wavenumber regions was analyzed with the help
of a two-dimensional array of rectangular piston radiators (monopoles). Maidanik then
obtained approximate expressions for the modal radiation resistance for all types of
modes below the coincidence frequency.

Following the work of Maidanik, a similar classification of the panel wavenumbers
is used in this thesis. This classification is illustrated in Fig. 2.2 [7]. In the figure,
km and kn are the panel modal wavenumbers in the x and y directions, respectively,
when it is vibrating in the (m,n)th mode. The corner modes are characterized by the
panel wavenumbers such that km, kn > k and in this case, only the corner quarter
cells in the panel contribute significantly to the sound radiation. The X edge (km < k

and kn > k) and the Y edge (km > k and kn < k) modes are more efficient radiators
than the corner modes. In these cases, a strip of half-cell width along the X or the
Y edges of the panel radiates efficiently. For the XY edge modes (km < k, kn < k

and k2
m + k2

n > k2), significant radiation is due to the edge strips extending over the
entire perimeter. The above modes are responsible for the sound radiation below the
critical frequency. The critical frequency is the frequency at which the speed of the
sound in the acoustic medium is equal to the speed of the flexural waves in an infinite
panel of the same material and thickness. Above the critical frequency, the whole panel
surface radiates efficiently and the sound radiation is due to the modes which satisfy
the condition km, kn < k and k2

m + k2
n < k2 (the acoustically fast modes).
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Fig. 2.2 Classification of the panel modes in the wavenumber space with respect to the
acoustic wavenumber.

Wallace studied the sound radiation from a simply supported rectangular panel
in an infinite baffle [13]. He used the Rayleigh integral to obtain the radiated power
in the farfield. The integral for the radiation resistance was obtained and computed
numerically for various modes spanning the entire frequency range. Wallace also
obtained approximate closed form expressions for the radiation resistance at frequencies
well below the critical frequency. The paper also investigated the effects of inter-nodal
areas and their aspect ratios on the radiation resistance.

Gomperts used the Rayleigh integral to investigate the effects of various panel
boundary conditions on the radiation efficiency of a finite rectangular baffled panel
[14]. He observed that a panel with two opposite edges guided and the other two
free (guided-free) showed a larger radiation efficiency than a guided-guided case.
Gomperts concluded that a more edge-constrained panel did not always result in a
larger radiation efficiency than a less edge-constrained one. Gomperts also noted that a
two-dimensional vibration analysis resulted in a lower radiation efficiency as compared
to the one-dimensional analysis [15]. Maidanik reported that the radiation efficiency of
an all edge clamped panel was more than that of a simply supported panel by ∼3 dB
for frequencies up to half the critical frequency [16]. Leppington obtained asymptotic
expressions for the radiation efficiency of a clamped panel as a correction to that of
the simply supported panel [17]. He found that below the coincidence frequency, the
correction factor was approximately two and above the coincidence it was one. Williams
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obtained a power series expansion for the radiated power from a single mode of a baffled
rectangular panel for the simply supported, clamped and the free boundary conditions
[18]. He used the Maclaurin expansion for the panel velocity in the wavenumber space.

The sound radiation from a rectangular panel set in a baffle with a general boundary
condition was studied by authors [19, 20]. Berry et al. obtained the panel response
for a point force excitation by extremizing the Hamiltonian of the panel constrained
against both deflection and rotation at the edges [19]. It was observed that a low
deflection stiffness at the panel boundary resulted in a significant reduction in the
sound radiation. Zhang and Li developed power series expressions for evaluating the
radiation resistance matrix [20]. These expressions were independent of the panel
boundary conditions and were only dependent upon the aspect ratio of the panel.

Keltie and Peng studied the interaction between the panel modes at different
frequencies in terms of the coupled modal radiation resistances [21]. The analysis was
however performed using a one-dimensional vibration fieldl. It was observed that the
effect of the modal coupling was negligible for the resonant or high frequency excitations.
However, they were significant for the off-resonant or low frequency excitations of the
panel. Li and Gibeling investigated the effects of the coupled radiation resistances using
a two-dimensional model of the sound radiation from a simply supported rectangular
panel in a baffle [22]. The cross radiation resistance values were obtained from the
associated self radiation resistances.

Li used a Maclaurin series expansion of the Green’s function to find the approximate
expressions for the coupled radiation resistance of a simply supported rectangular
panel in a baffle [23]. Both, the self and the cross modal radiation resistances were
expressed in the form of a power series of the non-dimensional acoustic wavenumber.
The approximations were valid for the entire wavenumber domain, although a large
number of terms were required for convergence at higher frequencies. The results
showed that the values of the self and the cross modal radiation resistances were of
comparable magnitudes in a fairly wide frequency range.

Leppington et al. derived asymptotic expressions for the average power radiated
from a panel of finite width and infinite extent at frequencies below, above or near
the critical frequency [24]. The averaging was performed with respect to all possible
force locations and over an appropriate frequency band. The cross modal radiation
resistance terms were however neglected in the formulation. The average radiation
efficiency for a rectangular panel was derived by Xie and Thompson based on the
farfield sound intensity [11]. It was shown that by averaging the radiated power over
all the possible forcing locations, the cross modal contributions averaged out to zero.
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They also derived approximate expressions for the average radiation efficiency of panels
with large aspect ratios.

It can be understood that for a one-way coupled analysis, the most difficult part
in evaluating the radiated sound power from the finite panel is finding the modal
radiation resistance matrix. The modal radiation resistance is expressed either as a
double integral over the wavenumber domain or as a quadruple integral over the spatial
domain. Several approximations for the self modal radiation resistance are found in
the literature. However, the cross modal radiation resistance has attracted very little
attention. It could perhaps be ignored for light fluid loading conditions, however, where
the fluid loading is significant, the cross modal radiation impedance cannot be ignored.

The sound transmission problem

Utley observed that at frequencies below the coincidence, the sound transmission loss
measured for a finite panel differed considerably from the ‘mass law’ behavior of the
infinite panel [25]. However, above the coincidence frequency, the infinite panel theory
predictions were found to agree with the experimental measurements on finite panels.
Brekke studied the significance of the panel resonances below the critical frequency
and observed that the resonant transmission by a finite panel cannot be neglected if
the panel is highly stiffened or has a very low total loss factor [26]. A simple wave
based approach, which is based on the infinite panel and the diffuse field incidence
assumptions can be used for finding the transmission characteristics of the finite panels.
A detailed review of the wave approach applied to the sound transmission problems
can be found in [27]. The wave approach, however, does not take into account the
effects of the boundary conditions and the resonances of the finite panel and hence the
low frequency predictions are not reliable. Although the infinite panel formula includes
the effect of fluid loading, the wave approach is not strictly two-way coupled in the
sense that the modal interactions due to the fluid loading are completely ignored in
the formulation.

Roussos developed a model for the sound transmission through a rectangular panel
in an infinite baffle under plane wave incidence [28]. The model used the Rayleigh
integral to obtain the acoustic pressure field generated by the panel vibration that is
expressed as a superposition of the modal contributions. The model was then used
to study a) the coupling between the incident sound and the panel vibrations, b) the
resonance behavior of the panel and c) the coupling between the panel vibrations and
the transmitted sound at various frequencies, above and below the coincidence.
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Ljunggren derived a prediction formulae for the transmission loss of finite panels
separating two rooms [29]. The influence of the panel resonances (resonant contribution)
and the forced response due to the exciting acoustic field (non-resonant contribution)
were accounted for below and above the coincidence frequency.

Villot et al. used a spatial windowing function for the finite panel vibration field to
find the radiated sound power [30]. This technique was then extended to find the trans-
mission coefficients for multi-layered finite panels. Davy proposed an approximation for
the average sound transmission coefficient of a finite panel below the critical frequency
without using the earlier limiting angle approximation used with the infinite panel
formula [31]. A diffuse field limp panel mass law for a finite sized wall was derived
using the average diffuse field single-sided radiation efficiency approach.

The influence of the radiation impedance over the finite panel area on the sound
transmission was considered by Brunskog [32]. Both the inertia and the radiation
loading on the panel were taken into account. Brunskog’s study was only for the
forced sound transmission and did not consider the resonant sound transmission
contribution. He used the wave approach to define the vibration field of the panel
and obtained approximate expressions for the sound transmission coefficient at various
frequencies. Except near the coincidence, the results agreed well with the experimental
measurements.

It can be observed that there exist several approximations related to the sound
transmission through finite panels. Most of the literature is devoted to finding the
forced transmission using the infinite panel theory (wave approach) to predict the
transmission loss of finite panels. The reflections at the boundary of panel and the
boundary conditions are ignored. If one has to include the effects of the resonances of
the finite panel, a modal approach as demonstrated by Roussos [28] is preferred.

2.4.2 The two-way coupled analysis

The sound radiation problem

In the two-way coupled analysis, the effect of the radiated pressure field is taken into
account while finding the panel response. The radiated pressure field can be obtained
by solving the Helmholtz equation with the boundary condition in terms of the panel
velocity. Thus, both the structure and the acoustic domains are now coupled and
one needs to solve both the domains simultaneously. The panel response can still be
expressed as the superposition of the in vacuo modes [33]. The radiated pressure field
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induces coupling between these in vacuo modes. The coupling is expressed in the form
of a modal coupling coefficient in the resulting equation of motion for the panel.

Davies developed an analytical expression for the modal coupling coefficient of a
simply supported panel set in an infinite rigid baffle and fluid loaded only on one side
[33]. The analytical expressions were valid only at low frequencies where the panel
modal wavenumbers were greater than the acoustic wavenumber, or when all the panel
modes were subsonic. Such modes are referred to as the corner modes [12]. The real
parts of the coupling coefficients were related to the radiation damping on the panel
response and the imaginary parts led to a virtual mass addition to the panel mass. An
approximate solution of the infinite set of modal equations for the panel-fluid system
was derived. Further, an approximate expression for the radiated power spectral density
was also obtained. The effect of structural damping on the modal coupling coefficients
and thus on the spectral density of the sound field generated by a panel excited by a
turbulent boundary layer was also discussed.

Davies observed that the effect of the cross modal inertia coupling terms in deter-
mining the modified natural frequencies of the water-loaded panel was negligible [33].
It was largely influenced by the self inertia terms. The amplitudes of the panel velocity
response were altered by both the radiation and the inertia coupling terms. The
structural damping also determined the amount of modal interaction among the panel
modes. For a lightly damped structure, the vibrational energy was mostly contained
within a single resonant mode. Thus, the radiation damping was only due to the
associated acoustic field generated by the resonant mode. However, when the structural
damping was large, several modes were excited over a wide frequency band. Hence,
the input energy was dissipated by many modes. As a result the total damping to the
structure was increased. Consequently, the vibration velocity response and the radiated
power were decreased. Pope and Leibowitz presented more complete calculations for
the modal coupling coefficients [34] than that given by Davies [33]. They derived
approximate expressions for the coupling coefficients involving the corner, edge and
the acoustically fast modes.

The vibration and the resulting sound radiation from a water-loaded finite panel
with a concentrated mass and set in an infinite rigid baffle was studied by Sandman
[35]. The formulation was general and the panel response was assumed to be a linear
combination of the in vacuo modes. Both the fluid loading and the concentrated mass
induced the coupling between the in vacuo panel modes. The associated modal coupling
coefficients were evaluated numerically at low frequencies, considering only 10 modes
in the truncated equation of motion. Sandman demonstrated that the water-loading
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essentially reduces the radiated power from a point excited panel with or without the
concentrated mass. The effect of the concentrated mass is significant only at relatively
high frequencies. In addition to the reduction in the response of the panel and also
in the radiated power, the concentrated mass also causes changes in the directivity of
sound radiation.

The low frequency acoustic radiation from a fluid-loaded panel elastically restrained
against rotation at the edges was studied by Lomas and Hayek [36]. The vibration
response was expressed as a modal sum of the in vacuo mode shapes of a simply
supported panel, in spite of the inhomogeneity at the boundary. The solution to
the panel vibration was obtained as a sum of the response of a simply supported
fluid loaded panel to a point excitation and that of a panel to line moments at the
boundary. The first case dealt with an inhomogeneous differential equation of motion
and a homogeneous boundary condition. Whereas the second one had a homogeneous
differential equation of motion and an inhomogeneous boundary condition. Lomas and
Hayek compared both the self and cross modal coupling coefficients for the lower order
modes (obtained numerically) with those values obtained using Davies’ approximations
for the corner-corner interactions [33] and found a good match between them. The
natural frequencies of a few lower order modes were also obtained for both the simply
supported and the clamped boundary conditions.

Berry studied the sound radiation from a fluid-loaded panel set in a baffle for
a general boundary condition [37]. The edges of the panel were restrained against
both deflection and rotation and the formulation allowed arbitrary variations of both
the linear and rotary stiffness along the edges. A variational method was used to
model the fluid-structure interaction, where the flexural vibration of the panel was
expressed as a series of trial functions based on the Taylor series expansion of the
Green’s function. The modal coupling coefficients were thus expressed as an integral
involving simple Taylor functions. The Rayleigh-Ritz method was employed to solve
the equation of motion for the unknown coefficients of the displacement function. The
modal coupling coefficients were evaluated numerically. It was verified that at low
frequencies, for both the simply supported and the clamped boundary conditions,
the odd-odd modes resulted in a monopole like radiation behavior, the even-odd or
odd-even modes caused a dipole kind of behavior and for the even-even modes the
behavior was mostly quadrupole like. The paper also discussed the mean quadratic
velocity of a water-loaded panel and the resulting radiated power for various boundary
conditions.
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Graham obtained asymptotic expressions for the modal coupling coefficients, both
the radiation and inertia coupling terms, of a simply supported rectangular panel
[38, 39]. In [39], the analysis considered a case where the panel dimensions were large
with respect to the modal wavelength but not the acoustic wavelength. The parameter
regime studied was the same as that was considered by Davies [33]. Graham solved
the doubly infinite integral of the coupling coefficients using the contour integration.
The results were validated against the numerical solutions. The expressions derived for
the radiation coupling coefficients were found to be asymptotically equivalent to that
derived earlier for the corner - corner modal interactions by Davies [33], except for the
cross modal inertia coefficient.

Crighton and Innes studied the effect of the fluid loading on the response of a
thin infinite panel at low frequencies (when the ratio of the excitation frequency to
the coincidence frequency was O(ϵ2)) using the asymptotic method [40]. They also
examined the effect of ribs on the infinite planar structure and found that at low
frequencies, there was substantial transmission of structural energy across a rib. The
authors also considered the response of a panel of finite width but of infinite length to
a line excitation. It was found that the modes of the fluid-loaded finite panel were of
the same shape as that of the in vacuo case, however of a different scale due to the
fluid loading. The vibration field of the finite panel, beyond a wavelength from the
edge, consisted of the incident wave and the reflected wave with a phase lag. This
phase lag was decided by the edge conditions of the panel.

The effect of fluid loading on the response of periodically stiffened panels was
discussed in [41, 42]. Eatwell and Butler obtained asymptotic expressions for the
response of a beam stiffened fluid-loaded panel to point and line excitations [41]. They
studied the farfield responses of a periodically stiffened panel and of a finitely stiffened
panel of infinite extent. Due to the inhomogeneities (beams) in the farfield, the response
of a periodically stiffened panel was characterized by the acoustically fast waves. In
contrast, the farfield displacement waves in the finitely stiffened panel were always
acoustically slow. Mead analyzed the free wave motion in an infinite panel with periodic
stiffening along one or both the orthogonal directions [42]. The fluid loading effects on
the panel response were included in the analysis by the use of the space harmonics.

The sound transmission problem

We have seen for the one-way coupled case that the total sound transmission through
the finite panels comprises of the resonant and the non-resonant contributions. When
we include the fluid loading effects, necessary modifications to these contributions occur.
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Sewell derived a low frequency approximation for the sound transmission coefficient
of a rectangular baffled panel for a plane wave incidence [43]. The formulation
was general and considered the effect of fluid loading on the in vacuo panel modes
(included both the resonant and the non-resonant terms). However, while finding
the approximate expression for the transmission coefficient, he did not account for
any resonance contribution from the panel modes and it was applicable below the
coincidence frequency. The modal coupling term considered only the reactive loading
from the surrounding acoustic medium. Also, the cross modal coupling terms were
neglected while deriving the transmission coefficient. However, the model agreed well
with the experimental results for panels with mass per unit area larger than 10 kg/m2.
A study of finite panel transmission at low frequencies was done by Mulholland and
Lyon [44]. They investigated the characteristics of the resonant and the non-resonant
sound transmission when the finite panel was coupled to two rooms.

Leppington et al. derived asymptotic expressions for the sound transmission co-
efficient valid for frequencies below, near and above the coincidence frequency using
a one-dimensional panel model [45]. Using the insights from the one-dimensional
model, he proposed approximate expressions for the transmission coefficient of a two-
dimensional panel. These expressions were able to predict both the resonant and
the non-resonant contributions below the coincidence frequency and were in good
agreement with the experimental measurements.

Takahashi considered a two-dimensional problem in which the panel had a finite
width in one direction but had an infinite extent in the other [46]. The cross modal cou-
pling was ignored in the analysis. Approximate expressions for the self modal coupling
coefficients were obtained and the sound transmission loss at different frequencies was
discussed. The band-averaged transmission loss was found to be sensitive to the panel
area below the critical frequency. Above the critical frequency, the transmission loss
was almost the same as that of the infinite panel. It was also observed that below the
critical frequency, the panel resonances affect the band-averaged sound transmission.
The significance of the panel resonances (resonant contribution) below the critical
frequency was studied in detail by Lee and Ih [47] for a rectangular panel set in an
infinite baffle. They investigated the band-averaged difference between the total and
the non-resonant transmission losses with respect to a non-dimensional participation
factor which was a function of the size, thickness and the loss factor of the panel. A
frequency range for neglecting the resonant contribution was also proposed.

Recently, Wang derived an expression for the equivalent self modal coupling coeffi-
cient which includes the effects of the cross modal coupling between the in vacuo modes
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of a finite panel [48]. The overall sound transmission coefficient was then expressed as
a superposition of all the modal transmission coefficients. The effect of the cross modal
coupling on the overall transmission coefficient was found to be significant only when
the participating modes were subsonic. In a following study [49], Wang derived asymp-
totic expressions for both the modal and the overall transmission coefficients. The
derivation assumed a low bending stiffness for the panel. The asymptotic expressions,
although valid for the whole frequency range, were applicable only for the non-resonant
contribution in the sound transmission.

Several studies are reported on the sound transmission of finite panels using
numerical methods like the boundary element method (BEM) [50] and the finite
element method (FEM) [51]. In [50], the acoustic loading was modeled as an added
mass on the panel and a comparison of the transmission loss was made with the
experimental values. Chazot and Guyader presented a new method called the patch-
mobility method to study the sound transmission through finite panels [52]. The
patch-mobilities of the component sub-systems were defined separately before coupling.
The mesh size required for this method was only half of the panel wavelength which
was very large compared to the standard finite element mesh criterion [51]. Both the
finite element and the patch-mobility methods gave the same results for the sound
transmission loss of double panels at low frequencies. At high frequencies, the proposed
method results were superior to the finite element results.

It can be seen that there have been many attempts to find the non-resonant or
the forced excitation contribution to the sound transmission from fluid loaded finite
panels. Inclusion of the resonant contribution requires a complete solution to the modal
coupling coefficient and it has been largely ignored due to its mathematical complexity.
Hence, a total solution to the finite panel sound transmission is not available, although
some ad hoc methods exist [48]. In the next section, a summary of the important
contributions in the literature on structural acoustics of perforated panels is presented.

2.5 Structural acoustics of perforated panels

One means of reducing the sound radiation from panel like structures is to make them
perforated [5]. Perforated panels are found in applications like the protective cover over
flywheels and belt drives, product collection hoppers, etc. [53]. When the perforated
panel is backed by cavity filled with air or some porous materials, it acts as a good
sound absorber [54, 55].



2.5 Structural acoustics of perforated panels 23

Maa proposed an analytical expression for the acoustic impedance offered by each
hole in a perforated panel by solving the acoustic plane wave propagation in a short
cylindrical tube [1]. End corrections to the hole impedance were also made to include
(1) the resistance due to air flow friction on the surface of the panel as the flow was
squeezed into the small inlet end of the hole and (2) the mass reactance due to the
piston like sound radiator at both the ends of the hole. Using the hole impedance model,
Maa studied the sound absorption by a micro-perforated panel-cavity (MPP) system.
The perforations consisted of holes with sub-millimeter diameters and were separated
by a distance greater than the hole diameter. The micro-perforated panel was assumed
to be rigid and of infinite extent. The sound absorption coefficient calculated using the
proposed hole impedance model was found to agree well with the experimental results.
It was shown in the paper that the MPP could provide wide-band sound absorption up
to 3 octaves. Bolton and Kim used computational fluid dynamics (CFD) based studies
to find the hole impedance of square shaped holes [56]. Herdtle et al. conducted similar
studies on tapered holes using CFD models and proposed modifications to Maa’s hole
impedance formula [57].

The effect of flexibility of the perforated panels on the associated acoustic field
was investigated by Takahashi and Tanaka [2]. The panels were assumed to be of
infinite extent with air on both the sides. A spatially averaged velocity was defined
at the panel-fluid interface which accounted for the continuity of flow through the
perforation and the force due to the relative motion between the panel and the fluid
within the perforation. The model assumed that the hole size and the hole separation
were relatively small compared to the acoustic wavelength. The model was then used
to find the radiated power from an infinitely long perforated panel excited by a point
harmonic force. The effect of perforation on the radiated power was significant below
the coincidence frequency. The sound absorption coefficient of the perforated panel
excited by an acoustic plane wave was also evaluated. It was found that when the
perforation ratio was increased, the effect of the panel vibration on the absorption
coefficient decreased. The developed model of the infinitely long perforated panel
was used in a later work [58] to study the absorption characteristics of a perforated
panel backed by a rigid cavity; the perforated panel considered was of infinite extent.
Toyoda et al. proposed the sound absorption model for a perforated panel system with
subdivided air cavities instead of the undivided backing cavity [59]. Recently, Li et
al. proposed a modified expression for the impedance of a micro-perforated membrane,
taking into account the no-slip boundary condition at the hole walls [3]. The formula
was valid for a circular membrane.
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The effect of the perforation on the sound radiation from a finite panel was studied
by Fahy and Thompson [5]. The panel was assumed to be simply supported on a
similarly perforated baffle. Later, a dissimilar perforation case was studied for the
sound radiation from a perforated strip piston in an unperforated baffle. The effect of
the flexibility of the panel was ignored in this case. While modeling the hole impedance,
only the reactance due to the mass of the air within the perforation was considered.
A one-dimensional formulation in the wavenumber domain was used. It was noted
that a dissimilar perforate impedance on the edges along the panel-baffle boundary
created a ‘window’ effect which coupled different wavenumber spectral components in
the resulting acoustic velocity field.

Putra and Thompson included the aspect of flexibility of the finite perforated panel
in their sound radiation model [4]. Two configurations of the panel were considered.
In one, the panel was set in an infinite baffle and both the panel and the baffle had
the same perforation ratio. In the second configuration, the perforated panel was
assumed to be unbaffled. The perforation on the panel was modeled as a continuously
distributed surface impedance. The model considered holes having several millimeters
as diameter and hence the perforate impedance included only the inertia term and
neglected the viscous term. An average velocity on the perforated panel surface was
defined following the method developed by Takahashi and Tanaka [2]. The formulation
of the baffled case was an extension of the work done by Fahy and Thompson [5]
and the problem was modeled using the 2-D wavenumber transforms of the pressure
and velocity fields (one-way coupled). For the baffled case, Putra and Thompson
observed a reduction in the radiation efficiency of the panel with the increase in the
perforation ratio. For a given perforation ratio, decreasing the hole size also resulted
in the reduction of radiation efficiency. The reduction in the radiation efficiency was
largely due to the perforation in the infinite baffle. An approximate expression for the
effect of perforation at low frequencies was also proposed. The effect of perforation is
a measure of the reduction in the radiated sound power due to the perforations in the
panel. Although this paper extended the knowledge gained from the work of Fahy and
Thompson [5] on the similarly perforated panel and baffle, the treatment of dissimilar
perforate impedance along the panel-baffle edge was completely ignored. In [60], Putra
and Thompson studied the sound radiation from unbaffled perforated panels.

For a rigid MPP absorber, as discussed by Maa [1], the sound absorption is due to
the Helmholtz type resonance formed by the hole and the backing cavity. However,
for a flexible perforated panel, the panel vibration alters the absorption spectrum.
Sakagami et al. studied in detail the absorption mechanism of a flexible micro-perforated
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panel of infinite extent and backed by a cavity [61]. They observed that both the
Helmholtz type and the panel/membrane type absorption coexist in the absorption
spectra. Dupont et al. investigated the transmission and absorption characteristics
of a rigid micro-perforated panel coupled to a flexible panel through an air gap [62].
The configuration studied was limited to infinite panels. The normal and the oblique
incidence of the plane wave were considered and the formulation was done using the
wave approach. Dupont et al. observed that the presence of a flexible backing panel in
the MPP system increased the transmission loss and reduced the reflection coefficient.

The sound absorption by a perforated panel with a finite backing cavity was studied
by Lee et al. [63]. They investigated the effect of the panel resonances on the absorption
spectrum. However, a more comprehensive study (one-way coupled) can be found in
[54]. The flexibility of a micro-perforated panel was so important that it essentially
resulted in several peaks and dips in the absorption spectrum of the micro-perforated
panel absorber (MPPA) system [54]. Bravo et al. observed that the panel-air relative
velocity altered the input acoustic impedance of thin MPPAs [55]. A coupled mode
analysis revealed that the resonances were due to either the panel-cavity, hole-cavity
or the panel-controlled modes.

For a perforated panel set in an unperforated baffle, the discontinuity in the
perforate impedance at the panel-baffle boundary denied any simple solution to both
the sound radiation and the sound transmission problems. Although a one-dimensional
piston model was developed by Fahy and Thompson [5], they did not account for the
flexibility of the panel, let alone the fluid loading effects.

2.6 The locally averaged fluid particle velocity

As mentioned in the previous section, the flexibility of the perforated panel was modeled
by Takahashi and Tanaka [2]. They obtained an expression for the average fluid particle
velocity over the perforated panel surface, taking into account the continuity of flow
through the perforation and the linear momentum balance within each hole. In this
section, the Reynold’s Transport Theorem is used to introduce the reader to the concept
of locally averaged fluid particle (LAFP) velocity at the perforated panel surface. Note,
that the following derivation assumes a plane wave propagation through the perforation,
i.e., the hole diameter is much less than the acoustic wavelength.
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2.6.1 Conservation of mass

The Reynold’s transport theorem (RTT) is given by [64]

d
dtBsystem = d

dt

[∫

CV

βρ0 dV
]

+
∫

CS

βρ0 (vr.n) dS,

where ρ0 is the density of the fluid and

β = dBsystem

dm .

Fig. 2.3 Schematic of the control volume (conservation of mass).

Consider a control volume (CV) as shown in Fig. 2.3. The CV encompasses the
fluid just above the flexible perforated panel vibrating with a velocity vp. The CV
moves with the same velocity as that of the panel. The influx through the perforation
into the CV is at a velocity vf . The fluid exits the CV at the top surface with a velocity
va, the locally averaged fluid particle (LAFP) velocity. The velocities are defined with
respect to an inertial frame of reference. The conservation of mass states that the total
mass of the system remains unchanged. Let us assume Bsystem = m, the mass of the
fluid within the control volume. Therefore,

β = dBsystem

dm = 1.

The conservation of mass of the system can be written as

dm
dt = 0.
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Thus, the RTT for the conservation of mass gives

0 = d
dt

[∫

CV

ρ0 dV
]

− ρ0 (vf − vp)Sh + ρ0 (va − vp)Sp,

where Sp is the panel area (including the hole area) and Sh is the hole area alone.
Assume that the density ρ0 is constant over time and space and the control volume
translates but does not deform. Therefore, the time derivative of the volume integral
(first term on the right hand side of the above equation) vanishes. Thus,

0 = − (vf − vp)Sh + (va − vp)Sp

vaSp = (vf − vp)Sh + vpSp

va = (vf − vp) Sh

Sp

+ vp.

Defining Sh

Sp
= σp as the perforation ratio, the LAFP velocity at the panel surface is

given by
va = vp (1 − σp) + vfσp.

2.6.2 Conservation of linear momentum

Fig. 2.4 Schematic of the control volume (conservation of linear momentum).

Consider a control volume inside one circular hole of the perforated panel, as shown
in Fig. 2.4. The CV moves with a velocity vp, same as the panel velocity. The fluid
within the hole moves with a velocity vf . Let the pressure on the top and the bottom
control surfaces (CS) be p1 and p2, respectively. An external wall shear force Fwall
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acts on the lateral surface of the CV. Here, the body force of the fluid within the CV
is neglected.

Let,
dBsystem

dt = Fsystem,

where
Bsystem = (mvf )system .

Therefore,
β = dBsystem

dm = vf .

Now, the RTT for the conservation of linear momentum can be written as

d
dtBsystem = d

dt

[∫

CV

βρ0 dV
]

+
∫

CS

βρ0 (vr.n) dS.

Or,
Fsystem = d

dt

[∫

CV

vfρ0 dV
]

− vfρ0 (vf − vp)Ah + vfρ0 (vf − vp)Ah,

where Ah is the (top/bottom) area of the hole. Since the inflow and the outflow of
the fluid is the same, the sum corresponding to the integral over the CS vanishes.
Therefore,

Fsystem = d
dt

[∫

CV

vfρ0 dV
]
. (2.7)

Fsystem represents the sum of all the external forces (surface and body forces) acting
on the system. In the absence of any body forces we have

Fsystem = Fwall + (p2 − p1)Ahn̂,

where the wall shear force Fwall is due to the viscous boundary layer on the panel wall
inside the hole and depends on the relative velocity of the flow past the hole surface.
n̂ is a unit vector normal to the top surface of the CV. Now, for a harmonic excitation,
the fluid velocity vf can be written as

vf = Vf e−iωt.

Assume that the fluid velocity vf and the fluid density ρ0 are uniform within the CV
(for an acoustic plane wave propagation) and the CV only translates but does not
deform. Then, the time derivative of the volume integral on the right hand side of
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Eq. (2.7) can be written as

d
dt

[∫

CV

vfρ0 dV
]

= −iωvfρ0Ahh,

where h is the panel thickness. Therefore,

Fwall + (p2 − p1)Ahn̂ = −iωvfρ0Ahh.

Or,
− iωρ0hvf − Fwall

Ah

= (p2 − p1)n̂. (2.8)

The first term on the left hand side of the above equation represents the inertial
characteristics of the fluid within the CV and it is purely imaginary. Thus, the first
term can be written as

− iωρ0hvf = Zreactvf , (2.9)

where Zreact represents the reactive impedance of the hole. As mentioned before, the
wall shear force Fwall is a function of the relative velocity of the fluid past the hole
wall surface (vf − vp) and it acts in a direction opposite to the relative velocity of the
fluid. In addition, the wall shear term signifies the dissipation at the viscous boundary
layer and hence it is purely a real term. Thus,

Fwall

Ah

= −Zresist (vf − vp) , (2.10)

where Zresist represents the resistive impedance of the hole. Thus, substituting Eqs. (2.9)
and (2.10) into Eq. (2.8) we get

Zreactvf + Zresist (vf − vp) = ∆p.

In the above equation, the resistive and the reactive parts of the hole impedance
(Z0 = Zresist + Zreact) can be obtained by solving the equation for the propagation of
sound wave in a short tube, as derived by Maa [1].

2.7 The Receptance method

The Receptance method can be used to determine the modal characteristics of a
complex vibrating system using the vibration behavior of its sub-structural elements. A
perforated panel can be thought of as a panel with small mass voids. The Receptance
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method is used to mathematically subtract the inertia of the void from that of a panel
with sufficient accuracy [65]. A detailed analysis on the Receptance method can be
found in [65]. In this thesis, the Receptance method is used to find the resonances and
the modeshapes of a perforated panel from the receptances of an unperforated panel
and a point mass. A brief description on the Receptance method is given below.

Fig. 2.5 Two systems connected at two different points

Consider two systems A and B which are connected at two points as shown in
Fig. 2.5. Let, FA1 and FA2 be the amplitudes of forces acting on system A at points
1 and 2, respectively and let XA1 and XA2 be the resulting displacements. The
force-displacement relation for system A is given by

{
XA1

XA2

}
=
[
α11 α12

α21 α22

]{
FA1

FA2

}
. (2.11)

Similarly, for system B, we can obtain
{
XB1

XB2

}
=
[
β11 β12

β21 β22

]{
FB1

FB2

}
. (2.12)

where αij and βij represent the receptances of system A and B, respectively. The
receptance has a unit of displacement per unit force. Thus, αij (i, j = 1, 2) denotes
the displacement at point i due to a unit force at point j on system A. When i = j,
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they are known as the drive point receptances and when i ̸= j, they are referred to as
the cross point receptances. When two such systems are joined together, the forces FA

and FB become internal forces and they must be equal and opposite. Thus,

{FA} = − {FB} . (2.13)

And the displacement at the joining points on both the systems must be equal. Hence,

{XA} = {XB} . (2.14)

Thus, for the combined system we get

[[α] + [β]] {FA} = {0} . (2.15)

A non-trivial solution to the above equation is obtained by setting the determinant of
the receptance matrix [[α] + [β]] to zero. Thus, the characteristic equation is obtained
as

|[α] + [β]| = 0. (2.16)

The roots of the above characteristic equation provide the new natural frequencies of
the combined system.

For a panel with several mass voids (holes), one has to mathematically subtract
the vibrational effects of the missing masses from that of the panel. Such problems
can be solved approximately using the Receptance method for subtracting structural
subsystems. It is possible to think of system B being subtracted from system A as
the addition of a negative system B to A [65]. Let α represent the receptance of the
panel (system A) and β represent the receptance of the missing panel mass (system B).
Hence, using Eq. (2.15), the equation for the panel with mass voids can be written as

[[α] − [β]] {FA} = {0} . (2.17)

The characteristic equation is given by

|[α] − [β]| = 0. (2.18)

The roots of the above characteristic equation provide the new natural frequencies of
the panel with holes. The receptances of a panel and a point mass are derived below.
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2.7.1 Receptance matrix of a simply supported panel

For a simply supported panel (−a/2 ≤ x ≤ a/2, −b/2 ≤ y ≤ b/2) acted on by a
harmonic force of magnitude F and frequency ω at (xi, yi), the displacement at point
(x, y) is given by [65, 66]

w(x, y, t) =
∞∑

m=1

∞∑

n=1

1
Mmn

ϕmn(xi, yi)Fe−iωt

ω2
mn − ω2 ϕmn(x, y), (2.19)

where ϕmn(x, y) is the modeshape of the panel and is given by

ϕmn(x, y) = sin mπ(x+ a/2)
a

sin nπ(y + b/2)
b

. (2.20)

The term Mmn is

Mmn =
b/2∫

−b/2

a/2∫

−a/2

ρphϕ
2
mn(x, y) dx dy = ρphab

4 , (2.21)

where ρp is the density of the panel and h is the panel thickness. Now, using Eq. (2.19),
the receptance αij of the panel is given by

αij = w(xi, yi, t)
Fe−iωt

= 4
ρphab

∞∑

m=1

∞∑

n=1

ϕmn(xj, yj)
ω2

mn − ω2 ϕmn(xi, yi). (2.22)

2.7.2 Receptance of a point mass

The receptance of a point mass (system B) of mass m is obtained from its equation of
motion

−mω2XBe
−iωt = Fe−iωt

XBe
−iωt = −Fe−iωt

mω2 .

For a hole of radius rp, the mass is mh = ρphπr
2
p. Now, the receptance is given by

β = XBe
−iωt

Fe−iωt
= − 1

mhω2 . (2.23)
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As the point masses are discrete, force on one point mass does not cause the other
to respond. Therefore, for system B, the cross receptances are zero and hence, the
receptance matrix is diagonal.

2.7.3 Receptance matrix of a simply supported perforated
panel

For a simply supported panel with two holes, the receptance matrix is given by
Eq. (2.17). The characteristic equation is

∣∣∣∣∣∣∣

α11 + 1
mhω2 α12

α21 α22 + 1
mhω2

∣∣∣∣∣∣∣
= 0. (2.24)

Now, for the case of N0 holes in the panel, the receptance matrix is of size N0 ×N0 and
the roots of the characteristic equation give the natural frequencies of the perforated
panel. The modeshapes of the perforated panel can be determined from the point
response expression of the original panel [65]. For the case of a panel with single
hole, when the excitation frequency ω is set to the natural frequency of the perforated
panel ωr, Eq. (2.19) gives the rth modeshape of the perforated panel, where (xi, yi)
is the location of the hole in the panel. Extending to the case of N0 holes, the panel
experiences forces at each of the hole locations and the magnitudes of these point forces
are given by the elements of the eigenvector corresponding to the zero eigenvalue of
the receptance matrix evaluated at the new natural frequency ωr [66]. Thus, the rth

modeshape of the perforated panel is given by

ψr(x, y) = 4
ρphab

∞∑

m=1

∞∑

n=1

N0∑
i=1

ϕmn(xi, yi)Fir

ω2
mn − ω2

r

ϕmn(x, y). (2.25)

Or
ψr (x, y) =

∞∑

m=1

∞∑

n=1

Umnr sin mπ(x+ a/2)
a

sin nπ(y + b/2)
b

, (2.26)

where

Umnr = 4
ρphab

N0∑
i=1

sin mπ(xi+a/2)
a

sin nπ(yi+b/2)
b

Fir

ω2
mn − ω2

r

. (2.27)
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The summation over index i denotes the sum of point forces at each hole location and
Fir represents the ith element of the eigenvector corresponding to the zero eigenvalue
of the perforated panel receptance matrix at the rth natural frequency ωr. From
Eq. (2.26), it can be seen that the modeshape ψr (x, y) of a perforated panel is a linear
combination of natural modes of a simply supported unperforated panel.

2.8 Contour integration

In chapter 7, the contour integration technique is used to find approximate expressions
for the modal coupling coefficient of a perforated panel. Various theorems pertaining
to the contour integration in the complex domain are used to obtain the closed form
expressions. In this section, some of the theorems which will be used in chapter 7 are
presented and one example problem involving contour integration is solved.
Theorem 1 (Cauchy residue theorem): Let f(z) be analytic inside and on a simple
closed contour C, except for a finite number of isolated singular points z1, z2, ..., zN

located inside C. Then ∮
f(z) dz = 2πi

N∑

j=1

aj,

where aj is the residue of f(z) at z = zj, denoted by aj=Res(zj).

Let f(z) be defined by

f(z) = ϕ(z)
(z − z0)m

,

where ϕ(z) is analytic in the neighborhood of z = z0 and m is a positive integer. If
ϕ(z0) ̸= 0, then f(z) has a pole of order m at z = z0. Then the residue of f(z) at
z = z0 is given by

Res (z0) = 1
(m− 1)!

dm−1ϕ(z)
dzm−1

∣∣∣∣
z=z0

.

Theorem 2: (a) Suppose that on the contour Cϵ, depicted in Fig. 2.6, we have
(z − z0)f(z) → 0 uniformly as ϵ → 0. Then

lim
ϵ→0

∫

Cϵ

f(z) dz = 0.
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(b) Suppose f(z) has a simple pole at z = z0 with residue Res (z0) = C−1. Then
for the contour Cϵ

lim
ϵ→0

∫

Cϵ

f(z) dz = iϕC−1,

where the integration is carried out in the positive (counterclockwise) sense.

Fig. 2.6 The small circular contour Cϵ of Theorem 2.

Theorem 3: If on a circular arc CR of radius R and center z = 0, zf(z) → 0 uniformly
as R → ∞, then

lim
R→∞

∫

CR

f(z) dz = 0.

The reader may refer to [67] for the detailed discussions and the proofs of the above
theorems. Next, an example problem is solved using the contour integration technique.

Example: Use contour integration to evaluate

I =
∞∫

0

dx√
x (1 + x2) .

Consider the contour integral

J =
∮

C

dz√
z (1 + z2) . (2.28)

Consider the square root function
√
z = r

1/2 eiθ/2 , with 0 ≤ θ < 2π, in the neighborhood
of z = 0. As we vary θ from 0 to 2π around z = 0, a jump in the function value is
encountered. This is a typical example of a branch point of a multi-valued complex
function. Branch point of a multi-valued complex function is defined as a point in
the complex plane around which when a continuous function is evaluated on a closed



36 Background and literature survey

contour enclosing the point, the starting value of the function differs from the end
value. A branch cut is a line joining the branch points such that the function value
takes a jump for points across the branch cut. For the selected range of θ, the branch
cut for the function

√
z is along the positive real axis, as shown in Fig. 2.7. Thus,

along the real axis, we have

√
z =




r

1/2 if θ = 0
−r1/2 if θ = 2π.

(2.29)

Fig. 2.7 The ‘key-hole’ contour of the example problem.

Consider the ‘key-hole’ contour as shown in Fig. 2.7. Substituting z = r eiθ into
Eq. (2.28) and using the appropriate definition of

√
z across the branch cut from

Eq. (2.29), we can rewrite the contour integral as

J = lim
ϵ→0

R→∞

R∫

ϵ

dr
r1/2 (1 + r2) + lim

R→∞

∫

CR

dz√
z (1 + z2)

+ lim
ϵ→0

R→∞

ϵ∫

R

dr
−r1/2 (1 + r2) + lim

ϵ→0

∫

Cϵ

dz√
z (1 + z2) .

The first and the third integrals on the right hand side are the same. Therefore,

J = 2 lim
ϵ→0

R→∞

R∫

ϵ

dr
r1/2 (1 + r2) + lim

R→∞

∫

CR

dz√
z (1 + z2) + lim

ϵ→0

∫

Cϵ

dz√
z (1 + z2) . (2.30)
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Consider the integral over the contour CR. We have the integrand

f(z) = 1√
z (1 + z2)

with z = R eiθ over CR. Now,

lim
R→∞

|zf(z)| = lim
R→∞

∣∣∣∣
R eiθ

R1/2 ei θ/2 (1 +R2 ei2θ)

∣∣∣∣ = lim
R→∞

∣∣∣∣∣
R

1/2 ei θ/2

(1 +R2 ei2θ)

∣∣∣∣∣ .

Using the inequality |z1 + z2| ≥ ||z1| − |z2|| we get

lim
R→∞

|zf(z)| ≤ lim
R→∞

R
1/2

|R2 − 1|
→ 0.

Therefore, by Theorem 3 we get

lim
R→∞

∫

CR

dz√
z (1 + z2) = 0.

Now consider the integral over the contour Cϵ. We have the integrand

f(z) = 1√
z (1 + z2)

with z = ϵ eiθ over Cϵ. Now,

lim
ϵ→0

|zf(z)| = lim
ϵ→0

∣∣∣∣
ϵ eiθ

ϵ1/2 ei θ/2 (1 + ϵ2 ei2θ)

∣∣∣∣ = lim
ϵ→0

∣∣∣∣∣
ϵ

1/2 ei θ/2

(1 + ϵ2 ei2θ)

∣∣∣∣∣ ≤ lim
ϵ→0

ϵ
1/2

|1 − ϵ2|
→ 0

Above, we have used the inequality |z1 + z2| ≥ ||z1| − |z2||. Thus, by Theorem 2 (a)
we get

lim
ϵ→0

∫

Cϵ

dz√
z (1 + z2) = 0.

Thus, the integrals over CR and Cϵ vanish. Therefore, Eq. (2.30) can be written as

J = 2 lim
ϵ→0

R→∞

R∫

ϵ

dr
r1/2 (1 + r2) . (2.31)



38 Background and literature survey

The integrand of Eq. (2.28) has poles at z = ±i. The residue at z = i is given by

Res (i) = (z − i)√
z(1 + z2)

∣∣∣∣
z=i

= 1
|z|1/2 eiθ/2(z + i)

∣∣∣∣
z=i

= 1
2i eiπ/4

. (2.32)

The residue at z = −i is given by

Res (−i) = (z + i)√
z(1 + z2)

∣∣∣∣
z=−i

= 1
|z|1/2 eiθ/2(z − i)

∣∣∣∣
z=−i

= 1
2i e−i π/4

. (2.33)

Now by Cauchy residue theorem (Theorem 1) we get

J =
∮

C

dz√
z (1 + z2) = 2πi [Res (i) + Res (−i)] . (2.34)

Therefore, by Eqs. (2.31)-(2.34) we have

lim
ϵ→0

R→∞

R∫

ϵ

dr
r1/2 (1 + r2) = π cos π4 = π√

2
.

Or,
∞∫

0

dx√
x (1 + x2) = π√

2
. (2.35)

2.9 Conclusions

In this chapter, the relevant literature that precedes the present work is discussed.
Also, some of the important concepts and methods which will be used in the following
chapters are discussed. The original work carried out in this thesis is presented from
the next chapter onwards.



Part II

The one-way coupled analysis





Chapter 3

Sound radiation from a perforated
panel: One-way coupling

3.1 Introduction

This thesis begins with a one-way coupled model for the sound radiation from a finite
2-D perforated flexible panel with simply supported boundary conditions set in a
rigid baffle. By considering an unperforated baffle, this thesis extends the studies by
Fahy and Thompson [5] and Putra and Thompson [4] (where a perforated baffle was
considered). Also, here, the effect of the perforations on the panel natural frequencies is
accounted for using the Receptance method. As the hole impedance takes into account
the resistive and the reactive components, it can directly be applied to micro-perforated
panels as well. The model assumes arbitrary perforation ratios and/or the hole sizes
for the panel and the baffle regions.

In the following section (3.2), an expression for the radiated pressure field is derived
in terms of a locally averaged fluid particle velocity which satisfies the continuity
equation.

3.2 Radiated pressure on a perforated panel sur-
face set in a baffle

Consider a finite thin elastic rectangular perforated panel (−a/2 ≤ x ≤ a/2, −b/2 ≤
y ≤ b/2) lying in the plane z = 0 with simply-supported boundary conditions, set in an
infinite rigid baffle (see Fig. 3.1). Here, the baffle could be perforated or unperforated.
The partition separates the fluid (air) into two regions of characteristic acoustic
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Fig. 3.1 Schematic of a perforated panel set in an unperforated baffle.

impedance ρ0c. Perforations are of a circular profile and have a diameter much less
than the wave length of the incident acoustic field. The panel is excited by a point
harmonic force of magnitude F at an angular frequency ω. The panel vibration creates
a pressure difference across its plane. On the side z < 0, the total pressure p1 is given
by [7]

p1 (x, y, z, t) = p− (x, y, z, t) . (3.1)

The total pressure field in the half space z > 0 comprises of the associated radiated
pressure field given by

p2 (x, y, z, t) = p+ (x, y, z, t) . (3.2)

However,
p− (x, y, z, t) = −p+ (x, y,−z, t) . (3.3)

Thus,
p1 (x, y, z, t) = −p+ (x, y,−z, t) (3.4)

and the pressure difference across the z = 0 plane is given by

∆p(x, y, z = 0, t) = p1(x, y, z = 0, t) − p2(x, y, z = 0, t) = −2p+(x, y, z = 0, t). (3.5)

The temporal term exp (−iωt) in the acoustic wave propagation present in all the
associated equations is omitted in further derivations. The radiated pressure p+ (x, y, z)
satisfies the 3-D Helmholtz equation

(
∇2 + k2) p+ (x, y, z) = 0. (3.6)
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Taking a double Fourier transform of the above equation in the x and y directions we
obtain (

d2

dz2 +
(
k2 − λ2 − µ2)

)
P+ (λ, µ, z) = 0, (3.7)

where P+ (λ, µ, z) is defined as

P+ (λ, µ, z) = 1
2π

∞∫

−∞

∞∫

−∞

p+ (x, y, z) eiλx+iµy dx dy. (3.8)

Eq. (3.7) can be solved for P+ (λ, µ, z) as

P+ (λ, µ, z) = A(λ, µ)e−i
√

k2−λ2−µ2z +B(λ, µ)ei
√

k2−λ2−µ2z. (3.9)

From causality, A(λ, µ) = 0. Hence, for a forward traveling wave (in the region z > 0)
the solution takes the form

P+ (λ, µ, z) = B(λ, µ)ei
√

k2−λ2−µ2z. (3.10)

And for an evanescent wave, P+ (λ, µ, z) = B(λ, µ) exp
(

−
√
λ2 + µ2 − k2z

)
. In order

to find B(λ, µ), we invoke the boundary condition at the solid-fluid interface (at z = 0)
in the Fourier transform domain as

∂

∂z
P+ (λ, µ, z = 0) = iρ0ckVa (λ, µ, z)|z=0 , (3.11)

where ρ0 is the fluid density and Va (λ, µ, z) is the double Fourier transform of the fluid
particle velocity va (x, y, z) given by

Va (λ, µ, z) = 1
2π

∞∫

−∞

∞∫

−∞

va (x, y, z) eiλx+iµy dx dy. (3.12)

Using Eq. (3.10), the boundary condition can be rewritten as
√
k2 − λ2 − µ2P+(λ, µ, z = 0) = ρ0ckVa(λ, µ, z = 0).

Or
B(λ, µ) = P+(λ, µ, z = 0) = Za(λ, µ)Va(λ, µ, z = 0), (3.13)
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where Za(λ, µ) is the acoustic impedance given by

Za(λ, µ) = ρ0ck√
k2 − λ2 − µ2

. (3.14)

Therefore,
P+ (λ, µ, z) = Za(λ, µ)Va(λ, µ, z = 0)ei

√
k2−λ2−µ2z. (3.15)

Thus, if Va(λ, µ, z = 0) is known, the radiated pressure can be found. However,
Va(λ, µ, z = 0) is not the transform of the panel velocity vp. It is related to the mean
fluid particle velocity on z > 0 after accounting for the leakage through the perforations.
Hence, a locally averaged fluid particle velocity (LAFP) va(x, y, t) needs to be defined,
which is done in the following section.

3.3 Locally averaged fluid particle velocity (LAFP)
over a perforated panel

Takahashi and Tanaka [2] developed a model for the average acoustic particle velocity
at the fluid-panel interface that conserves the volume flow through the perforations.
The same model is adopted here.

Fig. 3.2 Schematic of the panel and the fluid velocities in the perforated panel model

Referring to Fig. 3.2, let vp be the velocity of the panel, va be the mean particle
velocity just above the panel surface and vf be the average fluid velocity within a single
hole. The impedance of a single hole is Z0 = Zresist + Zreact where, Zresist depends on
the viscous force at the fluid-structure interface within the hole and is related to the
relative fluid particle velocity inside the hole. Whereas, Zreact depends on the inertia
of the fluid contained within the hole and the effect of radiation at the hole entrance.
From the continuity equation using a control volume, the mean particle velocity of the
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air for z > 0 is given by [2]

Spva = Shvf + (Sp − Sh) vp ⇒ va = vp + (vf − vp)σp, (3.16)

where Sp is the panel area, Sh is the hole area and (Sp − Sh) represents the effective
panel area. σp = N0πr2

ab
is the perforation ratio defined as the fraction of the area of the

apertures to the total area of the plate. N0 is the total number of apertures and r is
the radius of each aperture.

And from the momentum equation on a control volume we get [2]

Zresist (vf − vp) + Zreactvf = ∆p. (3.17)

Please note that the viscous force at the air-solid interface in the hole depends on
relative velocity vf − vp and the forces due to air inertia and acoustic radiation at hole
entrance are related to vf alone.

For wave propagation in a circular tube that is short compared to the acoustic
wavelength, an approximate expression for the specific acoustic impedance Z0 is given
by Maa [1] as

Z0 = Zresist + Zreact

= 8η0h

(d/2)2

(√
1 + X2

32 +
√

2dX
8h

)
− iρ0ωh

(
1 + 1√

9 +X2/2
+ 0.85d

h

)
,

(3.18)

where X = d
2

√
ρ0ω
η0

, d and h are the diameter of the hole and thickness of the panel
respectively, ρ0 is the air density and η0 is the air viscosity (= 1.8 × 10−5Ns/m2). The
term X is called the perforate constant which is proportional to the ratio of the radius
to the viscous boundary layer thickness inside the tube. The above approximation
is valid for the entire range of the perforate constant values. It also includes the end
corrections due to airflow friction at the panel surface as the flow is squeezed into the
hole area and the mass reactance at the ends of the hole.

Hence, using Eqs. (3.16) and (3.17), LAFP velocity over the panel surface can be
obtained as

va = ζIvp + ∆p
Z0

σp = ζIvp + ∆p
Z
, (3.19)
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where ζI = 1 − (Zreact/Z0)σp. This equation can be considered as a balance over a
small panel area. Hence, for the entire panel one can write

va(x, y) = ζIvp(x, y) + ∆p(x, y)
Z0

σp = ζIvp(x, y) + ∆p(x, y)
Z

, (3.20)

This LAFP velocity information can be used as a homogeneous continuity boundary
condition at the fluid-structure interface of a perforated panel, under any acoustic
loading. In the above treatment, it is assumed that the hole size is smaller than the
acoustic wavelength, so that the fluid motion inside the hole can be considered to be
uniform across the cross sectional area. Eq. (3.20) evaluates the LAFP velocity in the
spatial domain. The radiated pressure Eq. (3.15) requires the LAFP velocity in the
wavenumber domain. The LAFP velocity is obtained in the wavenumber domain in
the following section.

3.4 Fourier transform of the LAFP velocity over
the panel-baffle plane

Let the panel and the baffle have the perforation ratios σp and σb, respectively. Using
Eqs. (3.5) and (3.19), the LAFP velocity over the panel-baffle plane (z = 0) is defined
as

vap(x, y, z = 0) = ζIvp(x, y) − 2σp

Z0p

p+(x, y, z = 0), within the panel area

vab(x, y, z = 0) = −2σb

Z0b

p+(x, y, z = 0), outside the panel area
(3.21)

where Z0p and Z0b are the hole impedances over the panel and the baffle regions,
respectively. Here, an arbitrary case is assumed in which σp ̸= σb and Z0p ̸= Z0b.

Taking the Fourier transform of the above equation (Eq. (3.21))

Va(λ, µ, z = 0) = 1
2π

b/2∫

−b/2

a/2∫

−a/2

vap(x, y) eiλx+iµy dx dy

+ integral over the region beyond panel surface.
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Thus,

Va(λ, µ, z = 0) = 1
2π

b/2∫

−b/2

a/2∫

−a/2

vap(x, y) eiλx+iµy dx dy

+ 1
2π




∞∫

−∞

∞∫

−∞

−
b/2∫

−b/2

a/2∫

−a/2


 vab(x, y) eiλx+iµy dx dy.

Substituting for vap and vab from Eq. (3.21) we obtain

Va(λ, µ, z = 0) = 1
2π

b/2∫

−b/2

a/2∫

−a/2

[
ζIvp(x, y) − 2σp

Z0p

p+(x, y, z = 0)
]
eiλx+iµy dx dy

− 1
2π

∞∫

−∞

∞∫

−∞

2σb

Z0b

p+(x, y, z = 0) eiλx+iµy dx dy

+ 1
2π

b/2∫

−b/2

a/2∫

−a/2

2σb

Z0b

p+(x, y, z = 0) eiλx+iµy dx dy.

Or

Va(λ, µ, z = 0) = ζIVp(λ, µ) − 2σb

Z0b

P+(λ, µ, z = 0)

+ 1
2π

b/2∫

−b/2

a/2∫

−a/2

[
2σb

Z0b

− 2σp

Z0p

]
p+(x, y, z = 0) eiλx+iµy dx dy,

(3.22)

where

Vp(λ, µ) = 1
2π

b/2∫

−b/2

a/2∫

−a/2

vp(x, y) eiλx+iµy dx dy. (3.23)

Using the inverse Fourier transform

p+(x, y, z) = 1
2π

∞∫

−∞

∞∫

−∞

P+(λ′, µ′, z) e−iλ′x−iµ′y dλ′ dµ′. (3.24)
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Therefore,

1
2π

b/2∫

−b/2

a/2∫

−a/2

p+(x, y, z) eiλx+iµy dx dy

= 1
4π2

b/2∫

−b/2

a/2∫

−a/2




∞∫

−∞

∞∫

−∞

P+(λ′, µ′, z) e−iλ′x−iµ′y dλ′ dµ′


 eiλx+iµy dx dy.

Rearranging,

1
2π

b/2∫

−b/2

a/2∫

−a/2

p+(x, y, z) eiλx+iµy dx dy

= 1
4π2

∞∫

−∞

∞∫

−∞

P+(λ′, µ′, z)




b/2∫

−b/2

a/2∫

−a/2

ei(λ−λ′)x+i(µ−µ′)y dx dy


 dλ′ dµ′.

However, we know that

b/2∫

−b/2

a/2∫

−a/2

ei(λ−λ′)x+i(µ−µ′)y dx dy = ab sinc
[

(λ− λ′)a
2

]
sinc

[
(µ− µ′)b

2

]
. (3.25)

Hence,

1
2π

b/2∫

−b/2

a/2∫

−a/2

p+(x, y, z) eiλx+iµy dx dy

= ab

4π2

∞∫

−∞

∞∫

−∞

P+(λ′, µ′, z) sinc
[

(λ− λ′)a
2

]
sinc

[
(µ− µ′)b

2

]
dλ′ dµ′.
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At z = 0

1
2π

b/2∫

−b/2

a/2∫

−a/2

p+(x, y, z = 0) eiλx+iµy dx dy

= ab

4π2

∞∫

−∞

∞∫

−∞

P+(λ′, µ′, z = 0) sinc
[

(λ− λ′)a
2

]
sinc

[
(µ− µ′)b

2

]
dλ′ dµ′.

However, from Eq. (3.13)

P+(λ′, µ′, z = 0) = Za(λ′, µ′)Va(λ′, µ′, z = 0),

where Za(λ, µ) is the acoustic impedance given by Eq. (3.14). Therefore, the previous
integral can be written as

1
2π

b/2∫

−b/2

a/2∫

−a/2

p+(x, y, z = 0) eiλx+iµy dx dy

= ab

4π2

∞∫

−∞

∞∫

−∞

Za(λ′, µ′)Va(λ′, µ′, z = 0) sinc
[

(λ− λ′)a
2

]
sinc

[
(µ− µ′)b

2

]
dλ′ dµ′.

(3.26)

Using Eqs. (3.13) and (3.26), the spatial Fourier transform of the mean fluid particle
velocity (at panel-baffle plane, z = 0) in Eq. (3.22) can be written as

Va(λ, µ, z = 0) = ζIVp(λ, µ) − 2σb

Z0b

Za(λ, µ)Va(λ, µ, z = 0) + ab

2π2

[
σb

Z0b

− σp

Z0p

]

×





∞∫

−∞

∞∫

−∞

Za(λ′, µ′)Va(λ′, µ′, z = 0) sinc
[

(λ− λ′)a
2

]
sinc

[
(µ− µ′)b

2

]
dλ′ dµ′



 ,
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or
[
1 + 2σb

Z0b

Za(λ, µ)
]
Va(λ, µ, z = 0) = ζIVp(λ, µ) + ab

2π2

[
σb

Z0b

− σp

Z0p

]

×





∞∫

−∞

∞∫

−∞

Za(λ′, µ′)Va(λ′, µ′, z = 0) sinc
[

(λ− λ′)a
2

]
sinc

[
(µ− µ′)b

2

]
dλ′ dµ′



 ,

(3.27)

where Za(λ′, µ′) is the acoustic impedance of the medium given by

Za(λ′, µ′) = ρ0ck√
k2 − λ′2 − µ′2

.

The presence of sinc() function in the above equation shows that for a perforated panel
set in a baffle with a different perforation ratio, there exists a ‘coupling’ effect between
the different wavenumbers in the spectrum of the LAFP velocity [5].

Let us consider a case where the panel and the baffle are identically perforated,
i.e., σp = σb and Z0p = Z0b. In such a scenario, there exists no ‘coupling’ in the LAFP
velocity spectrum as given below.

[
1 + 2σp

Z0p

Za(λ, µ)
]
Va(λ, µ, z = 0) = ζIVp(λ, µ). (3.28)

This case is taken up in the following section.
The case of a perforated panel set in an unperforated baffle can be represented by

choosing σb = 0. Thus, the spectrum of the LAFP velocity is given by

Va(λ, µ, z = 0) = ζIVp(λ, µ) − ab

2π2
σp

Z0p

×





∞∫

−∞

∞∫

−∞

Za(λ′, µ′)Va(λ′, µ′, z = 0) sinc
[

(λ− λ′)a
2

]
sinc

[
(µ− µ′)b

2

]
dλ′ dµ′



 .

(3.29)

Given the panel velocity spectrum Vp(λ, µ), Eqs. (3.27) and (3.29) can be solved
numerically for Va(λ, µ) by formulating the equations in a matrix form using discretized
values of λ and µ. The integral is approximated by a sum over the range of discrete
values of λ and µ (Appendix A).
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3.5 Sound radiation from a perforated panel set in
a similarly perforated baffle

The sound radiation from a perforated panel fixed in a baffle is discussed in this section.
The baffle is assumed to be perforated in a similar fashion as that of the panel, i.e.,
σb = σp and Z0b = Z0p. The derivation presented is very brief as it is almost the same
as that of Putra and Thompson [4]. The only difference is that the hole impedance
used here has a non-zero resistive component. Thus, the curves highlight the validity of
including/ignoring this resistive component. The equality of the perforate impedances
in the baffle and the panel eliminates the ‘coupling’ of wavenumbers in the LAFP
velocity over the panel (See Eq. (3.28)). This coupling issue was discussed by Fahy
and Thompson [5] and Putra and Thompson [4].

The Fourier transform of the LAFP velocity over the perforated panel, for a similarly
perforated baffle case is given by Eq. (3.28).

Va(λ, µ, z = 0) = ζI[
1 + 2σp

Z0p
Za(λ, µ)

]Vp(λ, µ). (3.30)

Here, it must be noted that Z0p has the resistive component unlike [4]. And it is
known that the time averaged power from a vibrating panel set in a rigid baffle (both
unperforated) is [11]

W = 1
2Re





∞∫

−∞

∞∫

−∞

P+(λ, µ, z = 0)V ∗
p (λ, µ) dλ dµ



 , (3.31)

in which P+(λ, µ, z = 0) is given by Eq. (3.13)

P+(λ, µ, z = 0) = Za(λ, µ)Vp(λ, µ, z = 0),

where P+(λ, µ, z = 0) and Vp(λ, µ, z = 0) are the Fourier transforms of the panel
surface pressure and panel velocity. For the case of a perforated panel in a perforated
baffle, Vp(λ, µ, z = 0) needs to be replaced by the LAFP velocity Va(λ, µ, z = 0). The
rest of the derivation is the same as in [4] and is given in Appendix B.
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3.5.1 Results

Comparison with existing modal summation theory

Putra’s average radiation efficiency expression is given by

σ =
∑∞

m=1
∑∞

n=1 Wmn

1
2ρ0cab(1 − σp)

∑∞
m=1

∑∞
n=1 < |vmn|2 >

, (3.32)

where
< |vmn|2 > = |Umn|2

4 .

Note that in the denominator of the expression for the radiation efficiency (Eq. (3.32)),
only the solid part of the perforated plate area is considered. However, the term (1−σp)
has a significant effect at high perforation ratios.

Fig. 3.3 shows the comparison of Eq. (B.25) with those derived by Putra (Eq. (3.32))
for a unit force excitation. These results are for a plate with dimensions 0.455×0.546×
0.003 m and η = 0.1. The panel density ρp = 2700 kg/m3, the Young’s modulus E = 70
GPa and Poisson’s ratio ν = 0.33. All the modes below 104 Hz are considered while
performing the modal summation. While evaluating the radiation efficiency using
Eq. (B.25) the denominator is multiplied by (1 − σp) so that only the solid part of the
perforate area is considered. The reader may note that the hole impedance adopted by
the current method considers both the viscous dissipation at the walls (resistive) and
the mass like behavior of the fluid inside the perforations (reactive part) and is given
by Eq. (3.18) [1]. Whereas, Putra considers only the mass like behavior of the fluid
inside the hole to define the perforate impedance as given by [4]

Z0 = iρ0cΘσp, (3.33)

where Θ = k
σp

[
h+ 8d

3π

]
denotes the non-dimensional specific acoustic reactance. The

variation in the hole impedance as a function of the frequency for both the cases
(Eqs. (3.18) and (3.33)) is plotted in Fig. 3.4. For the size of the hole and the
frequencies of interest, the reactive impedance dominates over the resistive component
and at high frequencies, the resistive part is relatively negligible. This is the reason
why Putra’s purely reactive model compares so well.

So far we have discussed the sound radiation from a perforated panel fixed in a
perforated baffle with the same value of the perforation ratio. In the following section,
the baffle has a different perforation from that of the panel.
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Fig. 3.3 Radiation efficiency of a perforated panel in a baffle (present method and
Putra’s method). The baffle is similarly perforated. The perforation ratio is σp = 9.61%
and the holes are of radius rp = 5 mm.
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Fig. 3.4 Comparison of hole impedances. The impedance used in this article (Maa [1])
is given by Eq. (3.18) and the impedance used by Putra is given by Eq. (3.33). The
hole radius is rp = 5 mm and the length of the hole (panel thickness) is h = 3 mm.



54 Sound radiation from a perforated panel: One-way coupling

3.6 Sound radiation from a perforated panel set in
a differently perforated baffle

In this section, the sound radiation from a perforated flexible simply-supported rect-
angular panel set in a differently perforated baffle excited by a point harmonic force
is considered. Here, the panel resonance frequency shifts due to the presence of the
holes are accounted for, i.e., the modifications to modal inertia and modal stiffness are
included in the calculation.

3.6.1 Response of a perforated panel to point harmonic exci-
tation

The response of the perforated panel can be expressed in terms of a modal sum.
However, the perforations change the stiffness and the inertial properties of the panel.
Thus, the new resonant frequencies and modeshapes of the perforated panel have
to be found out. Soler and Hill [68] proposed a formulation for the effective static
bending stiffness of a rectangular perforated strip for different hole array configurations.
The formulation is deduced based on various experimental data and a series of curve
fits. The effective static bending stiffness is a function of the solidity factor f , the
thickness of the panel h and the hole array configuration parameters (hole diameter
d = 2rp, distance between two adjacent holes in the array (pitch) p and ligament width
t = p− d).

The solidity factor f is defined as the ratio of the solid area of the perforated panel
to the total panel area, i.e.,

f = panel area after drilling
unperforated panel area .

In other words, f = 1 −α, where α is the perforation ratio (0 < f ≤ 1). Of the various
array configurations studied in their work, the rectangular array configuration with
a square pitch is of particular interest to the problem under consideration. Fig. 3.5
shows the schematic of a typical rectangular array of perforations, where b is the width
of the repeating pattern of holes in the perforated panel. When the width is the same
as that of the pitch (b = p), it is referred to as the square pitch. For a rectangular
array with a square pitch, the solidity factor is found to be of the form

f =
p2 − π

4d
2

p2 = 1 − π

4

(
d

p

)2

= 1 − π

4

(
1 − t

p

)2

. (3.34)
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Fig. 3.5 Schematic of a rectangular array of holes with a square pitch.

Let D be the bending stiffness of an unperforated panel (D = Eh3/12(1 − ν2)) and
D∗ be the effective bending stiffness of the perforated panel. According to Soler and
Hill [68]

D∗

D
= fγ, γ = γ

(
t

p
,
h

2p

)
. (3.35)

Let χ be a thickness coefficient given by

χ = h/2p− 1
h/2p+ 1 .

Using curve fits on the experimental data, Soler and Hill have deduced that

γ = 13 + 3χ
8

[
1 + (3 − χ)

4
t

p
+ (1 + χ)

2
h

p

(
1 − t

p

)2
]
. (3.36)

Using Eqs. (3.34), (3.35) and (3.36), we may now find the effective bending stiffness as

D∗ = fγD. (3.37)

A perforated panel can be thought of as a panel with small mass voids and with
reduced bending stiffness. The bending stiffness of the perforated panel is modified
first as explained above. Then the Receptance method is used to mathematically
subtract the inertia of the void from that of a panel with sufficient accuracy [65]. This



56 Sound radiation from a perforated panel: One-way coupling

results in the modified resonances and modeshapes. The new resonance frequencies
and modeshapes are derived in 2.7 using the Receptance method.

Having found the modeshapes of the perforated panel from 2.7, the displacement of
a perforated panel at the point (x, y) to a point harmonic force excitation of magnitude
F and frequency ω can be obtained as

w(x, y, t) =
∞∑

r=1

1
Mr

ψr(xi, yi)Fe−iωt

[ω2
r(1 − iη) − ω2]ψr(x, y), (3.38)

where (xi, yi) is the point of excitation, η is the damping loss factor and the term Mr

represents modal mass given by

Mr =
b/2∫

−b/2

a/2∫

−a/2

ρphψ
2
r(x, y) dx dy = ρphab

4

∞∑

m=1

∞∑

n=1

|Umnr|2. (3.39)

A detailed derivation of Mr is presented in Appendix C. The transverse velocity of the
perforated panel can be expressed in the modal summation form as

vp (x, y) =
∞∑

r=1

Brψr (x, y) . (3.40)

Using Eq. (3.38), the modal coefficient for the rth mode of the perforated panel Br can
be obtained as

Br = −iωψr(xi, yi)F
Mr [ω2

r(1 − iη) − ω2] , (3.41)

where ωr is the natural frequency of the rth mode of the perforated panel. From
2.7, substituting for ψr (x, y) (Eq. (2.26)) in Eq. (3.40) and using the double Fourier
transform we obtain

Vp (λ, µ) =
∞∑

r=1

Br

∞∑

m=1

∞∑

n=1

UmnrΦmn (λ, µ) , (3.42)

where

Φmn (λ, µ) = 1
2π

b/2∫

−b/2

a/2∫

−a/2

sin mπ(x+ a/2)
a

sin nπ(y + b/2)
b

eiλx+iµy dx dy.
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Note that as the panel velocity vp(x, y) is zero over the baffle region, while finding the
Fourier transform, the integration is limited to the panel area alone. Thus,

Φmn(λ, µ) = ambn

2π

[
(−1)meiλa/2 − e−iλa/2]

[λ2 − a2
m]

[
(−1)neiµb/2 − e−iµb/2]

[µ2 − b2
n] , (3.43)

with am = mπ
a

and bn = nπ
b

.
Now, the spatial Fourier transform of the LAFP velocity at the panel-baffle plane

(z = 0) is given by Eq. (3.27), i.e.,

[
1 + 2σb

Z0b

Za(λ, µ)
]
Va(λ, µ, z = 0) = ζIVp(λ, µ) + ab

2π2

[
σb

Z0b

− σp

Z0p

]

×





∞∫

−∞

∞∫

−∞

Za(λ′, µ′)Va(λ′, µ′, z = 0) sinc
[

(λ− λ′)a
2

]
sinc

[
(µ− µ′)b

2

]
dλ′ dµ′



 ,

where Za(λ′, µ′) is the acoustic impedance of air given by

Za(λ′, µ′) = ρ0ck√
k2 − λ′2 − µ′2

.

Given the spectrum of the plate velocity Vp(λ, µ), Eq. (3.27) (given above) is solved
numerically for Va(λ, µ) by formulating the equations in a matrix form using discretized
values of λ and µ. The integral is approximated by a sum over the range of discrete
values of λ and µ. Next, the double Fourier transform of the radiated pressure can be
obtained from Eq. (3.13) as

P+(λ, µ, z = 0) = Za(λ, µ)Va(λ, µ, z = 0).

3.6.2 Radiated power from a perforated panel in a baffle

We may now find the radiated power from the perforated panel due to a point harmonic
excitation. The expression for the radiated power is

W = 1
2Re





∞∫

−∞

∞∫

−∞

P+(λ, µ, z = 0)V ∗
a (λ, µ) dλ dµ



 ,

where we use the LAFP velocity due to the panel motion and the fluid flow through
the perforations to evaluate the radiated power. In the above equation, only the
wavenumber components satisfying the inequality k2 > λ2 + µ2 will radiate into the



58 Sound radiation from a perforated panel: One-way coupling

far field. Hence, for the power radiated into the far field, the limits of integration are
as shown below:

W = 1
2Re





k∫

−k

√
k2−µ2∫

−
√

k2−µ2

P+(λ, µ, z = 0)V ∗
a (λ, µ) dλ dµ





(3.44)

In the above equation, the Fourier transforms of the radiated pressure and the plate
velocity are obtained as explained earlier. Here again, the integral is approximated by
a sum over the range of discrete values of λ and µ.

3.6.3 Radiation efficiency of a perforated panel in a baffle

The radiation efficiency of a perforated panel subjected to a point harmonic excitation
is given by

σ = W
1
2ρ0cab < |vp|2 >

, (3.45)

where W is the radiated power (Eq. (3.44)) and < |vp|2 > is the spatially averaged
squared velocity of the perforated panel. The spatially averaged squared velocity is
defined as

< |vp|2 >= 1
ab

b/2∫

−b/2

a/2∫

−a/2

|vp(x, y)|2 dx dy,

where the panel flexural velocity is given by Eq. (3.40).

vp(x, y) =
∞∑

r=1

Br

∞∑

m=1

∞∑

n=1

Umnr sin mπ(x+ a/2)
a

sin nπ(y + b/2)
b

. (3.46)
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Substituting for vp(x, y) from above we get

< |vp|2 > = 1
ab

b/2∫

−b/2

a/2∫

−a/2

[
∞∑

r=1

Br

∞∑

m=1

∞∑

n=1

Umnr sin mπ(x+ a/2)
a

sin nπ(y + b/2)
b

]

×

[
∞∑

s=1

B∗
s

∞∑

p=1

∞∑

q=1

U∗
pqs sin pπ(x+ a/2)

a
sin qπ(y + b/2)

b

]
dx dy

= 1
ab

∞∑

r=1

∞∑

s=1

∞∑

m=1

∞∑

n=1

∞∑

p=1

∞∑

q=1

BrB
∗
sUmnrU

∗
pqs

×
b/2∫

−b/2

a/2∫

−a/2

sin mπ(x+ a/2)
a

sin nπ(y + b/2)
b

sin pπ(x+ a/2)
a

sin qπ(y + b/2)
b

dx dy.

However, we know that

b/2∫

−b/2

a/2∫

−a/2

sin mπ(x+ a/2)
a

sin nπ(y + b/2)
b

sin pπ(x+ a/2)
a

sin qπ(y + b/2)
b

dx dy

=





ab

4 when m = p and n = q

0 otherwise

Therefore,

< |vp|2 >= 1
4

∞∑

r=1

∞∑

s=1

∞∑

m=1

∞∑

n=1

BrB
∗
sUmnrU

∗
mns. (3.47)

Hence, by Eqs. (3.44) and (3.47), the radiation efficiency of a perforated panel subjected
to a point harmonic excitation (Eq. (3.45)) is

σ = 4

ρ0cab
∞∑

r=1

∞∑
s=1

∞∑
m=1
n=1

BrB∗
sUmnrU∗

mns

Re





k∫

−k

√
k2−µ2∫

−
√

k2−µ2

P+(λ, µ, z = 0)V ∗
a (λ, µ) dλ dµ





(3.48)
The above integral is approximated by a sum over the range of discrete values of λ
and µ.

In the following section, a particular case is taken up and numerical results are
presented.
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3.6.4 Results

Natural frequencies of a perforated panel

The specific panel considered has dimensions 0.455×0.546×0.003 m3 in which the hole
radius is taken as rp = 5 mm. There are 16 holes in the panel and the perforation ratio
is σp = 0.51%. The material properties are: density ρp = 2700 kg/m3, Young’s modulus
E = 70 GPa, Poisson’s ratio ν = 0.33. The perforated panel natural frequencies and
modeshapes are obtained using the Receptance method as given in 2.7. All the modes
below the frequency 10000 Hz are obtained. In Table 3.1 are listed a few resonance
frequencies using the Receptance method and a comparison with those obtained from
the modal analysis using a finite element solver (ANSYS) is presented. It is found that
the Receptance method predictions agree very closely with the finite element solutions
(maximum deviation obtained is ≈ 1.5% at the modes near 4000 Hz). The validation
till 10000 Hz using ANSYS was not possible because of the system limitations.

Mode Receptance method ANSYS Difference (%)
1 59.80 59.66 0.23
2 133.33 133.05 0.21
3 165.68 165.42 0.16
4 239.22 238.56 0.28
5 255.91 255.40 0.20
6 342.14 341.65 0.14
7 361.81 360.67 0.32
8 415.69 414.60 0.26
9 427.68 426.45 0.29

10 533.61 531.59 0.38
- - - -

91 3750.25 3717.3 0.89
92 3815.61 3791.4 0.64
93 3844.40 3812.1 0.85
94 3844.65 3814.4 0.79
95 3923.33 3883.6 1.02
96 4057.97 4017.7 1.00
97 4102.02 4048.2 1.33
98 4129.76 4109.2 0.50
99 4169.16 4135.5 0.81

100 4178.27 4140.9 0.90

Table 3.1 Comparison of perforated panel natural frequencies in Hz.
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Sound radiation from a perforated panel fixed in a differently perforated
baffle

A harmonic force of unit magnitude is exerted at point (0, 0) on the above panel.
Although, the formulation can handle any degree of perforations in the baffle, only the
following two cases are considered: 1) the baffle is similarly perforated as that of the
panel and 2) the baffle is unperforated.

The unperforated panel has 250 modes below 104 Hz and the perforations cause a
slight increase in this number. The presence of perforations reduces both the stiffness
and the mass of the panel. The resultant effect on the natural frequencies of the
perforated panel is shown in Table 3.2. There are two cases one with σp = 5.93%
(rp = 0.0025 m, N0 = 750) and the other with σp = 23.71% (rp = 0.005 m, N0 = 750).
It can be seen that for low perforation ratios the shift in natural frequencies is small.
However, as the perforation ratio increases, the reduction in the stiffness of the panel
exceeds that of the mass of the panel and results in much lower natural frequencies.
This shift brings changes in the radiation efficiency curves as seen in Fig. 3.6.
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Fig. 3.6 Comparison of radiation efficiency for perforated panels (with perforation ratios
σp = 5.93% and σp = 23.71%) set in an unperforated baffle using 1) the perforated
panel natural frequencies and 2) the unperforated panel natural frequencies.

The radiation efficiency of a perforated panel set in an unperforated baffle is shown
in Fig. 3.7. For comparison, similar curves for an equally perforated baffle case and
for an unperforated case are also shown. Note, that in all the curves, as the point
of excitation is at the node of the second mode (128.98 Hz), the effect of first mode
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Unperforated case σp = 5.93%
Perforated case

σp = 23.71%
Perforated case

index
Mode

(Hz)
natural frequency

(Hz)
Natural frequency

(%)
Difference

(Hz)
Natural frequency

(%)
Difference

1 60.06 59.80 -0.42 53.26 -11.31
2 133.90 133.33 -0.42 118.75 -11.31
3 166.39 165.68 -0.43 147.56 -11.31
4 240.23 239.22 -0.42 213.05 -11.31
5 256.96 255.91 -0.41 227.89 -11.31
6 343.60 342.14 -0.43 304.73 -11.31
7 363.29 361.81 -0.41 322.20 -11.31
8 417.44 415.69 -0.42 370.22 -11.31
9 429.26 427.68 -0.37 380.70 -11.31
10 535.59 533.61 -0.37 458.25 -14.44
- - - - - -

121 5045.72 5023.92 -0.43 4474.94 -11.31
122 5119.56 5099.55 -0.39 4529.00 -11.54
123 5128.42 5122.62 -0.11 4548.28 -11.31
124 5143.19 5120.30 -0.45 4561.38 -11.31
125 5174.69 5158.89 -0.31 4589.32 -11.31

- - - - - -
241 9771.46 9750.75 -0.21 8640.05 -11.58
242 9826.60 9770.52 -0.57 8715.00 -11.31
243 9845.30 9793.31 -0.53 8731.59 -11.31
244 9880.75 9825.98 -0.55 8763.02 -11.31
245 9925.05 9872.67 -0.53 8802.31 -11.31

Table 3.2 Comparison of unperforated and perforated panel natural frequencies in Hz.

(57.85 Hz) at the lower frequencies is a bit more prolonged [53]. It can be seen that
while the panel perforations themselves reduce the radiation efficiency, the addition of
perforations in the baffle cause a further severe reduction as the fluid has enough time
to escape. It can also be seen that in the monopole region, the unperforated panel and
baffle curve has a slope of 20 dB/decade and that of the similarly perforated baffle
has a slope of 40 dB/decade. The perforated panel but unperforated baffle case has a
slope < 20 dB/decade and this is mainly due to the sinc term in Va that represents
the flow of the fluid from the baffle onto the panel and finally through the holes.

In Fig. 3.8, only the panel is perforated. The hole radius is kept constant
(rp = 2.5 mm) and the number of holes is increased. It is expected that the sound
radiation reduces with an increased perforation ratio. Since the radius is held constant,
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Fig. 3.7 Radiation efficiency of a perforated panel set in an unperforated baffle. The
figure also shows the curves for an unperforated panel and for a panel set in a similarly
perforated baffle. For the perforated cases, the perforation ratio is set to be σp = 5.93%
and the hole radius is assumed to be rp = 2.5 mm.
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Fig. 3.8 Radiation efficiencies of a perforated panel set in an unperforated baffle for
various perforation ratios. The hole radius is kept constant rp = 2.5 mm.

|Z0| remains a constant but the perforate impedance |Z0|/σp reduces with increased
perforation ratio (σp). The fluid escapes more easily to the back side. Further insight
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Fig. 3.9 Perforate impedances for different perforation ratios. (constant hole radius,
rp = 2.5 mm). (a) Absolute perforate impedance. (b) Resistive (ℜ) and reactive (ℑ)
components of the perforate impedance.

can be gained from Fig. 3.9 where the perforate impedance and the corresponding
real and imaginary parts are plotted. The absolute perforate impedance decreases
with decreasing frequency and hence, the radiation is low at low frequencies. At high
frequencies, both the resistance and reactance increase making it difficult for the fluid
to escape and thus the radiation efficiency goes up. It can also be seen that the
reactance dominates over the resistance at the higher frequencies. At further higher
frequencies, the inertia of the fluid inside the hole is so high that it stops moving.

In Fig. 3.10, the total number of holes in the panel is kept constant (N0 = 750) and
different perforation ratios are achieved by varying the hole radius. The corresponding
perforate impedance curves are plotted in Fig. 3.11. The radiation efficiency decreases
with an increase in perforation ratio, as an expected outcome of the reduction in the
perforate impedance. But, in comparison to panels with large hole radii, the impedance
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rp = 5.0 mm, σp = 23.71%

Fig. 3.10 Radiation efficiencies of a perforated panel set in an unperforated baffle for
various perforation ratios. The total number of holes in the panel is kept constant
N0 = 750.

curve for a small radius (rp = 0.5 mm) behaves differently at the lower frequencies
(Fig. 3.11a). It can be noticed from Fig. 3.11b that at the lower frequencies, for a
small hole radius, the resistive impedance dominates slightly over the reactance. This
causes a small increase in the radiation efficiency at the lower frequencies. However,
this slight increase is not clearly visible in the radiation efficiency curve in Fig. 3.10, as
the curve for rp = 0.5 mm lies very close to the unperforated one.

To understand this further, we need a case where the perforation ratio is held
constant as the radii and number of holes are varied. Fig. 3.12 shows the radiation
efficiencies for panels with the same perforation ratios (σp = 0.95%). The hole radii
chosen for the different cases vary from 0.5 mm to 5 mm. The corresponding perforate
impedance curves are given in Fig. 3.13. Fig. 3.13a shows that at high frequencies, the
absolute perforate impedance is lower for panels with small holes. As the frequency
comes down, the curves for the smaller holes begin to dominate and cross over the other
curves. This can be understood from Fig. 3.13b where for a given hole radius, the high
frequency region is dominated by the reactive impedance and the lower frequencies by
the resistive impedance. Thus, the resistive impedance crosses over as one comes down
in frequency. This crossing happens at a higher frequency for a smaller hole radius.
The crossing of impedance curves affects the radiation efficiency curves of Fig. 3.12.
The crossing of radiation efficiency curve for rp = 0.5 mm with that for rp = 1 mm is
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Fig. 3.11 Perforate impedances for different perforation ratios with a constant number
of holes (N0 = 750). (a) Absolute perforate impedance. (b) Resistive (ℜ) and reactive
(ℑ) components of the perforate impedance.

depicted in the top inset of Fig. 3.12 and the bottom inset shows the crossing with
rp = 2.5 mm curve.

3.6.5 Average radiation efficiency

The power radiated from the panel varies with the excitation location. In order to obtain
a mean value, let us average the radiated power over all the possible forcing points on
the panel. The radiated power from the perforated panel is given by Eq. (3.44).

W = 1
2Re





k∫

−k

√
k2−µ2∫

−
√

k2−µ2

P+(λ, µ, z = 0)V ∗
a (λ, µ) dλ dµ




,
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Fig. 3.12 Radiation efficiencies of a perforated panel set in an unperforated baffle for
a constant perforation ratio (σp = 0.95%). The total number of holes and the hole
radius are varied to achieve same perforation ratio.

where we use the LAFP velocity due to the panel motion and the fluid flow through
the perforate to evaluate the radiated power. Substituting for P+(λ, µ, z = 0) from
Eq. (3.13) we get

W = 1
2Re





k∫

−k

√
k2−µ2∫

−
√

k2−µ2

Za(λ, µ)|Va(λ, µ, z = 0)|2 dλ dµ




.

Averaging the radiated power over all the forcing locations we get

W = 1
ab

b/2∫

−b/2

a/2∫

−a/2

W (xi, yi) dxi dyi. (3.49)

Substituting for W into the equation above and rearranging the order of integration
we obtain

W = 1
2Re





k∫

−k

√
k2−µ2∫

−
√

k2−µ2

Za(λ, µ)|Va(λ, µ, z = 0)|2 dλ dµ




, (3.50)
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Fig. 3.13 Perforate impedances for different of hole sizes and number of holes but with
a constant perforation ratio (σp = 0.95%). (a) Absolute perforate impedance. (b)
Resistive (ℜ) and reactive (ℑ) components of the perforate impedance.

where

|Va(λ, µ, z = 0)|2 = 1
ab

b/2∫

−b/2

a/2∫

−a/2

|Va(λ, µ, z = 0)|2 dxi dyi. (3.51)

Using the equation for Va(λ, µ, z = 0) (Eq. (3.27)), the integral on the right hand side
of the above equation is evaluated numerically over the panel area. Substituting for
the average of the LAFP squared velocity in Eq. (3.50), the average radiated power is
evaluated.

The average radiation efficiency is defined as

σ = W
1
2ρ0cab< |vp|2 >

, (3.52)
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where W is the average radiated power given by Eq. (3.50). < |vp|2 > is the spatially
averaged squared panel velocity averaged over all forcing locations. The spatially
averaged squared panel velocity is given by Eq. (3.47) (and repeated here)

< |vp|2 >= 1
4

∞∑

r=1

∞∑

s=1

∞∑

m=1

∞∑

n=1

BrB
∗
sUmnrU

∗
mns.

Averaging over all the forcing locations

< |vp|2 > = 1
ab

b/2∫

−b/2

a/2∫

−a/2

< |vp(xi, yi)|2 > dxi dyi

= 1
4

∞∑

r=1

∞∑

s=1

∞∑

m=1

∞∑

n=1

UmnrU
∗
mns

1
ab

b/2∫

−b/2

a/2∫

−a/2

Br(xi, yi)B∗
s (xi, yi) dxi dyi.

Substituting for Br(xi, yi) and B∗
s (xi, yi) and using the orthogonality property (of the

in vacuo panel modes) we obtain

< |vp|2 > = 1
16

∞∑

r=1

∞∑

s=1

∞∑

m=1

∞∑

n=1

∞∑

p=1

∞∑

q=1

ω2|F |2UmnrU
∗
mnsUpqrU

∗
pqs

MrM∗
s [ω2

r(1 − iη) − ω2] [ω2
s(1 − iη) − ω2]∗ .

(3.53)
Substituting for < |vp|2 > (Eq. (3.53)) and W (Eq. (3.50)) into Eq. (3.52), we obtain
the average radiation efficiency of a perforated panel fixed in a baffle.

3.6.6 Results

Average radiation efficiency of a perforated panel

The panel dimensions and properties are the same as before. There are 120 holes in the
panel and the radius of each hole is 2.5 mm. We know that the behavior of a radiation
efficiency curve varies with the point of excitation. Fig. 3.14 depicts the radiation
efficiency curves for unit amplitude point harmonic excitations. Six sample forcing
locations are chosen and each thin line represents a different excitation location. It
also shows the radiation efficiency averaged over 100 point force locations (thick line).
A convergence test was done and an average over 100 uniformly distributed locations
was found to be adequate.

Variation in the radiation efficiency for different perforation ratios are plotted in
Fig. 3.15. Different perforation ratios are achieved by varying the hole size. The
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Fig. 3.14 Radiation efficiencies for different excitation points (Eq. (3.48)) and the
radiation efficiency averaged over 100 excitation points (Eq. (3.52)). The hole radius is
rp = 2.5 mm and the number of holes is N0 = 120. The perforated panel is lying in
the region −0.2275 ≤ x ≤ 0.2275, −0.2730 ≤ y ≤ 0.2730.

radiation efficiency decreases with increase in the perforation ratio, as expected. It is
worth stating that the computational overhead while evaluating the average radiation
efficiency increases enormously with the increase in the number of holes in the panel.
For all the perforated panel cases shown in Fig. 3.15, the number holes is N0 = 120.
But, in most of the micro-perforated panel applications, the number of holes is of the
order of a few thousands requiring substantial computational machinery.

3.7 Conclusions

The radiation efficiency of a perforated panel set in a rigid baffle with simply supported
boundary conditions is investigated using the 2-D wavenumber domain approach.
Initially, the radiation efficiency of a perforated panel set in a similarly perforated
baffle is compared with that from the literature. The proposed model includes the
resistive and the reactive impedances of the holes. Whereas, in the literature only the
reactive component is included. For the given geometry, the match is found to be good.
This is expected since at high frequencies the reactive component dominates. It may
be noted that the formulation can accommodate other boundary conditions as long as
the modes are expressible in an analytical form.
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Fig. 3.15 Radiation efficiencies for different hole sizes/perforation ratios averaged over
all force locations. The number of holes for the perforated cases is N0 = 120.

Next, a perforated panel set in an unperforated baffle is considered using the
same approach. The dissimilarity of the perforate impedance over the panel-baffle
plane is treated appropriately and it is found that due to the discontinuity in the
impedance, there exists a coupling of wavenumbers in the resulting locally mean fluid
velocity relation. The perforations alter the resonant frequencies and the modeshapes
of the panel. With the aid of the Receptance method, the new natural frequencies
and modeshapes are obtained and used to find the radiation efficiency from a point
harmonic excitation.

In general, the absolute perforate impedance increases with increase in frequency.
Within this, the lower frequencies are dominated by the resistive component and the
high frequencies by the reactive component. Thus, for a given hole size and perforation
ratio, there is a cross over between the resistive and reactive impedances. For a smaller
hole radius, the dominance of the reactive component over the resistive component
happens at a higher frequency. Since, the model includes both the resistive and the
reactive components of the hole impedance, it is directly applicable to micro-perforated
panels. Curves for the radiation efficiency are presented and the effect of the resistive
and the reactive hole impedances on the sound radiation is discussed. The radiation
efficiency curve that is averaged over all the forcing locations is also presented. The
computational cost is found to be large for such averaging.
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So far, we have been discussing the sound radiation problem in which the external
excitation is by a point harmonic force. The one-way coupled method developed here
can be carried forward to study the sound transmission through the perforated panel
where the panel vibration is due to an incident plane wave. This problem is discussed
in the next chapter.



Chapter 4

Sound transmission through a
perforated panel: One-way coupling

4.1 Introduction

In this chapter, the sound transmission through a flexible simply supported perforated
panel set in a rigid unperforated baffle is investigated using the one-way coupled
formulation presented in the previous chapter. The sound power transmitted by the
panel is analyzed (in terms of the transmission loss) for an acoustic plane wave incidence.
This being a one-way coupled analysis, the influence of the radiated pressure field
on the panel response is neglected and the forcing acoustic field consists only of the
incident and the reflected pressure waves. However, the effect of the radiated pressure
field is included while finding the average fluid velocity at the panel-fluid interface.

In the following section, the total pressure on the incident and the transmitted
sides of the perforated panel in terms of the incident, radiated and the transmitted
pressure fields is obtained.

4.2 The pressure fields on the incident and the
transmitted sides

Consider a flexible perforated panel of finite extent in the region −a/2 ≤ x ≤ a/2 and
−b/2 ≤ y ≤ b/2. The panel is set in a rigid unperforated baffle of infinite extent in
the z = 0 plane, as shown in Fig. 4.1. In the z > 0 region, a harmonic plane wave
of frequency ω, wavenumeber k and amplitude P̃i is incident upon the panel at an
angle θ (polar angle) and ϕ (azimuthal angle). This creates flexural vibrations in the
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Fig. 4.1 Transmission of sound (plane wave) through a perforated panel set in a baffle.

perforated panel and results in the transmission of sound through the panel into the
z < 0 region. Let, p1(x, y, z, t) and p2(x, y, z, t) be the resulting pressure fields in the
transmitted (z < 0) and in the incident (z > 0) regions, respectively (see Fig. 4.1).
The transmitted pressure field p1(x, y, z, t) is due to (1) the radiation of sound by
the vibrating perforated panel and (2) the direct transmission of sound through the
holes in the panel. Whereas on the incident side, the total pressure field p2(x, y, z, t)
comprises of the incident and the reflected pressure terms. Let the incident pressure
field pi(x, y, z, t) be

pi(x, y, z, t) = P̃i e
ikxx+ikyy−ikzz e−iωt, (4.1)

where kx = k sin θ cosϕ, ky = k sin θ sinϕ and kz = k cos θ. The total pressure field
on the incident side is

p2(x, y, z, t) = P̃i e
ikxx+iky−ikzz e−iωt + pr(x, y, z) e−iωt, (4.2)

where pr(x, y, z) is the reflected pressure field. In the following derivations the depen-
dence on time e−iωt is suppressed.

The transmitted pressure field p1(x, y, z) comprises the radiated pressure field
p− (x, y, z) in the z < 0 region. The radiated pressure field, by defining an average fluid
particle velocity profile on the panel-baffle surface, takes care of both the radiation
of sound by the panel vibration and the direct transmission of sound through the
perforations. The radiated pressure field satisfies the 3-D Helmholtz equation

(
∇2 + k2) p− (x, y, z) = 0. (4.3)
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On taking a double Fourier transform in the x− y domain
[

d2

dz2 +
(
k2 − λ2 − µ2)

]
P− (λ, µ, z) = 0, (4.4)

where P− (λ, µ, z) represents the double Fourier transform of the transmitted pressure
field and is defined as

P− (λ, µ, z) = 1
2π

∞∫

−∞

∞∫

−∞

p− (x, y, z) eiλx+iµy dx dy. (4.5)

The general solution to Eq. (4.4) is

P− (λ, µ, z) = A(λ, µ) ei
√

k2−λ2−µ2z +B(λ, µ) e−i
√

k2−λ2−µ2z. (4.6)

For a traveling wave in the −z direction, by causality, we must have A(λ, µ) = 0.
Therefore, the solution takes the form

P− (λ, µ, z) = B(λ, µ) e−i
√

k2−λ2−µ2z. (4.7)

And the evanescent wave in the −z direction is

P− (λ, µ, z) = B(λ, µ) e
√

λ2+µ2−k2z.

B(λ, µ) can be found by invoking the double Fourier transform of the Euler boundary
condition at the solid-fluid interface (z = 0) as

∂

∂z
P− (λ, µ, z = 0) = iρ0ckVa (λ, µ, z = 0) , (4.8)

where ρ0 is the fluid density and Va (λ, µ, z = 0) is the double Fourier transform of the
fluid particle velocity at the boundary va (x, y, z = 0) as given by

Va (λ, µ, z = 0) = 1
2π

∞∫

−∞

∞∫

−∞

va (x, y, z = 0) eiλx+iµy dx dy. (4.9)

Using Eqs. (4.7) and (4.8) we get

B(λ, µ) = P−(λ, µ, z = 0) = −Za(λ, µ)Va(λ, µ, z = 0), (4.10)
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where Za(λ, µ) is the complex acoustic impedance given by

Za(λ, µ) = ρ0ck√
k2 − λ2 − µ2

. (4.11)

Therefore
P− (λ, µ, z) = −Za(λ, µ)Va(λ, µ, z = 0)e−i

√
k2−λ2−µ2z. (4.12)

Thus, if Va(λ, µ, z = 0) is known, the radiated pressure can be found. For a perforated
panel, Va(λ, µ, z = 0) takes into account both the panel vibrations and the leakage
through holes. In the limiting case of an unperforated panel it represents the panel
velocity alone. The next section derives the double Fourier transform of the locally
averaged fluid particle (LAFP) velocity, Va(λ, µ, z = 0), for the transmission of sound
through a perforated panel set in a baffle of any perforation ratio.

Next, taking the double Fourier transform of Eq. (4.2)

P2 (λ, µ, z) = 1
2π

∞∫

−∞

∞∫

−∞

P̃i e
ikxx+ikyy−ikzz eiλx+iµy dx dy + Pr(λ, µ, z), (4.13)

where

Pr (λ, µ, z) = 1
2π

∞∫

−∞

∞∫

−∞

pr (x, y, z) eiλx+iµy dx dy. (4.14)

Using the identity

∞∫

−∞

∞∫

−∞

ei(λ+kx)x+i(µ+ky)y dx dy = 4π2δ(λ+ kx) δ(µ+ ky) (4.15)

we get
P2 (λ, µ, z) = 2πP̃i δ(λ+ kx) δ(µ+ ky) e−ikzz + Pr(λ, µ, z). (4.16)

However, the pressure field p2(x, y, z) should satisfy the 3-D Helmholtz equation

(
∇2 + k2) p2 (x, y, z) = 0. (4.17)

Taking the double Fourier transform,
[

d2

dz2 +
(
k2 − λ2 − µ2)

]
P2 (λ, µ, z) = 0. (4.18)
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The general solution to Eq. (4.18) is

P2 (λ, µ, z) = C(λ, µ) ei
√

k2−λ2−µ2z +D(λ, µ) e−i
√

k2−λ2−µ2z. (4.19)

Comparing Eqs. (4.16) and (4.19) and knowing that Pr(λ, µ) consists only of forward
traveling waves in the z direction,

P2 (λ, µ, z) = 2πP̃i δ(λ+ kx) δ(µ+ ky) e−ikzz + C(λ, µ) ei
√

k2−λ2−µ2z. (4.20)

The pressure p2(x, y, z) is related to the fluid particle velocity at the solid-fluid interface
of the incident region (va(x, y, z = 0)) through the Euler boundary condition. Taking
the double Fourier transform of the boundary condition we get

∂

∂z
P2 (λ, µ, z = 0) = iρ0ckVa (λ, µ, z = 0) . (4.21)

Substituting for P2(λ, µ, z) from Eq. (4.20)

−ikz2πP̃i δ(λ+ kx) δ(µ+ ky) + i
√
k2 − λ2 − µ2 C(λ, µ) = iρ0ckVa (λ, µ, z = 0) .

Or

C(λ, µ) = ρ0ck√
k2 − λ2 − µ2

Va (λ, µ, z = 0) + kz√
k2 − λ2 − µ2

2πP̃i δ(λ+ kx) δ(µ+ ky).

C(λ, µ) is related to the forward traveling wave in the incident region. For a forward
traveling wave (related to the reflected pressure field component in P2(λ, µ, z)), when
λ = −kx and µ = −ky,

√
k2 − λ2 − µ2 = kz and using Eq. (4.11)

C(λ, µ) = Za(λ, µ)Va (λ, µ, z = 0) + 2πP̃i δ(λ+ kx) δ(µ+ ky). (4.22)

Therefore, using Eq. (4.22), the double Fourier transform of the total pressure at the
incident region (Eq. (4.20)) is

P2 (λ, µ, z) = Za(λ, µ)Va (λ, µ, z = 0) ei
√

k2−λ2−µ2z + 4πP̃i δ(λ+ kx) δ(µ+ ky) cos kzz.

(4.23)
And at z = 0

P2 (λ, µ, z = 0) = Za(λ, µ)Va (λ, µ, z = 0)︸ ︷︷ ︸
radiated pressure field

+ 4πP̃i δ(λ+ kx) δ(µ+ ky)︸ ︷︷ ︸
blocked pressure field

. (4.24)
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Thus, the total pressure field on the incident side is the sum of the radiated and the
blocked pressure fields. Similar observation can be found for incidence of a plane wave
on an infinite flexible panel [7]. In the infinite panel model, the radiated wave carries
the same wavenumbers as that of the incident one (kx, ky and kz). Whereas, here, we
have contributions from an infinite spectrum of wavenumbers owing to the finiteness
of the panel (see the first term on the right hand side of Eq. (4.23)). Now, the total
pressure can be found if Va(λ, µ, z = 0) is known.

Next, using Eqs. (4.12) and (4.24), the double Fourier transform of the pressure
difference across the perforated panel is given by

∆P (λ, µ) = P−(λ, µ, z = 0) − P2(λ, µ, z = 0)
= 2P−(λ, µ, z = 0) − 4πP̃i δ(λ+ kx) δ(µ+ ky). (4.25)

It can be seen that ∆P (λ, µ) depends on Va (λ, µ, z = 0), which we derive in the
next section.

4.3 Locally averaged fluid particle (LAFP) velocity
and its Fourier transform

The fluid particle on the surface of an unperforated panel (at z = 0±) moves with the
same velocity as that of the panel. If there are perforations on the panel we need to
find a locally averaged fluid particle (LAFP) velocity, which is function of the panel
velocity and the velocity with which the fluid passes through perforations. This LAFP
velocity has been derived in section 2.6. It is found that the LAFP velocity va(x, y) is
a function of the panel velocity vp(x, y), the pressure difference across the perforated
panel ∆p(x, y), the panel perforation ratio σp and the hole impedance Z0. Thus,

va(x, y) = ζIvp(x, y) + ∆p(x, y)
Z0

σp, (4.26)

where ζI = 1−Zreact

Z0
σp; Zreact being the reactive impedance of each hole. An expression

for the hole impedance Z0 was derived by Maa [1] and is given in Eq. (3.18) of the
previous chapter.

Now, let the panel and the baffle have perforation ratios σp and σb, respectively. Also,
let the corresponding specific acoustic impedance of holes be Z0p and Z0b, respectively.
Assume that the perforate impedance over the panel and the baffle regions differ, i.e.,
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Z0p

σp
̸= Z0b

σb
. Owing to the discontinuity in the perforate impedance over the panel-baffle

plane and the flexibility of the panel, we have a discontinuous LAFP velocity field at
z = 0. Thus, using Eq. (4.26) we get

vap(x, y, z = 0) = ζIvp(x, y) + ∆p(x, y)
Z0p

σp, over the panel region

vab(x, y, z = 0) = ∆p(x, y)
Z0b

σb, over the baffle region
(4.27)

where ∆p(x, y) is the inverse Fourier transform of ∆P (λ, µ).
Now, the double Fourier transform of the LAFP velocity is

Va(λ, µ, z = 0) = 1
2π

∞∫

−∞

∞∫

−∞

va(x, y, z = 0) eiλx+iµy dx dy.

Or

Va(λ, µ, z = 0) = 1
2π

b/2∫

−b/2

a/2∫

−a/2

vap(x, y, z = 0) eiλx+iµy dx dy

+ 1
2π




∞∫

−∞

∞∫

−∞

−
b/2∫

−b/2

a/2∫

−a/2


 vab(x, y, z = 0) eiλx+iµy dx dy.

Substituting for vap and vab we get

Va(λ, µ, z = 0) = 1
2π

b/2∫

−b/2

a/2∫

−a/2

[
ζIvp(x, y)

+ σp

Z0p

1
2π

∞∫

−∞

∞∫

−∞

∆P (λ′, µ′) e−iλ′x−iµ′y dλ′ dµ′


 eiλx+iµy dx dy

+ 1
2π

∞∫

−∞

∞∫

−∞


 σb

Z0b

1
2π

∞∫

−∞

∞∫

−∞

∆P (λ′, µ′) e−iλ′x−iµ′y dλ′ dµ′


 eiλx+iµy dx dy

− 1
2π

b/2∫

−b/2

a/2∫

−a/2


 σb

Z0b

1
2π

∞∫

−∞

∞∫

−∞

∆P (λ′, µ′) e−iλ′x−iµ′y dλ′ dµ′


 eiλx+iµy dx dy.
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Or

Va(λ, µ, z = 0) = ζIVp(λ, µ) + σb

Z0b

∆P (λ, µ) + 1
2π

[
σp

Z0p

− σb

Z0b

]

×
b/2∫

−b/2

a/2∫

−a/2


 1

2π

∞∫

−∞

∞∫

−∞

∆P (λ′, µ′) e−iλ′x−iµ′y dλ′ dµ′


 eiλx+iµy dx dy,

where Vp(λ, µ) is the double Fourier transforms of the panel velocity given by

Vp(λ, µ) = 1
2π

b/2∫

−b/2

a/2∫

−a/2

vp(x, y) eiλx+iµy dx dy. (4.28)

Substituting ∆P from Eq. (4.25) we get

Va(λ, µ, z = 0) = ζIVp(λ, µ) + 2σb

Z0b

P−(λ, µ, z = 0) − 2πP̃i
2σb

Z0b

δ(λ+ kx) δ(µ+ ky)

+
[

2σp

Z0p

− 2σb

Z0b

]
1

4π2

b/2∫

−b/2

a/2∫

−a/2




∞∫

−∞

∞∫

−∞

P− (λ′, µ′, z = 0) e−iλ′x−iµ′y dλ′ dµ′


 eiλx+iµy dx dy

−
[

2σp

Z0p

− 2σb

Z0b

]
1

4π2

b/2∫

−b/2

a/2∫

−a/2




∞∫

−∞

∞∫

−∞

2πP̃i δ(λ′ + kx) δ(µ′ + ky)e−iλ′x−iµ′y dλ′ dµ′




× eiλx+iµy dx dy.

Rearranging the above equation

Va(λ, µ, z = 0) = ζIVp(λ, µ) + 2σb

Z0b

P−(λ, µ, z = 0) − 2πP̃i
2σb

Z0b

δ(λ+ kx) δ(µ+ ky)

+
[

2σp

Z0p

− 2σb

Z0b

]
1

4π2

∞∫

−∞

∞∫

−∞

P− (λ′, µ′, z = 0)




b/2∫

−b/2

a/2∫

−a/2

ei(λ−λ′)x+i(µ−µ′)y dx dy


 dλ′ dµ′

−
[

2σp

Z0p

− 2σb

Z0b

]
1

2π

b/2∫

−b/2

a/2∫

−a/2

P̃i e
i(λ+kx)x+i(µ+ky)y dx dy.
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But, we know that

b/2∫

−b/2

a/2∫

−a/2

ei(λ−λ′)x+i(µ−µ′)y dx dy = ab sinc
[

(λ− λ′)a
2

]
sinc

[
(µ− µ′)b

2

]
(4.29)

and

b/2∫

−b/2

a/2∫

−a/2

ei(λ+kx)x+i(µ+ky)y dx dy = ab sinc
[

(λ+ kx)a
2

]
sinc

[
(µ+ ky)b

2

]
. (4.30)

Therefore

Va(λ, µ, z = 0) = ζIVp(λ, µ) + 2σb

Z0b

P−(λ, µ, z = 0) − 2πP̃i
2σb

Z0b

δ(λ+ kx) δ(µ+ ky)

+
[

2σp

Z0p

− 2σb

Z0b

]
ab

4π2

∞∫

−∞

∞∫

−∞

P− (λ′, µ′, z = 0) sinc
[

(λ− λ′)a
2

]
sinc

[
(µ− µ′)b

2

]
dλ′ dµ′

−
[

2σp

Z0p

− 2σb

Z0b

]
P̃iab

2π sinc
[

(λ+ kx)a
2

]
sinc

[
(µ+ ky)b

2

]
, (4.31)

where, from Eq. (4.12), P−(λ, µ, z = 0) = −Za (λ, µ)Va (λ, µ, z = 0). If we know the
LAFP velocity Va (λ, µ, z = 0), then all the pressures can be computed. However, from
the equation above we see that the LAFP velocity depends on Vp (λ, µ). Thus, in the
next section, we derive the expression for the panel velocity.

4.4 The response of a perforated panel

4.4.1 Modified natural frequencies and modeshapes

The perforations in the panel alter its elastic and inertial properties. The effective
bending stiffness D∗ of the perforated panel [68] is given in section 3.6 (Eq. (3.37)).
Next, the change in the inertia property is accounted for using the Receptance method
and the new resonance frequencies and mode shapes are obtained as detailed in section
2.7.
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The perforated panel velocity as a modal sum is given by

vp(x, y) =
∞∑

r=1

Brψr(x, y) =
∞∑

r=1

Br

∞∑

m=1

∞∑

n=1

Umnrϕmn(x, y), (4.32)

where Br is the modal coefficient and ψr(x, y) are the new modeshapes. Taking the
double Fourier transform

Vp(λ, µ) =
∞∑

r=1

Br

∞∑

m=1

∞∑

n=1

UmnrΦmn(λ, µ), (4.33)

where

Φmn(λ, µ) = 1
2π

b/2∫

−b/2

a/2∫

−a/2

ϕmn(x, y) eiλx+iµy dx dy.

Substituting for ϕmn(x, y) from Eq. (2.20)

Φmn (λ, µ) = − ab

8π

{
eimπ/2 sinc

[
(λ+mπ/a) a

2

]
− e−imπ/2 sinc

[
(λ−mπ/a) a

2

]}

×
{
einπ/2 sinc

[
(µ+ nπ/b) b

2

]
− e−inπ/2 sinc

[
(µ− nπ/b) b

2

]}
.

(4.34)
Detailed derivation of Φmn (λ, µ) is given in Appendix D. The above derived new
modeshapes will be used in the panel equation of motion for computing the modal
amplitudes. In the following section, we examine the modified equation of motion for
the perforated panel.

4.4.2 The perforated panel equation of motion

The equation of motion for the perforated panel is

D∗(1 − iη)∇4vp(x, y, t) +mp
∂2vp(x, y, t)

∂t2
= −iω∆p(x, y, z = 0, t), (4.35)

where D∗ is the effective bending stiffness, mp is the mass per unit area and η is the
damping loss factor of the perforated panel. The transverse velocity of the perforated
panel vp(x, y) can be expressed as a modal sum as shown in Eq. (4.32). Substituting
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for vp(x, y) and expanding Eq. (4.35) we get

∑

r,m,n

[
D∗(1 − iη)

{(mπ
a

)2
+
(nπ
b

)2
}2

−mpω
2

]
BrUmnrϕmn(x, y)

= −iω∆p(x, y, z = 0).

Now, taking the double Fourier transform of the above equation

∑

r,m,n

[
D∗(1 − iη)

{(mπ
a

)2
+
(nπ
b

)2
}2

−mpω
2

]
BrUmnrΦmn(λ, µ) = −iω∆P (λ, µ) ,

(4.36)
where Φmn (λ, µ) and ∆P (λ, µ) are given by Eqs. (4.34) and (4.25), respectively. While
taking the Fourier transform of the left hand side, note that vp(x, y) = 0 in the region
beyond the panel surface.

Now, substituting ∆P (λ, µ) from Eq. (4.25) in Eq. (4.36)

∑

r,m,n

[
D∗(1 − iη)

{(mπ
a

)2
+
(nπ
b

)2
}2

−mpω
2

]
BrUmnrΦmn(λ, µ)

= −2iω P−(λ, µ, z = 0) + 4πiω P̃i δ(λ+ kx) δ(µ+ ky).

(4.37)

Note that the forcing on the panel (right hand side of the above equation) consist of
contributions from the radiated pressure fields on either side of the perforated panel
and the blocked pressure field due to the incident plane wave. Thus, the perforated
panel response depends upon both the incident pressure and the radiated pressure fields.
In cases where the acoustic medium is air, we may neglect the effect of fluid loading on
the panel vibrations by neglecting the radiated pressure term P−(λ, µ, z = 0). Thus,

∑

r,m,n

[
D∗(1 − iη)

{(mπ
a

)2
+
(nπ
b

)2
}2

−mpω
2

]
BrUmnrΦmn(λ, µ)

= 4πiω P̃i δ(λ+ kx) δ(µ+ ky). (4.38)

The above equation is uncoupled and it is easier to find Br and Vp (λ, µ). If the radiated
pressure term was included, we have to solve a set of coupled equations (Eqs. (4.31)
and (4.37)) simultaneously to obtain the panel response.
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Now, multiplying the above equation (Eq. (4.38)) by
∑

p,q UpqsΦpq(−λ,−µ) and
integrating over the wavenumber domain

∞∫

−∞

∞∫

−∞

∑

r,m,n

BrŪmnrΦmn(λ, µ)
∑

p,q

UpqsΦpq(−λ,−µ) dλ dµ

= 4πiω P̃i

∞∫

−∞

∞∫

−∞

δ(λ+ kx) δ(µ+ ky)
∑

p,q

UpqsΦpq(−λ,−µ) dλ dµ,

where

Ūmnr =
[
D∗(1 − iη)

{(mπ
a

)2
+
(nπ
b

)2
}2

−mpω
2

]
Umnr. (4.39)

Rearranging the above equation

∑

r,m,n

∑

p,q

BrŪmnrUpqs

∞∫

−∞

∞∫

−∞

Φmn(λ, µ) Φpq(−λ,−µ) dλ dµ

= 4πiω P̃i

∑

p,q

UpqsΦpq(kx, ky). (4.40)

The integral on the left hand side of the above equation can be evaluated analytically
(see Appendix E) and is given by

∞∫

−∞

∞∫

−∞

Φmn(λ, µ)Φpq(−λ,−µ) dλ dµ = ab

4 δmp δnq. (4.41)

Therefore, Eq. (4.40) turns out to be

ab

4
∑

r,m,n

BrŪmnrUmns = 4πiω P̃i

∑

m,n

UmnsΦmn(kx, ky). (4.42)

Or in a matrix form

ab

4 [Umn,s]T
[
Ūmn,r

]
{Br} = 4πiω P̃i [Umn,s]T {Φmn(kx, ky)} . (4.43)

Now, the modal amplitude Br of the perforated panel velocity can be obtained as

{Br} = 16πiω P̃i

ab

[
Ūmn,r

]−1 [Umn,s]−T [Umn,s]T {Φmn(kx, ky)} .
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Or
{Br} = 16πiω P̃i

ab

[
Ūmn,r

]−1 {Φmn(kx, ky)} .

Thus, the perforated panel modal amplitude can be evaluated if the incident pressure
amplitude and the modal behavior of the perforated panel are known. Now, Vp(λ, µ)
(Eq. (4.33)) can be obtained in a matrix form as

Vp(λ, µ) = {Br}T [Umn,r]T {Φmn(λ, µ)} . (4.44)

And Va(λ, µ, z = 0) is obtained from Eq. (4.31) as

Va(λ, µ, z = 0) = ζIVp(λ, µ) + 2σb

Z0b

P−(λ, µ, z = 0) − 2πP̃i
2σb

Z0b

δ(λ+ kx) δ(µ+ ky)

+
[

2σp

Z0p

− 2σb

Z0b

]
ab

4π2

∞∫

−∞

∞∫

−∞

P− (λ′, µ′, z = 0) sinc
[

(λ− λ′)a
2

]
sinc

[
(µ− µ′)b

2

]
dλ′ dµ′

−
[

2σp

Z0p

− 2σb

Z0b

]
P̃iab

2π sinc
[

(λ+ kx)a
2

]
sinc

[
(µ+ ky)b

2

]
.

The above equation is an integral equation having the LAFP velocity on both the
sides of the equation. The solution methodology is given in Appendix F. Thus, from
Eq. (4.12), the transmitted pressure on the perforated panel surface is given by

P− (λ, µ, z = 0) = −Za (λ, µ)Va(λ, µ, z = 0). (4.45)

Since the LAFP velocity and the pressures on either side of the panel are known, we
can obtain the transmitted sound power and hence the transmission loss.

4.5 Sound transmission loss of a perforated panel
in a baffle

The expression for the transmitted power is

Wt = 1
2Re





∞∫

−∞

∞∫

−∞

P−(λ, µ, z = 0)V ∗
a (λ, µ, z = 0) dλ dµ



 , (4.46)
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where P−(λ, µ, z = 0) and Va(λ, µ, z = 0) are given by Eq. (4.45) and Eq. (4.31),
respectively. In the above equation, only the wavenumber components satisfying the
inequality k2 > λ2 + µ2 travel to the farfield. Hence, the farfield transmitted power is
obtained by truncating the limits of integration as

Wt = 1
2Re





k∫

−k

√
k2−µ2∫

−
√

k2−µ2

P−(λ, µ, z = 0)V ∗
a (λ, µ, z = 0) dλ dµ




. (4.47)

Note that while deriving the above equation, only the panel is assumed to be perforated.
If the baffle is also perforated, a modified expression or rather a general expression has
to be used, as shown below.

Wt = ab

8π2 Re





k∫

−k

√
k2−µ′2∫

−
√

k2−µ′2

k∫

−k

√
k2−µ2∫

−
√

k2−µ2

P−(λ, µ, z = 0)V ∗
a (λ′, µ′, z = 0)

×sinc
[

(λ′ − λ)a
2

]
sinc

[
(µ′ − µ)b

2

]
dλ dµ dλ′ dµ′

}
. (4.48)

The derivations of both the power expressions, one for an unperforated baffle case and
the other for a perforated baffle case are given Appendix G. The integrals in the above
equations are approximated by a sum over the range of discrete values of λ and µ.

Now, the total power incident on the perforated panel is

Wi = |P̃i|2 cos θ ab
2ρ0c

, (4.49)

where θ is the polar angle.
The sound transmission coefficient τ is the ratio of the transmitted to the incident

sound powers
τ = Wt

Wi

. (4.50)

And the sound transmission loss TL is

TL = 10 log10

(
1
τ

)
. (4.51)
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4.6 Results

In this section, the transmission loss characteristics of a perforated panel set in an
unperforated baffle is discussed. To begin, we compare the results for an unperforated
panel set in a baffle with that reported by Roussos [28].

4.6.1 Validation case: The unperforated panel TL

Here, the same parameter values are used as those in [28]. The rectangular panel is
of size 0.38 × 0.15 × 0.00081 m3 and is set in a baffle of infinite extend with simply
supported boundary condition. A plane harmonic wave of amplitude P̃i = 1 and
frequency ω is incident upon it. The material properties of the panel are: density
ρp = 2700 kg/m3, Young’s modulus E = 70 GPa, Poisson’s ratio ν = 0.33 and the
damping loss factor η = 0.1. The plane wave is assumed to be incident at a polar angle
θ = 600 and an azimuthal angle ϕ = 00. In the proposed model, the panel velocity
can be obtained from Eq. (4.33). Since the panel is assumed to be unperforated the
LAFP velocity at the panel surface is the same as the panel velocity (Eq. (4.31)). The
transmitted power (Eq. (4.47)), the incident power (Eq. (4.49)) and the transmission
coefficient (Eq. (4.50)) are evaluated. The TL can now be obtained using Eq. (4.51).
All the flexural modes of the simply supported panel below 25,000 Hz are considered for
the analysis. The TL curve using the proposed method and that by Roussos’ are shown
in Fig. 4.2. The match is good. For an infinite flexible panel the sound transmission
coefficient is given by [7]

τ∞ =

(
2ρ0c
ωmp

)2
sec2 θ

[
2ρ0c
ωmp

sec θ +
(

k
kb

)4
η sin4 θ

]2

+
[
1 −

(
k
kb

)4
sin4 θ

]2 , (4.52)

where kb is the free flexural wavenumber in the plate and is given by

kb =
(
ω2mp

D

)1/4

. (4.53)

Now, TL can be obtained by replacing τ with τ∞ in Eq. (4.51). This result is also
plotted in Fig. 4.2.

For a finite panel, below the first resonance, the transmitted power increases
with frequency. Therefore, we see a reduction in the TL till the first resonance. At
resonance, the TL is controlled by the structural damping factor. Above the first
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Roussos’ formulation
Infinite panel formulation

Fig. 4.2 Comparison of the transmission loss of an unperforated panel set in an
(unperforated) infinite baffle. Results using the proposed formulation and that reported
by Roussos [28] along with the infinite panel theory are shown. The plane wave is
incident upon the panel at an angle θ = 600 and ϕ = 00.

resonance and below the coincidence frequency, the finite panel TL is similar to that
of the infinite panel (mass law) - the small difference is due to the panel resonances.
At the coincidence frequency, the structural damping controls the sound transmission.
Beyond the coincidence, the sound transmission is controlled by the stiffness of the
panel and both the finite and the infinite panel theories predict identical TL values.
Thus, the finite panel formulation is found to be relevant at lower frequencies (when the
panel dimensions are comparable with the acoustic wavelength). At higher frequencies,
however, one can use the infinite panel formulation to obtain the TL with good accuracy.

4.6.2 Perforated panel sound transmission loss

This section discusses the TL of a perforated panel set in an unperforated baffle with
simply supported boundary condition. The panel dimension is 0.455 × 0.546 × 0.003 m3

and the material properties are the same as before. A plane harmonic wave of unit
amplitude (P̃i = 1) hits the panel at a polar angle θ = 600 and azimuthal angle ϕ = 00.
All the flexural modes of the perforated panel below 10,000 Hz are considered for the
analysis.
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Fig. 4.3 depicts the variation in TL for different hole radius. The total number of
holes in the panel is fixed constant (N0 = 750). The TL curve for the unperforated
panel is also shown for comparison. It can be seen from Fig. 4.3 that by introducing
perforations, the TL reduces considerably. We know that the equivalent impedance
of a perforated panel consists of the perforate and the panel impedances arranged in
parallel [7, 61]. The perforate impedance is given by Z0p

σp
. Even for a small hole radius

(rp = 0.5 mm) and the perforation ratio (σp = 0.24%), the perforate impedance is less
than the panel impedance. This results in an easier direct transmission of acoustic
waves through the perforations than by the panel vibrations. It is observed that for
large perforation ratios, the dips corresponding to the panel resonances do not exist in
the TL spectrum.
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σp = 0.00%, rp = 0.0 mm

σp = 0.24%, rp = 0.5 mm

σp = 0.95%, rp = 1.0 mm

σp = 5.93%, rp = 2.5 mm

σp = 23.71%, rp = 5.0 mm

Fig. 4.3 Variation in the transmission loss of perforated panels for different hole
radii/perforation ratios. Total number of holes in the panel is kept constant at
N0 = 750. The baffle is assumed to unperforated. The plane wave is incident upon the
panel at an angle θ = 600 and ϕ = 00.

An increase in the hole radius results in a larger perforation ratio and hole impedance.
However, the resultant perforate impedance Z0p

σp
decreases with the increase in the

hole size. The perforate impedance for different hole radii are shown in Fig. 4.4. A
reduction in the perforate impedance increases the transmitted power and hence results
in a lower TL. For a given hole radius, the perforate impedance increases with the
frequency, so does the TL.
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Fig. 4.4 Absolute perforate impedance of perforated panels for different hole
radii/perforation ratios. Total number of holes in the panel is kept constant at
N0 = 750.

At low frequencies, for larger perforation ratios, the TL is negative (see Fig. 4.3).
Negative TL cases were reported in the sound diffraction through circular apertures
[69, 70]. More about this phenomenon will be discussed later in chapter 6.

If we keep the hole radius constant and vary the total number of holes in the panel,
the perforate impedance variation is only due to the changes in the perforation ratio.
Fig. 4.5 depicts the variation in the TL for different number of holes in the panel, but
for a constant hole radius (rp = 2.5 mm). The corresponding perforate impedances are
plotted in Fig. 4.6. The perforate impedance decreases as the perforation ratio/the
number of holes is increased. Thus, the TL decreases with the increase in the perforation
ratio.

In Fig. 4.4, at low frequencies, the slope of the perforate impedance for small hole
radii is different from that of the larger ones. To analyze this further, we choose a
set of rp and N0 parameters so that the perforation ratio is constant. In this problem,
the perforate impedance Z0p

σp
differs across the cases due to the variation in the hole

impedance alone. Fig. 4.7 shows the variation in TL for different hole sizes (or total
number of holes) with σp = 0.95%. The corresponding perforate impedance curves are
shown in Fig. 4.8.
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Fig. 4.5 The transmission loss variation with respect to the perforation ratio. The
perforation ratio is varied by changing the total number of holes in the panel. Hole
radius in all the cases is rp = 2.5 mm. The baffle is assumed to be unperforated. The
plane wave is incident upon the panel at an angle θ = 600 and ϕ = 00.
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Fig. 4.6 Absolute perforate impedance of perforated panels for different perforation
ratios. Different perforation ratios are achieved by varying the total number of holes
in the panel. Hole radius in all the cases is rp = 2.5 mm.
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Fig. 4.7 The transmission loss variation with respect to the hole radii/total number of
holes. The perforation ratio of the panel is the same (σp = 0.95%) for all the cases.
The baffle is assumed to be unperforated. The plane wave is incident upon the panel
at an angle θ = 600 and ϕ = 00.
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Fig. 4.8 Absolute perforate impedance of perforated panels for different hole radius/total
number of holes. The perforation ratio in all the cases is σp = 0.95%.
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In Fig. 4.8, the rp = 0.5 mm curve crosses all the other perforate impedance
curves. This is caused by an increase in the hole resistance at lower frequencies for
the rp = 0.5 mm case, as shown in Fig. 4.9. A larger perforate resistance implies
that more energy is being dissipated at the perforation walls and hence causes a
higher transmission loss. Fig. 4.7 depicts this higher TL at lower frequencies for the
rp = 0.5 mm case. In fact, the larger hole radii cases also show an increase in the TL
values, but at much lower frequencies.
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Fig. 4.9 Resistive (thin line) and reactive (thick line) components of perforate impedance
for panels with the same perforation ratio (σp = 0.95%). The total number of holes and
the radius of holes in the panel are varied in each case to obtain a constant perforation
ratio.

In all the above analysis, it is assumed that θ = 600 and ϕ = 00. Fig. 4.10 shows
the variation in TL with respect to the polar angle of incidence (θ), keeping ϕ = 00.
For all the cases N0 = 750 and rp = 1.0 mm with a perforation ratio σp = 0.95%.
It is observed that the transmission loss decreases with the increase in θ. It can be
seen from Fig. 4.11 that the transmitted power does not vary significantly with θ (as
the perforate impedance is independent of θ and the effect of the panel impedance is
negligible in determining the transmitted power). However, the normal incident power
varies significantly with the angle of incidence (due to the cos θ term in the Eq. (4.49)).
Thus, it is the variation in the normal incident power that causes the reduction in the
transmission loss for the gracing incidence of the plane wave.
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Fig. 4.10 Comparison of the perforated panel transmission loss for different polar angle
of incidence θ of the plane wave. The azimuthal angle is the same for all the cases
ϕ = 00. The panel has N0 = 50 and rp = 1.0 mm. The baffle is assumed to be
unperforated.
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Fig. 4.11 Comparison of the perforated panel transmitted power for different polar
angle of incidence θ of the plane wave. The azimuthal angle is the same for all the
cases ϕ = 00. The panel has N0 = 750 and rp = 1.0 mm. The baffle is assumed to be
unperforated.
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4.7 Conclusions

The sound transmission through a flexible, simply supported perforated panel set
in a differently perforated baffle is modeled in the 2-D wavenumber domain. The
discontinuity in the perforate impedance along the panel edges results in a coupling
of wavenumbers in the average velocity field at the fluid-structure interface. In the
one-way coupled model developed here, the effect of radiated pressure field on the
panel response is neglected. However, the effect of radiated pressure in driving the
fluid through the perforations is accounted for while finding the average velocity at the
fluid-structure interface. The natural frequencies and the modeshapes of the perforated
panel are obtained using the Receptance method. The developed one-way coupled
model is numerically verified for the specific case of sound transmission through an
unperforated panel set in a baffle.

The perforations in the panel reduce the transmission loss. Various cases of
perforations are simulated and it is found that the transmission loss reduces with
decreasing perforate impedance. For a panel having sub-millimeter size perforations
(as for a micro-perforated panel), the resistive hole impedance dominates over the
reactive impedance at low frequencies. This restricts the sound transmission through a
micro-perforated panel at low frequencies in comparison to a panel with a larger hole
radius. As the perforate impedance is independent of the angle of incidence of the
plane wave (θ), the transmitted power does not vary significantly with θ. However, the
normal incident power varies significantly with the angle of incidence and thus, the TL
reduces with the increase in θ.

In the one-way coupled analysis, the effect of the radiated pressure field on the
panel response is neglected. It is a major simplification and can only be used when
the panel is attached to light fluids. For heavy fluid loading, one has to include the
radiated pressure term in the equation of motion for the structure. This will require
solving the structural and the acoustical equations simultaneously (two-way coupled
formulation). In the following chapters, the two-way coupled models for the sound
radiation and transmission through perforated panels are presented.





Part III

The two-way coupled analysis





Chapter 5

Sound radiation from a perforated
panel: Two-way coupling

5.1 Introduction

In the previous chapters, the uncoupled or the one-way formulation was presented
for the radiation and transmission of sound related to perforated panels. In many
applications this is adequate, as with metallic panels and air as the medium. However,
for different panel material and acoustic media combinations, or even for a light acoustic
medium but enclosed environments or at specific frequencies, or for a heavy acoustic
medium like water, the one-way coupled formulation may be inadequate. In such cases,
as a result of the fluid loading, the structure and the acoustic domains interact and
a two-way coupled fluid-structure analysis is required to compute the field variables
of both the domains. The following chapters present the coupled structural acoustic
radiation and transmission models for the finite flexible perforated panel set in an
unperforated baffle. In this chapter, the radiation problem is considered. In the next
section, a relation between the radiated pressure and the LAFP velocity is derived.

5.2 The pressure fields at the surface of a vibrating
perforated panel

A finite flexible panel of size a×b and thickness h is simply supported on a rigid baffle of
infinite extent (lying in the z = 0 plane). The panel has uniform circular perforations,
whereas the baffle is unperforated. There is an acoustic medium of density ρ0 on
both sides of the panel-baffle system as shown in Fig. 5.1. The panel is excited by a
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Fig. 5.1 Schematic of sound radiation from a perforated panel set in an unperforated
baffle.

harmonic point force of amplitude F̃ and frequency ω at (x0, y0). The resulting flexural
vibrations of the perforated panel radiate sound in the surrounding fluid medium. Let
p+(x, y, z, t) and p−(x, y, z, t) be the resulting pressure fields above (z > 0) and below
(z < 0) the panel (see Fig. 5.1), respectively. In this section, a formula relating the
two pressures to the fluid particle velocity at the panel fluid interface is derived in the
wavenumber domain.

The radiated pressure fields satisfy the 3-D Helmholtz equation. Applying the
Helmholtz equation in the z > 0 region we get

(
∇2 + k2) p+ (x, y, z) = 0. (5.1)

Taking the double Fourier transform in the x and y directions results in
[

d2

dz2 +
(
k2 − λ2 − µ2)

]
P+ (λ, µ, z) = 0, (5.2)

where

P+ (λ, µ, z) = 1
2π

∞∫

−∞

∞∫

−∞

p+ (x, y, z) eiλx+iµy dx dy. (5.3)

The general solution to Eq. (5.2) is

P+ (λ, µ, z) = A(λ, µ) ei
√

k2−λ2−µ2z +B(λ, µ) e−i
√

k2−λ2−µ2z. (5.4)
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By causality, since sound on the +z side should travel only away from the panel,
B(λ, µ) = 0. Therefore

P+ (λ, µ, z) = A(λ, µ) ei
√

k2−λ2−µ2z. (5.5)

And the evanescent wave in the +z direction is

P+ (λ, µ, z) = A(λ, µ) e−
√

λ2+µ2−k2z.

The time dependence e−iωt is suppressed in the entire the formulation.
In the wavenumber domain, the Euler boundary condition at the solid-fluid interface

(at z = 0) is
∂

∂z
P+ (λ, µ, z = 0) = iρ0ckVa (λ, µ, z = 0) , (5.6)

where c is the velocity of sound in the acoustic medium and Va (λ, µ, z = 0) is the
double Fourier transform of the fluid particle velocity at the boundary and is given by

Va (λ, µ, z = 0) = 1
2π

∞∫

−∞

∞∫

−∞

va (x, y, z = 0) eiλx+iµy dx dy. (5.7)

Using Eqs. (5.5) and (5.6) we get

A(λ, µ) = P+(λ, µ, z = 0) = Za(λ, µ)Va(λ, µ, z = 0), (5.8)

where
Za(λ, µ) = ρ0ck√

k2 − λ2 − µ2
(5.9)

is the complex acoustic impedance. Therefore

P+ (λ, µ, z) = Za(λ, µ)Va(λ, µ, z = 0) ei
√

k2−λ2−µ2z. (5.10)

For an unperforated panel, Va(λ, µ, z = 0) is the same as the double Fourier transform
of the panel velocity. However, for a perforated panel, Va(λ, µ, z = 0) is the resultant
of both the panel velocity and the fluid velocity through the perforations. Thus,
Va(λ, µ, z = 0) becomes the Locally Averaged Fluid Particle (LAFP) velocity (see
section 3.3).

Similarly, the pressure field on the negative side is

P− (λ, µ, z) = −Za(λ, µ)Va(λ, µ, z = 0) e−i
√

k2−λ2−µ2z. (5.11)
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Note, the -ve sign in the exponential term represents the waves traveling in the −z
direction. It can also be seen that the pressure fields on the two sides of the panel have
opposite signs. And the radiated pressure fields (Eqs. (5.10) and (5.11)) have infinite
wavenumber components due to the finiteness of the perforated panel [5].

Using Eqs. (5.10) and (5.11), the pressure difference (in the wavenumber domain)
across the panel-baffle surface is

∆P (λ, µ) = P−(λ, µ, z = 0) − P+(λ, µ, z = 0) = −2P+(λ, µ, z = 0)
= −2Za(λ, µ)Va(λ, µ, z = 0).

(5.12)

The radiated pressures depend on the LAFP velocity. Hence, an expression for
the double Fourier transform of the LAFP velocity over the panel-baffle surface is
derived in the following section. The formulation is general and can treat any degree
of perforations over the panel-baffle plane.

5.3 Locally averaged fluid particle (LAFP) velocity
and its Fourier transform

The LAFP velocity was derived in chapter 3 section 3.4. Only the final result is
presented here in order to avoid repetition. The LAFP velocity is related to the panel
velocity, the acoustic pressures and the perforate impedance as follows:

[
1 + 2σb

Z0b

Za(λ, µ)
]
Va(λ, µ, z = 0) = ζIVp(λ, µ) + ab

2π2

[
σb

Z0b

− σp

Z0p

]

×





∞∫

−∞

∞∫

−∞

Za(λ′, µ′)Va(λ′, µ′, z = 0) sinc
[

(λ− λ′)a
2

]
sinc

[
(µ− µ′)b

2

]
dλ′ dµ′



 .

(5.13)

Here, Vp(λ, µ) and Va(λ, µ, z = 0) are the only unknowns. If we know the panel
velocity Vp (λ, µ), the above equation can be solved for Va (λ, µ, z = 0). The next
section presents the derivation for Vp (λ, µ), the velocity of a perforated panel. It turns
out that the perforated panel velocity is a function of the LAFP velocity. Thus, one
has to solve two coupled equations simultaneously to obtain the two velocities.
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5.4 The velocity response of the perforated panel

5.4.1 Modified natural frequencies and modeshapes

As mentioned at the end of the last section, the panel velocity is required for obtaining
the LAFP velocity. The panel now is perforated and hence, the new modeshapes and
resonances need to be computed before the forced response can be derived. A detailed
derivation of the new resonance frequencies and modeshapes of a perforated panel was
presented in sections 2.7 and 3.6. Hence, the derivation is not repeated here. It is
assumed here that the new resonances and modeshapes are available.

The modified (rth) modeshape of a perforated panel is obtained as

ψr (x, y) =
∞∑

m=1

∞∑

n=1

Umnrϕmn(x, y), (5.14)

where ϕmn(x, y) is the (m,n)th modeshape of an unperforated simply-supported panel
given by

ϕmn(x, y) = sin mπ(x+ a/2)
a

sin nπ(y + b/2)
b

(5.15)

and

Umnr = 4
ρphab

N0∑
i=1

ϕmn(xi, yi)Fir

ω2
mn − ω2

r

. (5.16)

In the above expression, ωmn represents the (m,n)th resonance frequency of the unper-
forated panel. The index i denotes the hole locations. Fir represents the ith element of
the eigenvector corresponding to the zero eigenvalue of the perforated plate receptance
matrix at the rth natural frequency ωr (see section 2.7). From Eq. (5.14), it can be seen
that the modeshape ψr (x, y) of a perforated panel is a linear combination of natural
modes of a simply-supported unperforated panel.

We may now express the perforated panel velocity as a modal sum given by

vp(x, y) =
∞∑

r=1

Brψr(x, y) =
∞∑

r=1

Br

∞∑

m=1

∞∑

n=1

Umnrϕmn(x, y), (5.17)

where Br is the modal coefficient. Taking the double Fourier transform of vp(x, y)

Vp(λ, µ) =
∞∑

r=1

Br

∞∑

m=1

∞∑

n=1

UmnrΦmn(λ, µ), (5.18)
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where

Φmn(λ, µ) = 1
2π

b/2∫

−b/2

a/2∫

−a/2

ϕmn(x, y) eiλx+iµy dx dy.

Substituting for ϕmn(x, y) from Eq. (5.15) into the above equation

Φmn (λ, µ) = − ab

8π

{
eimπ/2 sinc

[
(λ+mπ/a) a

2

]
− e−imπ/2 sinc

[
(λ−mπ/a) a

2

]}

×
{
einπ/2 sinc

[
(µ+ nπ/b) b

2

]
− e−inπ/2 sinc

[
(µ− nπ/b) b

2

]}
.

(5.19)
The detailed derivation of Φmn (λ, µ) is given in Appendix D. Now, since the new
modeshapes and resonances are available, we proceed to find the panel response to a
point force.

5.4.2 The perforated panel equation of motion

Assume that the perforated panel is excited by a point harmonic force of amplitude F̃
and frequency ω at (x0, y0). Then, the equation of motion for a thin perforated panel
is given by

D∗(1 − iη)∇4vp(x, y, t) +mp
∂2vp(x, y, t)

∂t2

= −iω
[
∆p(x, y, z = 0, t) + F̃ δ (x− x0) δ (y − y0) e−iωt

]
, (5.20)

where D∗ is the effective bending stiffness, mp is the modified mass per unit area
(= ρph(1−σp)) and η is the damping loss factor of the perforated panel. ∆p(x, y, z = 0)
is the inverse Fourier transform of ∆P (λ, µ) (Eq. (5.12)). Substituting for vp(x, y) from
Eq. (5.17) into Eq. (5.20) we get

∑

r,m,n

[
D∗(1 − iη)

{(mπ
a

)2
+
(nπ
b

)2
}2

−mpω
2

]
BrUmnrϕmn(x, y)

= −iω
[
∆p(x, y, z = 0, t) + F̃ δ (x− x0) δ (y − y0) e−iωt

]
.
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And in the wavenumber domain

∑

r,m,n

[
D∗(1 − iη)

{(mπ
a

)2
+
(nπ
b

)2
}2

−mpω
2

]
BrUmnrΦmn(λ, µ)

= −iω∆P (λ, µ) − iωF̃

2π eiλx0+iµy0 ,

where Φmn (λ, µ) and ∆P (λ, µ) are given by Eqs. (5.19) and (5.12), respectively.
Substituting for ∆P (λ, µ) from Eq. (5.12) we get

∑

r,m,n

[
D∗(1 − iη)

{(mπ
a

)2
+
(nπ
b

)2
}2

−mpω
2

]
BrUmnrΦmn(λ, µ)

= 2iω Za(λ, µ)Va(λ, µ, z = 0) − iωF̃

2π eiλx0+iµy0 . (5.21)

Now we can see that the perforated panel displacement depends upon both the external
harmonic excitation and the LAFP velocity and hence we need to solve the two coupled
equations (Eqs. (5.13) and (5.21)), simultaneously, to obtain the panel response Vp (λ, µ).
In the next section, a single equation is derived by combining Eqs. (5.13) and (5.21)
and is solved for the perforated panel velocity response.

5.5 The coupled formulation and its solution

5.5.1 The coupled equation

Rearranging Eq. (5.21) we get

Va(λ, µ, z = 0) = 1
2iωZa (λ, µ)

{
iωF̃

2π eiλx0+iµy0

+
∑

r,m,n

[
D∗(1 − iη)

{(mπ
a

)2
+
(nπ
b

)2
}2

−mpω
2

]
BrUmnrΦmn(λ, µ)

}
. (5.22)
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Substituting Vp(λ, µ) (Eq. (5.18)) and Va(λ, µ, z = 0) (Eq. (5.22)) into Eq. (5.13)

[
1 + 2σb

Z0b

Za(λ, µ)
][

1
2iωZa (λ, µ)

∑

r,m,n

BrŪmnrΦmn(λ, µ) + F̃

4πZa (λ, µ) e
iλx0+iµy0

]

= ζI

∑

r,m,n

BrUmnrΦmn(λ, µ)

− ab

2π2

[
σp

Z0p

− σb

Z0b

] ∞∫

−∞

∞∫

−∞

[
1

2iω
∑

r,m,n

BrŪmnrΦmn(λ′, µ′) + F̃

4π e
iλ′x0+iµ′y0

]

× sinc
[

(λ− λ′)a
2

]
sinc

[
(µ− µ′)b

2

]
dλ′ dµ′, (5.23)

where

Ūmnr =
[
D∗(1 − iη)

{(mπ
a

)2
+
(nπ
b

)2
}2

−mpω
2

]
Umnr. (5.24)

After a few simplifications (see Appendix H)

1
2iω

[
1 + 2σb

Z0b

Za(λ, µ)
] ∑

r,m,n

BrŪmnrΘmn(λ, µ) − ζI

∑

r,m,n

BrUmnrΦmn(λ, µ)

+ ab

8π2iω

[
2σp

Z0p

− 2σb

Z0b

] ∑

r,m,n

BrŪmnrXmn(λ, µ) = − F̃

4π
2σp

Z0p

eiλx0+iµy0 − F̃

4π
eiλx0+iµy0

Za (λ, µ) ,

(5.25)

where
Θmn(λ, µ) = Φmn(λ, µ)

Za(λ, µ) (5.26)

and

Xmn(λ, µ) =
∞∫

−∞

∞∫

−∞

Φmn(λ′, µ′) sinc
[

(λ− λ′)a
2

]
sinc

[
(µ− µ′)b

2

]
dλ′ dµ′. (5.27)

The above equation (Eq. (5.25)) can be solved for Br, the modal coefficients of the
perforated panel velocity.
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5.5.2 Solution to the coupled equation

Multiplying Eq. (5.25) by
∑

p,q UpqsΦpq (−λ,−µ) and integrating over λ and µ we
obtain

1
2iω

∑

r,m,n

∑

p,q

BrŪmnrUpqs

∞∫

−∞

∞∫

−∞

Θmn(λ, µ)Φpq(−λ,−µ) dλ dµ

+ 1
2iω

2σb

Z0b

∑

r,m,n

∑

p,q

BrŪmnrUpqs

∞∫

−∞

∞∫

−∞

Φmn(λ, µ)Φpq(−λ,−µ) dλ dµ

− ζI

∑

r,m,n

∑

p,q

BrUmnrUpqs

∞∫

−∞

∞∫

−∞

Φmn(λ, µ)Φpq(−λ,−µ) dλ dµ

+ ab

8π2iω

[
2σp

Z0p

− 2σb

Z0b

] ∑

r,m,n

∑

p,q

BrŪmnrUpqs

∞∫

−∞

∞∫

−∞

Xmn(λ, µ)Φpq(−λ,−µ) dλ dµ

= − F̃

4π
∑

p,q

Upqs

∞∫

−∞

∞∫

−∞

Φpq(−λ,−µ)
Za (λ, µ) eiλx0+iµy0 dλ dµ

− F̃

4π
2σp

Z0p

∑

p,q

Upqs

∞∫

−∞

∞∫

−∞

Φpq(−λ,−µ) eiλx0+iµy0 dλ dµ. (5.28)

The first integral on the left and on the right hand sides of the above equation are
evaluated numerically and the rest are integrated analytically. Note, that the acoustic
impedance term Za(λ, µ) appears in the denominator of the integrands. This helps
in avoiding the square root singularity while numerically evaluating the respective
integrals. The integrals on the left hand side represent the modal coupling coefficients.
The analytical derivation of the integrals is given in Appendix I and the results are
given below:

∞∫

−∞

∞∫

−∞

Φmn(λ, µ)Φpq(−λ,−µ) dλ dµ = ab

4 δmp δnq, (5.29)

∞∫

−∞

∞∫

−∞

Xmn(λ, µ)Φpq(−λ,−µ) dλ dµ = π2 δmp δnq (5.30)
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and
∞∫

−∞

∞∫

−∞

Φpq(−λ,−µ) eiλx0+iµy0 dλ dµ = 2π ϕpq (x0, y0) . (5.31)

Now substituting the above integrals into Eq. (5.28)

1
2iω

∑

r,m,n

∑

p,q

BrŪmnrUpqsΘ̄mnpq + ab

8iω
2σb

Z0b

∑

r,m,n

∑

p,q

BrŪmnrUpqs δmp δnq

− ab

4 ζI

∑

r,m,n

∑

p,q

BrUmnrUpqs δmp δnq + ab

8iω

[
2σp

Z0p

− 2σb

Z0b

] ∑

r,m,n

∑

p,q

BrŪmnrUpqs δmp δnq

= − F̃

4π
∑

p,q

Upqs γpq (x0, y0) − F̃

2
2σp

Z0p

∑

p,q

Upqs ϕpq (x0, y0) ,

where

Θ̄mnpq =
∞∫

−∞

∞∫

−∞

Θmn(λ, µ)Φpq(−λ,−µ) dλ dµ (5.32)

and

γpq (x0, y0) =
∞∫

−∞

∞∫

−∞

Φpq(−λ,−µ)
Za (λ, µ) eiλx0+iµy0 dλ dµ. (5.33)

Simplifying,

1
2iω

∑

r,m,n

∑

p,q

BrŪmnrUpqsΘ̄mnpq + ab

8iω
2σp

Z0p

∑

r,m,n

BrŪmnrUmns − ab

4 ζI

∑

r,m,n

BrUmnrUmns

= − F̃

4π
∑

p,q

Upqs γpq (x0, y0) − F̃

2
2σp

Z0p

∑

p,q

Upqs ϕpq (x0, y0) . (5.34)

In a matrix form, the above equation becomes

1
2iω [Upq,s]T

[
Θ̄mn,pq

]T [
Ūmn,r

]
{Br} + ab

8iω
2σp

Z0p

[Umn,s]T
[
Ūmn,r

]
{Br}

− ab

4 ζI [Umn,s]T [Umn,r] {Br}

= − F̃

4π [Upq,s]T {γpq (x0, y0)} − F̃

2
2σp

Z0p

[Upq,s]T {ϕpq (x0, y0)} .
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Thus, the modal coefficients are given by

{Br} = [Zs,r]−1 {Fs} , (5.35)

where

[Zs,r] = 1
2iω [Upq,s]T

[
Θ̄mn,pq

]T [
Ūmn,r

]
+ ab

8iω
2σp

Z0p

[Umn,s]T
[
Ūmn,r

]
−ab

4 ζI [Umn,s]T [Umn,r]

(5.36)
and

{Fs} = − F̃

4π [Upq,s]T {γpq (x0, y0)} − F̃

2
2σp

Z0p

[Upq,s]T {ϕpq (x0, y0)} . (5.37)

Using Eqs. (5.18) and (5.35), the perforated panel velocity is obtained as

Vp (λ, µ) = {Br}T [Umn,r]T {Φmn (λ, µ)} . (5.38)

And the LAFP velocity Va(λ, µ, z = 0) can now be evaluated from Eq. (5.13) (see
Appendix A). From Va(λ, µ, z = 0), the radiated pressure is obtained as

P+ (λ, µ, z = 0) = Za (λ, µ)Va(λ, µ, z = 0). (5.39)

Since, the velocities and radiated pressures are now known, we proceed to compute the
radiated power and the radiation efficiency.

5.6 The radiation efficiency

The far-field radiated power from the perforated panel set in an unperforated baffle is

W = 1
2Re





k∫

−k

√
k2−µ2∫

−
√

k2−µ2

P+(λ, µ, z = 0)V ∗
a (λ, µ) dλ dµ




. (5.40)

The limits of integration account only for the far-field radiating components in the
wavenumber spectrum which satisfy the inequality k2 > λ2 + µ2. The integral is
approximated by a sum over the range of discrete values of λ and µ.
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The radiation efficiency of a perforated panel to a point harmonic excitation is [7]

σ = W
1
2ρ0cab < |vp|2 >

, (5.41)

where W is the radiated power (Eq. (5.40)) and < |vp|2 > is the spatially averaged
squared velocity of the perforated panel defined as [7]

< |vp|2 >= 1
ab

b/2∫

−b/2

a/2∫

−a/2

|vp(x, y)|2 dx dy.

Substituting the perforated panel velocity vp(x, y) (Eq. (5.17)) and simplifying we get

< |vp|2 >= 1
4
∑

r,s

∑

m,n

BrB
∗
sUmnrU

∗
mns, (5.42)

where ∗ represents the complex conjugate. In a matrix form

< |vp|2 >= 1
4 {Br}T [Umn,r]T

[
U∗

mn,s

]
{B∗

s } . (5.43)

Using Eqs. (5.40) and (5.42), the radiation efficiency of a perforated panel to a point
harmonic excitation (Eq. (5.41)) is

σ = 4
ρ0cab

∑
r,s

∑
m,n

BrB∗
sUmnrU∗

mns

Re





k∫

−k

√
k2−µ2∫

−
√

k2−µ2

P+(λ, µ, z = 0)V ∗
a (λ, µ) dλ dµ




.

(5.44)
In the literature, the work by Berry [37] is relevant here. Berry presents radiation

efficiencies of an unperforated panel having water on one side and vacuum on the other.
In the following section, the same problem is solved using the method proposed here
and thus serves as validation of the new model. Subsequently, the perforated panel
case is solved using the proposed model.
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5.7 Sound radiation from a fluid-loaded unperfo-
rated panel with one side vacuum

In this section, the sound radiation from an unperforated panel set in an unperforated
baffle under harmonic point force excitation is discussed when the panel is coupled to
a dense fluid in the half-space z > 0. The other half-space (z < 0) is vacuum. The
panel is simply supported on the baffle. This case was studied by Berry [37]. The
expressions for the panel velocity and the radiated pressure are first derived from the
previous perforated panel case by neglecting the fluid loading on one side of the panel.
The unperforated panel and baffle case is then realized by equating σp = σb = 0 and
ζI = 1.

If the half-space z < 0 is vacuum, then P− (λ, µ, z) = 0. Therefore the pressure
difference (Eq. (5.12)) is modified to

∆P (λ, µ) = −Za(λ, µ)Va(λ, µ, z = 0). (5.45)

The LAFP velocity expression (Eq. (5.13)) modifies to

[
1 + σb

Z0b

Za(λ, µ)
]
Va(λ, µ, z = 0) = ζIVp(λ, µ) − ab

4π2

[
σp

Z0p

− σb

Z0b

]

×
∞∫

−∞

∞∫

−∞

Za(λ′, µ′)Va(λ′, µ′, z = 0) sinc
[

(λ− λ′)a
2

]
sinc

[
(µ− µ′)b

2

]
dλ′ dµ′. (5.46)

And Eq. (5.22) takes the form

Va(λ, µ, z = 0) = 1
iωZa (λ, µ)

{
iωF̃

2π eiλx0+iµy0 +
∑

r,m,n

[
D∗(1 − iη)

×
{(mπ

a

)2
+
(nπ
b

)2
}2

−mpω
2

]
BrUmnrΦmn(λ, µ)

}
. (5.47)

Following a similar procedure as in section 5.5, the panel velocity amplitude can be
obtained. Then the modal coefficients in a matrix form are

{Br} = [Zs,r]−1 {Fs} ,
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where

[Zs,r] = 1
iω

[Upq,s]T
[
Θ̄mn,pq

]T [
Ūmn,r

]
+ ab

4iω
σp

Z0p

[Umn,s]T
[
Ūmn,r

]
− ab

4 ζI [Umn,s]T [Umn,r]

(5.48)
and

{Fs} = − F̃

2π [Upq,s]T {γpq (x0, y0)} − F̃
σp

Z0p

[Upq,s]T {ϕpq (x0, y0)} . (5.49)

For an unperforated panel set in an unperforated baffle, the panel modal amplitude is
obtained from the above relation by equating σp = σb = 0, ζI = 1 and Umnr = δmnr,
where δ is the kronecker delta. The radiated power, the spatially averaged squared
velocity and the radiation efficiency are then evaluated using Eqs. (5.40), (5.43) and
(5.44), respectively.

5.7.1 Numerical validation

Panel dimensions a = 0.455 m, b = 0.375 m and h = 0.001 m
Panel material properties
(steel)

E = 210 GPa, ρp = 7850 kg/m3, ν = 0.3 and
η = 0.01

Properties of the acoustic
medium (water)

ρ0 = 998.2 kg/m3, c = 1481 m/s and η0 = 8.9 ×
10−4 Ns/m2

Table 5.1 The panel dimensions and material properties considered for the validation
case.

Consider an unperforated panel immersed in water. The panel dimensions and
the material properties are given in Table 5.1 along with the properties of water. In
the numerical implementation, the summations over m and n indices are truncated at
m = 20 and n = 20, which essentially includes all the in vacuo modes below 5000 Hz.
Fig. 5.2 shows the spectra of radiated power and mean quadratic panel velocity for
a unit amplitude force when the excitation is at (0,0), the center of the panel. The
mean quadratic panel velocity as defined in [37] is equal to one half of the spatially
averaged squared panel velocity (Eq. (5.43)), i.e., <|vp|2>

2 . Fig. 5.3 depicts the radiation
efficiency of the water-loaded panel when the forcing is at the center. Due to symmetry
of the forcing, only the odd-odd modes are excited. This is manifested in the prolonged
piston like radiation characteristics of mode (1,1) at lower frequencies (the adjoining
(2,1), (1,2), (2,2) modes are absent in the response spectra).
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Fig. 5.2 (a) Radiated power and (b) mean quadratic panel velocity (<|vp|2>

2 ) spectrum
of a water-loaded panel (one half-space vacuum) with excitation at the center.
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Fig. 5.3 Radiation efficiency of a water-loaded panel (one half-space vacuum) with
excitation at the center.

Fig. 5.4 depicts the radiated power and the mean quadratic velocity of the same
panel when it is being forced at (0.1,0.1), an off-center location. The corresponding
radiation efficiency plot is given in Fig. 5.5. The additional peaks in the mean quadratic
panel velocity plot denote the resonances of modes which are naturally absent in Fig. 5.2.
The results are in good agreement with those of Berry [37] (see Figs. 6 and 8 in [37]).

The natural frequencies of the water-loaded panel can now be determined from the
peaks of the mean quadratic panel velocity plots. The first six natural frequencies are
listed in Table 5.2 along with the respective in vacuo values. The resonance points
are taken from Fig. 5.4b, corresponding to the off-center excitation case, as it includes
all mode types of the rectangular panel. An approximate expression for the natural
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Fig. 5.4 (a) Radiated power and (b) mean quadratic panel velocity (<|vp|2>

2 ) spectrum
of a water-loaded panel (one half-space vacuum) with excitation at (0.1,0.1).
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Fig. 5.5 Radiation efficiency of a water-loaded panel (one half-space vacuum) with
excitation at (0.1,0.1).

frequency of a fluid-loaded panel, ω′
mn, is given by Fahy [7]

ω′
mn = ωmn

(
1 + ρ0

mpkmn

)−1/2

, (5.50)

where ωmn is the in vacuo natural frequency and kmn =
√(

mπ
a

)2 +
(

nπ
b

)2 is the primary
modal wavenumber component. This expression, however, is applicable only when
the plate bending wavenumber is much greater than the acoustic wavenumber, or
rather when the fluid loading on the panel is reactive. Table 5.2 also lists the natural
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frequencies using the above expression. It is verified that the modeshapes remain
unchanged for the in vacuo and the water-loaded cases, as pointed out by Fahy [7].

Mode order In vacuo (Hz) Water-loaded (Hz)
Fig. 5.4b Eq. (5.50)

(1,1) 29.36 7.14 8.23
(2,1) 64.99 20.55 21.82
(1,2) 81.81 27.27 28.89
(2,2) 117.44 42.24 44.85
(3,1) 124.37 45.63 48.09
(1,3) 169.23 67.11 69.80

Table 5.2 Natural frequencies of the unperforated panel under in vacuo and water-loaded
(with one half-space vacuum) conditions.

Having validated the proposed method against the results of Berry, it can now be
used to solve the problem of sound radiation from a perforated panel.

5.8 Sound radiation from a fluid-loaded perforated
panel

Here, there is water on both sides of the panel-baffle system. The perforated panel
response is given by Eq. (5.35). The resulting LAFP velocity and radiated pressure
fields are then obtained from Eqs. (5.13) and (5.39), respectively. We may now find the
radiated power (Eq. (5.40)), the spatially averaged squared panel velocity (Eq. (5.43))
and the radiation efficiency (Eq. (5.44)) using the expressions derived in section 5.6.

Panel dimensions a = 0.455 m, b = 0.546 m and h = 0.003 m
Panel material properties
(aluminum)

E = 70 GPa, ρp = 2700 kg/m3, ν = 0.33 and
η = 0.1

Properties of water ρ0 = 998.2 kg/m3, c = 1481 m/s and η0 = 8.9 ×
10−4 Ns/m2

Properties of air ρ0 = 1.204 kg/m3, c = 343 m/s and η0 = 1.8 ×
10−5 Ns/m2

Table 5.3 The perforated panel dimensions and material properties.
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The panel dimensions and material properties used are given in Table 5.3. The
panel is excited at its center. Fig. 5.6 depicts the radiation efficiency for different
perforation ratios of the panel. Here, the total number of holes N0 = 750 is kept
constant for all the curves and the perforation ratio is varied by changing the hole
radius. All the in vacuo modes below 10,000 Hz are considered for the numerical
prediction. An unperforated case is also shown for comparison. Since the excitation
is at the center of the panel, the initial monopole behavior (20 dB/decade) in the
radiation efficiency plot at lower frequencies is prolonged (the (1,2), (2,1) and (2,2)
modes are not excited). As the perforation ratio increases the perforate impedance
Z0p/σp decreases. Consequently, the radiated power and radiation efficiency reduce
with increase in σp. More fluid slips away through the perforations.
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Fig. 5.6 Radiation efficiency of a water-loaded (in both the half-spaces) perforated
panel for various perforation ratios. The excitation is at the center of the panel. In all
the cases, the total number of holes is assumed to be a constant (N0 = 750).

In order to find the natural frequencies of the perforated panel immersed in water,
the panel is excited at an off-center location (x = 0.1 m and y = 0.1 m) by a unit
amplitude harmonic force. The panel material and dimensions are the same as above.
However, to locate the resonances more precisely, a small value is chosen for the
damping loss factor (η = 0.01). The mean quadratic velocity (<|vp|2>

2 ) is obtained
using Eq. (5.43) for all the panels and is plotted in Fig. 5.7. The peaks in the mean
quadratic velocity spectrum correspond to the panel natural frequencies. For each of
the cases shown in Fig. 5.7, the first four natural frequencies and the respective mode
orders are listed in Table 5.4 along with the corresponding in vacuo values. Note, that
as the excitation is at an off-center location, the even-even, even-odd and odd-even
modes are also participating in the response spectrum.
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Fig. 5.7 Mean quadratic velocity (<|vp|2>

2 ) for various perforated panels under water-
loading condition (in both the half-spaces). Total number of holes in each of the
panels is N0 = 750. The panels are being excited at (0.1,0.1). The peaks in the mean
quadratic velocity plots correspond to the resonances.

For the in vacuo condition, we know that as the perforation ratio increases, both
the stiffness and mass of the panel reduce. But the reduction in stiffness is larger such
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Mode order σp = 0% (Hz) σp = 0.24% (Hz) σp = 0.95% (Hz) σp = 5.93% (Hz) σp = 23.71% (Hz)

In vacuo (Fig. 5.7(a))
Water-loaded

In vacuo (Fig. 5.7(b))
Water-loaded

In vacuo (Fig. 5.7(c))
Water-loaded

In vacuo (Fig. 5.7(d))
Water-loaded

In vacuo (Fig. 5.7(e))
Water-loaded

(1,1) 60.06 9.69 59.95 10.52 59.65 12.06 57.85 16.74 53.26 21.42
(1,2) 133.90 28.15 133.66 29.74 132.99 32.28 128.98 41.29 118.75 50.01
(2,1) 166.39 37.01 166.09 39.10 165.26 41.29 160.28 52.82 147.56 62.25
(2,2) 240.23 58.93 239.80 60.57 238.60 65.75 231.40 79.62 213.05 91.30

Table 5.4 Natural frequencies of the panel under in vacuo and water-loaded (both the
half-spaces) conditions for different perforation ratios.

that a higher perforation ratio results in a lower natural frequency (see section 3.5.1).
For the unperforated case, once the fluid loading is included, all the natural frequencies
get lowered [36]. For the perforated fluid-loaded case, as the perforation ratio increases,
the effective solid area of the panel decreases and hence the total inertial loading of
the adjoining acoustic medium over the perforated panel reduces. And for water, the
reduction in the total inertial loading plus the panel mass is more than the reduction in
panel stiffness. Thus, we see an increase in the natural frequency of a given mode as the
perforation ratio increases (see Table 5.4). The perforated panel radiation efficiencies
when the excitation is at (0.1,0.1) are shown in Fig. 5.8. In contrast to Fig. 5.6 for the
center-excited panel, here, the dips corresponding to even-even, even-odd and odd-even
resonances are evident in the radiation efficiency spectrum. From a purely physics
point of view, as the panel area is reduced, the radiation efficiency should decrease
regardless of the acoustic medium. This is not clearly evident in Fig. 5.8 because of
the closely packed resonances.

Fig. 5.9 depicts the radiation efficiencies of the same perforated panels when it is
surrounded by air. For all the cases, the forcing is applied at the center of the panel.
The corner mode, edge mode and the high frequency regions are clearly seen in this
case. At low frequencies (in comparison to the critical frequency), the fluid loading
being dominantly inertial [33], the reactance offered by air is small as compared to
that offered by water. As a result, the radiation efficiency when the panel is immersed
in air is higher than that when it is immersed in water (see Fig. 5.6). This just
means that for the same forcing, the panel response is lower for the water case. The
results of Fig. 5.9 match well with that predicted using a one-way coupled formulation
presented in chapter 3 (see Fig. 3.10). For air, the light-loading conditions shift the
natural frequencies very little from their in vacuo values. Therefore a one-way coupled
formulation is sufficient if the acoustic medium is light.
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Fig. 5.8 Radiation efficiencies for water-loaded (in both the half-spaces) perforated
panels of different perforation ratios when the excitation is at an off-center location
(0.1,0.1). Total number of holes in each of the panels is N0 = 750.
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Fig. 5.9 Radiation efficiency of a perforated panel immersed in air (in both the half-
spaces) for various perforation ratios. The excitation is at the center of the panel. In
all the cases, the total number of holes is assumed to be a constant (N0 = 750).

5.9 Conclusions

A fully coupled formulation in the 2-D wavenumber domain is used to model the sound
radiation from a finite flexible perforated panel set in an infinite rigid unperforated
baffle. The panel is assumed to be simply supported on the baffle and is coupled to the
acoustic medium above and below. A locally averaged fluid particle velocity is derived,
which takes into account the panel vibrations and the flow through perforations. The
discontinuity in the perforate impedance at the panel-baffle boundary causes a coupling
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of different wavenumbers in the locally averaged fluid particle velocity spectrum. A
single coupled equation is derived to obtain the perforated panel response. This is
done in such a way that there are no square root singularities present in the self and
cross modal coupling coefficients. This enables us to evaluate the coupling coefficients
with ease.

A validation of proposed formulation is done by comparing the results with those
of Berry [37] for the case of an unperforated panel set in an unperforated baffle. Here,
only one half-space is filled with water and the other half-space is vacuum. The
radiated power and panel mean quadratic velocity spectra for the center and off-
center excitations show a good match. The mean quadratic velocity for the off-center
excitation is then used to find the natural frequencies of the water-loaded unperforated
panel. The predicted natural frequencies match very well with those reported in the
literature [37].

The radiation efficiencies of the water-loaded (both half-spaces) perforated panels
are computed for different perforation ratios for both the center and the off-center
excitations. As the perforation ratio increases, the perforate impedance decreases
and hence the radiated power and radiation efficiency decrease (more clearly seen in
Fig. 5.6). The same observation is made when the acoustic medium is air. However,
the response of the panel is lower when it is immersed in water as opposed to air. This
causes a lower radiation efficiency for the water case.

With regard to coupled natural frequencies, the water case differs from the in vacuo
case. For the in vacuo case, as the perforation ratio increases, both the stiffness and the
panel mass reduce. However, the reduction in stiffness is more significant causing a net
reduction in the natural frequencies. In contrast, for the water case, the net reduction
in inertia dominates over the stiffness reduction. Thus, the natural frequencies go up.

It is also found that for the case of air, the radiation efficiencies of perforated panels
match very well with those using a one-way coupled formulation. Thus, for a light
acoustic medium, the one-way coupled formulation is adequate to predict the radiation
efficiency.

After the two-way coupled analysis on the sound radiation from fluid-loaded perfo-
rated panels, it is natural to extend the model to study the effect of fluid loading on
the sound transmission through perforated panels. This is the subject matter of the
following chapter.



Chapter 6

Sound transmission through a
perforated panel: Two-way
coupling

6.1 Introduction

In this chapter, the two-way coupled formulation is extended to analyze the transmission
of sound through a finite flexible perforated panel set in an unperforated baffle. A
relation between the transmitted pressure and the LAFP velocity is derived in the next
section.

6.2 The incident and the transmitted pressure fields
at the panel surface

Consider a flexible perforated panel of finite extent lying in the z = 0 plane, in the
region −a/2 ≤ x ≤ a/2 and −b/2 ≤ y ≤ b/2. The panel is placed in a rigid baffle of
infinite extent in the z = 0 plane, as shown in Fig. 6.1. A harmonic plane wave of
frequency ω, wavenumber k and amplitude P̃i is incident upon the panel-baffle surface
from the z > 0 region, from the direction θ and ϕ (θ, polar angle and ϕ, azimuthal
angle). This creates flexural vibrations in the perforated panel which transmits the
sound to the z < 0 region. Let p1(x, y, z, t) and p2(x, y, z, t) be the resulting pressure
fields in the transmitted (z < 0) and the incident (z > 0) regions, respectively (see
Fig. 6.1). The transmitted pressure field p1(x, y, z, t) is due to the vibrating perforated
panel and the direct transmission of sound through the holes in the panel. Whereas on
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Fig. 6.1 Transmission of sound (plane wave) through a perforated panel set in a baffle.

the incident side, the total pressure field p2(x, y, z, t) comprises the incident and the
reflected pressure terms. Let the incident pressure field pi(x, y, z, t) be

pi(x, y, z, t) = P̃i eikxx+ikyy−ikzz e−iωt, (6.1)

where kx = k sin θ cosϕ, ky = k sin θ sinϕ and kz = k cos θ. The total pressure field
on the incident side is given by

p2(x, y, z, t) = P̃i eikxx+iky−ikzz e−iωt + pr(x, y, z) e−iωt, (6.2)

where pr(x, y, z) is the reflected pressure field. In the following derivations the depen-
dence on time e−iωt is suppressed.

The transmitted pressure p1(x, y, z), i.e., p− (x, y, z) in the z < 0 region accounts
for both the radiation of sound by the panel vibration and the direct transmission of
sound through the perforations. The p− (x, y, z) satisfies the 3-D Helmholtz equation

(
∇2 + k2) p− (x, y, z) = 0. (6.3)

On taking a double Fourier transform of the above equation in the x and y directions
we get [

d2

dz2 +
(
k2 − λ2 − µ2)

]
P− (λ, µ, z) = 0, (6.4)
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where P− (λ, µ, z) represents the double Fourier transform of p− (x, y, z) and is defined
as

P− (λ, µ, z) = 1
2π

∞∫

−∞

∞∫

−∞

p− (x, y, z) eiλx+iµy dx dy. (6.5)

The general solution to Eq. (6.4) is given by

P− (λ, µ, z) = A(λ, µ) ei
√

k2−λ2−µ2z +B(λ, µ) e−i
√

k2−λ2−µ2z. (6.6)

For a traveling wave in the −z direction, by causality, we must have A(λ, µ) = 0,
leading to

P− (λ, µ, z) = B(λ, µ) e−i
√

k2−λ2−µ2z. (6.7)

And the evanescent wave in the −z direction is

P− (λ, µ, z) = B(λ, µ) e
√

λ2+µ2−k2z.

B(λ, µ) can be found by invoking the double Fourier transform of the Euler boundary
condition at the solid-fluid interface (at z = 0) as

∂

∂z
P− (λ, µ, z = 0) = iρ0ckVa (λ, µ, z = 0) , (6.8)

where ρ0 is the fluid density and Va (λ, µ, z = 0) is the double Fourier transform of the
fluid particle velocity at the boundary va (x, y, z = 0) and is given by

Va (λ, µ, z = 0) = 1
2π

∞∫

−∞

∞∫

−∞

va (x, y, z = 0) eiλx+iµy dx dy. (6.9)

Using Eqs. (6.7) and (6.8) we get

B(λ, µ) = P−(λ, µ, z = 0) = −Za(λ, µ)Va(λ, µ, z = 0), (6.10)

where Za(λ, µ) is the complex acoustic impedance given by

Za(λ, µ) = ρ0ck√
k2 − λ2 − µ2

. (6.11)

Therefore
P− (λ, µ, z) = −Za(λ, µ)Va(λ, µ, z = 0)e−i

√
k2−λ2−µ2z. (6.12)
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Thus, if the LAFP velocity Va(λ, µ, z = 0) is known, the radiated pressure can be
found. The LAFP velocity was derived in section 4.3.

For the incident side, taking the double Fourier transform of Eq. (6.2) we get

P2 (λ, µ, z) = 1
2π

∞∫

−∞

∞∫

−∞

P̃i eikxx+ikyy−ikzz eiλx+iµy dx dy + Pr(λ, µ, z), (6.13)

where

Pr (λ, µ, z) = 1
2π

∞∫

−∞

∞∫

−∞

pr (x, y, z) eiλx+iµy dx dy. (6.14)

Using the identity

∞∫

−∞

∞∫

−∞

ei(λ+kx)x+i(µ+ky)y dx dy = 4π2δ(λ+ kx) δ(µ+ ky), (6.15)

we get
P2 (λ, µ, z) = 2πP̃i δ(λ+ kx) δ(µ+ ky) e−ikzz + Pr(λ, µ, z). (6.16)

The pressure field p2(x, y, z) should satisfy the 3-D Helmholtz equation

(
∇2 + k2) p2 (x, y, z) = 0. (6.17)

Taking the double Fourier transform
[

d2

dz2 +
(
k2 − λ2 − µ2)

]
P2 (λ, µ, z) = 0. (6.18)

The general solution to Eq. (6.18) is

P2 (λ, µ, z) = C(λ, µ) ei
√

k2−λ2−µ2z +D(λ, µ) e−i
√

k2−λ2−µ2z. (6.19)

Comparing Eqs. (6.16) and (6.19) and knowing that Pr(λ, µ) consists only of the
forward traveling waves in the z direction

P2 (λ, µ, z) = 2πP̃i δ(λ+ kx) δ(µ+ ky) e−ikzz + C(λ, µ) ei
√

k2−λ2−µ2z. (6.20)

The pressure p2(x, y, z) is related to the fluid particle velocity at the solid-fluid interface
of the incident region (va(x, y, z = 0)) through the Euler boundary condition. Taking
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the double Fourier transform of the boundary condition

∂

∂z
P2 (λ, µ, z = 0) = iρ0ckVa (λ, µ, z = 0) . (6.21)

Substituting for P2(λ, µ, z) from Eq. (6.20)

−ikz2πP̃i δ(λ+ kx) δ(µ+ ky) + i
√
k2 − λ2 − µ2 C(λ, µ) = iρ0ckVa (λ, µ, z = 0) .

Or

C(λ, µ) = ρ0ck√
k2 − λ2 − µ2

Va (λ, µ, z = 0) + kz√
k2 − λ2 − µ2

2πP̃i δ(λ+ kx) δ(µ+ ky).

As said before, C(λ, µ) is related to the forward traveling wave in the incident region.
For a forward traveling wave (related to the reflected pressure field component in
P2(λ, µ, z)), when λ = −kx and µ = −ky,

√
k2 − λ2 − µ2 = kz. Using Eq. (6.11)

C(λ, µ) = Za(λ, µ)Va (λ, µ, z = 0) + 2πP̃i δ(λ+ kx) δ(µ+ ky). (6.22)

Therefore, using Eq. (6.22), the double Fourier transform of the total pressure on the
incident region (Eq. (6.20)) is given by

P2 (λ, µ, z) = Za(λ, µ)Va (λ, µ, z = 0) ei
√

k2−λ2−µ2z + 4πP̃i δ(λ+ kx) δ(µ+ ky) cos kzz.

(6.23)
And at z = 0

P2 (λ, µ, z = 0) = Za(λ, µ)Va (λ, µ, z = 0)︸ ︷︷ ︸
radiated pressure field

+ 4πP̃i δ(λ+ kx) δ(µ+ ky)︸ ︷︷ ︸
blocked pressure field

. (6.24)

Thus, the total pressure field on the incident side is the sum of the radiated and the
blocked pressure fields and can be found if Va(λ, µ, z = 0) is known.

Using Eqs. (6.12) and (6.24), the double Fourier transform (over x− y domain) of
the pressure difference across the perforated panel is

∆P (λ, µ) = P−(λ, µ, z = 0) − P2(λ, µ, z = 0)
= 2P−(λ, µ, z = 0) − 4πP̃i δ(λ+ kx) δ(µ+ ky).

(6.25)

In the next section, the double Fourier transform of the LAFP velocity over a
discontinuous perforate impedance surface (the panel-baffle surface) is derived.
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6.3 Locally averaged fluid particle (LAFP) velocity
and its Fourier transform

The LAFP velocity was derived in chapter 4 (section 4.3). The final result is presented
here.

Va(λ, µ, z = 0) = ζIVp(λ, µ) + 2σb

Z0b

P−(λ, µ, z = 0) − 2πP̃i
2σb

Z0b

δ(λ+ kx) δ(µ+ ky)

+
[

2σp

Z0p

− 2σb

Z0b

]
ab

4π2

∞∫

−∞

∞∫

−∞

P− (λ′, µ′, z = 0) sinc
[

(λ− λ′)a
2

]
sinc

[
(µ− µ′)b

2

]
dλ′ dµ′

−
[

2σp

Z0p

− 2σb

Z0b

]
P̃iab

2π sinc
[

(λ+ kx)a
2

]
sinc

[
(µ+ ky)b

2

]
, (6.26)

The LAFP velocity thus depends on the panel velocity. However, the panel responds
to pressures that are functions of the LAFP velocity. Thus, it becomes necessary to
solve a set of coupled equations to obtain the panel response. The derivation of the
panel velocity is presented in the next section.

6.4 The vibration response of the perforated panel

6.4.1 Modified natural frequencies and modeshapes

As in the cases above that account for the modifications in the natural frequencies and
modeshapes of the panel due to perforations, here also we express the perforated panel
velocity as a modal sum given by

vp(x, y) =
∞∑

r=1

Brψr(x, y) =
∞∑

r=1

Br

∞∑

m=1

∞∑

n=1

Umnrϕmn(x, y), (6.27)

where Br is the modal coefficient. Taking the double Fourier transform of vp(x, y)

Vp(λ, µ) =
∞∑

r=1

Br

∞∑

m=1

∞∑

n=1

UmnrΦmn(λ, µ), (6.28)
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where

Φmn(λ, µ) = 1
2π

b/2∫

−b/2

a/2∫

−a/2

ϕmn(x, y) eiλx+iµy dx dy.

Substituting for ϕmn(x, y) from Eq. (2.20) into the above equation

Φmn (λ, µ) = − ab

8π

{
eimπ/2 sinc

[
(λ+mπ/a) a

2

]
− e−imπ/2 sinc

[
(λ−mπ/a) a

2

]}

×
{

einπ/2 sinc
[

(µ+ nπ/b) b
2

]
− e−inπ/2 sinc

[
(µ− nπ/b) b

2

]}
. (6.29)

The detailed derivation of Φmn (λ, µ) is given in Appendix D. The new modeshapes
will be substituted in the modified panel equation of motion in order to obtain the
modal amplitudes. The modified equation of motion of the panel is examined in the
following section.

6.4.2 The perforated panel equation of motion

The equation of motion for the perforated panel is given by

D∗(1 − iη)∇4vp(x, y, t) +mp
∂2vp(x, y, t)

∂t2
= −iω∆p(x, y, z = 0, t), (6.30)

where D∗ is the effective bending stiffness, mp is the modified mass per unit area and
η is the damping loss factor of the perforated panel. Substituting for vp(x, y) from
Eq. (6.27) into Eq. (6.30) we get

∑

r,m,n

[
D∗(1 − iη)

{(mπ
a

)2
+
(nπ
b

)2
}2

−mpω
2

]
BrUmnrϕmn(x, y)

= −iω∆p(x, y, z = 0).

Now, taking the double Fourier transform of the above equation

∑

r,m,n

[
D∗(1 − iη)

{(mπ
a

)2
+
(nπ
b

)2
}2

−mpω
2

]
BrUmnrΦmn(λ, µ)

= −iω∆P (λ, µ) , (6.31)
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where Φmn (λ, µ) and ∆P (λ, µ) are given by Eqs. (6.29) and (6.25), respectively. While
taking the Fourier transform of the left hand side, note that vp(x, y) = 0 in the region
beyond the panel surface.

Next, substituting ∆P (λ, µ) from Eq. (6.25) into Eq. (6.31)

∑

r,m,n

[
D∗(1 − iη)

{(mπ
a

)2
+
(nπ
b

)2
}2

−mpω
2

]
BrUmnrΦmn(λ, µ)

= −2iω P−(λ, µ, z = 0) + 4πiω P̃i δ(λ+ kx) δ(µ+ ky).

(6.32)

The radiated pressure on the right hand side can be obtained from Eq. (6.12) as

P− (λ, µ, z = 0) = −Za(λ, µ)Va(λ, µ, z = 0).

Thus, the perforated panel displacement depends upon both the incident pressure and
the radiated pressure fields. However, the radiated pressure P− (λ, µ, z = 0) through
Va (λ, µ, z = 0) depends upon the panel displacement, as shown in the expression for
the LAFP velocity in Eq. (6.26). Hence, it becomes necessary to solve the two coupled
equations (Eqs. (6.26) and (6.32)) to obtain the panel response Vp (λ, µ). In the next
section, a single equation is derived by combining Eqs. (6.26) and (6.32) and is solved
to obtain the perforated panel velocity response.

6.5 The coupled formulation and its solution

6.5.1 The coupled equation

Substituting P− (λ, µ, z = 0) = −Za (λ, µ)Va(λ, µ, z = 0) (Eq. (6.12)) into Eq. (6.32)
and rearranging

Va(λ, µ, z = 0) = − 2π
Za (λ, µ) P̃i δ(λ+ kx) δ(µ+ ky)

+ 1
2iωZa (λ, µ)

∑

r,m,n

[
D∗(1 − iη)

{(mπ
a

)2
+
(nπ
b

)2
}2

−mpω
2

]
BrUmnrΦmn(λ, µ).

(6.33)
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Similarly, by substituting P− (λ, µ, z = 0) = −Za (λ, µ)Va(λ, µ, z = 0) and Vp(λ, µ)
(Eq. (6.28)) into Eq. (6.26)

[
1 + 2σb

Z0b

Za(λ, µ)
]
Va(λ, µ, z = 0) = ζI

∑

r,m,n

BrUmnrΦmn(λ, µ)

− 2πP̃i
2σb

Z0b

δ(λ+ kx) δ(µ+ ky)

−
[

2σp

Z0p

− 2σb

Z0b

]
ab

4π2

∞∫

−∞

∞∫

−∞

Za(λ′, µ′)Va (λ′, µ′, z = 0)

× sinc
[

(λ− λ′)a
2

]
sinc

[
(µ− µ′)b

2

]
dλ′ dµ′

−
[

2σp

Z0p

− 2σb

Z0b

]
P̃iab

2π sinc
[

(λ+ kx)a
2

]
sinc

[
(µ+ ky)b

2

]
. (6.34)

Next, using Eq. (6.33) for Va(λ, µ) in the above equation

[
1 + 2σb

Z0b

Za(λ, µ)
][

1
2iωZa (λ, µ)

∑

r,m,n

BrŪmnrΦmn(λ, µ) − 2πP̃i

Za (λ, µ)δ(λ+ kx) δ(µ+ ky)
]

= ζI

∑

r,m,n

BrUmnrΦmn(λ, µ) − 2σb

Z0b

2πP̃i δ(λ+ kx) δ(µ+ ky)

−
[

2σp

Z0p

− 2σb

Z0b

]
P̃iab

2π sinc
[

(λ+ kx)a
2

]
sinc

[
(µ+ ky)b

2

]

−
[

2σp

Z0p

− 2σb

Z0b

]
ab

4π2

∞∫

−∞

∞∫

−∞

[
1

2iω
∑

r,m,n

BrŪmnrΦmn(λ′, µ′) − 2πP̃i δ(λ′ + kx) δ(µ′ + ky)
]

× sinc
[

(λ− λ′)a
2

]
sinc

[
(µ− µ′)b

2

]
dλ′ dµ′, (6.35)

where

Ūmnr =
[
D∗(1 − iη)

{(mπ
a

)2
+
(nπ
b

)2
}2

−mpω
2

]
Umnr. (6.36)
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After a few simplifications (see Appendix J)

1
2iω

[
1 + 2σb

Z0b

Za(λ, µ)
] ∑

r,m,n

BrŪmnrΘmn(λ, µ) − ζI

∑

r,m,n

BrUmnrΦmn(λ, µ)

+ ab

8π2iω

[
2σp

Z0p

− 2σb

Z0b

] ∑

r,m,n

BrŪmnrXmn(λ, µ) = 2πP̃i

Za (λ, µ) δ(λ+ kx) δ(µ+ ky),

(6.37)

where
Θmn(λ, µ) = Φmn(λ, µ)

Za(λ, µ) (6.38)

and

Xmn(λ, µ) =
∞∫

−∞

∞∫

−∞

Φmn(λ′, µ′) sinc
[

(λ− λ′)a
2

]
sinc

[
(µ− µ′)b

2

]
dλ′ dµ′. (6.39)

The above equation (Eq. (6.37)) represents the coupled equation for the perforated
panel response. Next, the above equation is solved for Br, the modal coefficients of the
perforated panel velocity.
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6.5.2 Solution to the coupled equation

We know that the modal coefficient Br must be independent of λ and µ. Multiplying
Eq. (6.37) by

∑
p,q UpqsΦpq (−λ,−µ) and integrating over λ and µ domain we get

1
2iω

∑

r,m,n

∑

p,q

BrŪmnrUpqs

∞∫

−∞

∞∫

−∞

Θmn(λ, µ)Φpq(−λ,−µ) dλ dµ

+ 1
2iω

2σb

Z0b

∑

r,m,n

∑

p,q

BrŪmnrUpqs

∞∫

−∞

∞∫

−∞

Φmn(λ, µ)Φpq(−λ,−µ) dλ dµ

+ ab

8π2iω

[
2σp

Z0p

− 2σb

Z0b

] ∑

r,m,n

∑

p,q

BrŪmnrUpqs

∞∫

−∞

∞∫

−∞

Xmn(λ, µ)Φpq(−λ,−µ) dλ dµ

− ζI

∑

r,m,n

∑

p,q

BrUmnrUpqs

∞∫

−∞

∞∫

−∞

Φmn(λ, µ)Φpq(−λ,−µ) dλ dµ

= 2πP̃i

Za (−kx,−ky)
∑

p,q

UpqsΦpq (kx, ky) . (6.40)

In the equation above, except the first integral (which is evaluated numerically), the
rest can be evaluated analytically. The integrals in the above equation arise from the
interaction between the in vacuo panel modes. The integrals are evaluated in Appendix
I and the results are given below.

∞∫

−∞

∞∫

−∞

Φmn(λ, µ)Φpq(−λ,−µ) dλ dµ = ab

4 δmp δnq. (6.41)

∞∫

−∞

∞∫

−∞

Xmn(λ, µ)Φpq(−λ,−µ) dλ dµ = π2 δmp δnq. (6.42)
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Substituting the above results in Eq. (6.40) we get

1
2iω

∑

r,m,n

∑

p,q

BrŪmnrUpqsΘ̄mnpq + ab

8iω
2σb

Z0b

∑

r,m,n

∑

p,q

BrŪmnrUpqs δmp δnq

+ ab

8iω

[
2σp

Z0p

− 2σb

Z0b

] ∑

r,m,n

∑

p,q

BrŪmnrUpqs δmp δnq

− ab

4 ζI

∑

r,m,n

∑

p,q

BrUmnrUpqs δmp δnq = 2πP̃i

Za (−kx,−ky)
∑

p,q

UpqsΦpq (kx, ky) ,

where

Θ̄mnpq =
∞∫

−∞

∞∫

−∞

Θmn(λ, µ)Φpq(−λ,−µ) dλ dµ. (6.43)

Canceling the identical terms and simplifying

1
2iω

∑

r,m,n

∑

p,q

BrŪmnrUpqsΘ̄mnpq + ab

8iω
2σp

Z0p

∑

r,m,n

BrŪmnrUmns

− ab

4 ζI

∑

r,m,n

BrUmnrUmns = 2πP̃i

Za (−kx,−ky)
∑

p,q

UpqsΦpq (kx, ky) .

In a matrix form

1
2iω [Upq,s]T

[
Θ̄mn,pq

]T [
Ūmn,r

]
{Br} + ab

8iω
2σp

Z0p

[Umn,s]T
[
Ūmn,r

]
{Br}

− ab

4 ζI [Umn,s]T [Umn,r] {Br} = 2πP̃i

Za (−kx,−ky) [Upq,s]T {Φpq (kx, ky)} .

Thus, the modal coefficients are given by

{Br} = [Zs,r]−1 {Fs} , (6.44)

where

[Zs,r] = 1
2iω [Upq,s]T

[
Θ̄mn,pq

]T [
Ūmn,r

]
+ ab

8iω
2σp

Z0p

[Umn,s]T
[
Ūmn,r

]
− ab

4 ζI [Umn,s]T [Umn,r]

(6.45)
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and
{Fs} = 2πP̃i

Za (−kx,−ky) [Upq,s]T {Φpq (kx, ky)} . (6.46)

From the modal coefficients Br (Eq. 6.44)

Vp (λ, µ) = {Br}T [Umn,r]T {Φmn (λ, µ)} . (6.47)

Having found Vp(λ, µ), the Va(λ, µ, z = 0) can be obtained from Eq. (6.26) (see
Appendix F). From Va(λ, µ, z = 0), the radiated pressure can be found as

P− (λ, µ, z = 0) = −Za (λ, µ)Va(λ, µ, z = 0).

Since the pressures and the LAFP velociy are known, we can proceed to compute the
transmitted power and the TL.

6.6 Sound transmission loss of a perforated panel
in a baffle

Using the transmitted pressure P−(λ, µ, z = 0) and the LAFP velocity Va(λ, µ, z = 0)
expressions derived in the previous section, we can evaluate the transmitted power due
to the incidence of a plane acoustic wave on a perforated panel fixed in a baffle. The
farfield transmitted power is [4]

Wt = 1
2 Re





k∫

−k

√
k2−µ2∫

−
√

k2−µ2

P−(λ, µ, z = 0)V ∗
a (λ, µ, z = 0) dλ dµ




. (6.48)

And the total power incident on the perforated panel is

Wi = |P̃i|2 cos θ ab
2ρ0c

, (6.49)

where θ is the polar angle. The sound transmission coefficient τ is the ratio of the
transmitted to the incident sound powers and is

τ = Wt

Wi

. (6.50)
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And the sound transmission loss TL is

TL = 10 log10

(
1
τ

)
. (6.51)

The effect of perforation (EP) is defined as the difference between the transmission
loss of a perforated panel and that of an unperforated panel of the same size. Thus,

EP = TLperforated − TLunperforated, (6.52)

or
EP = 10 log10

(
Wunperforated

Wperforated

)
.

6.7 Results

In this section, the TL of a finite perforated panel set in an unperforated baffle is
computed for various system parameters. In all the forthcoming analyses the acoustic
medium is air.

Panel dimensions a = 0.455 m, b = 0.546 m and h = 0.003 m
Panel material properties
(aluminum)

E = 70 GPa, ρp = 2700 kg/m3 and ν = 0.33

Properties of air ρ0 = 1.204 kg/m3, c = 343 m/s and η0 = 1.8 ×
10−5 Ns/m2

Table 6.1 The perforated panel dimensions and material properties.

The panel dimensions and the system properties are mentioned in Table 6.1. A
harmonic plane wave of amplitude P̃i = 1 is incident at a polar angle θ = 600 and an
azimuthal angle ϕ = 00. Fig. 6.2 depicts the TL for panels with different perforation
ratios. The different perforation ratios are achieved by varying the hole radius from
rp = 0.5 mm to rp = 5 mm while keeping the total number of holes in the panel
constant N0 = 750. For comparison, the figure also shows the TL variation obtained
using the uncoupled or the one-way coupled model presented in chapter 4.

In Fig. 6.2(a) the TL of a finite unperforated panel is shown (uncoupled and coupled
cases). At low frequencies, the difference between the two cases (coupled and uncoupled)
is significant. The inertial effect of the fluid-loading is significant at low frequencies
reducing the panel response causing an increase in the TL. The infinite panel coupled
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Fig. 6.2 Coupled and uncoupled TL of (a) unperforated panel (coupled: black marker,
uncoupled: gray marker, infinite panel: black, no marker) and (b) perforated panels
with different perforation ratios (coupled: black marker, uncoupled: gray marker).
N0 = 750. Unperforated baffle. θ = 600 and ϕ = 00.

case is plotted in the same figure. It can be seen that the two figures match at high
frequencies. In the infinite case [7], at high frequencies, the panel stiffness begins to
dominate over the fluid-loading. Also at high frequencies one can argue that the finite
panel approaches the infinite panel condition. Thus, the same explanation holds here
also. In fact, the transmitted power goes up with fluid density, as long as the panel
stiffness dominates. It can also be seen that the fluid inertia drops the coincidence
frequency (even though slightly).

Figure 6.2(b) shows the TL for finite perforated panels. Here, the difference between
the uncoupled and coupled curves is small. In terms of computation, the panel velocity
is differently computed between the coupled and uncoupled cases. For the coupled
case, the effective panel impedance gets modified by the modal coupling coefficient.
The panel velocity, however, remains negligible (in both the cases) as most of the
transmission is through the perforations.

Figure 6.3 depicts the EP (Eq. 6.52) obtained for different perforation ratios of the
panel using the coupled formulation. Note, that the unperforated TL for evaluating
EP is also obtained using the coupled formulation. As the TL of a perforated panel is
smaller than that of an unperforated one, EP is negative for all the cases. It can be
noticed that as the perforation ratio increases TL decreases and hence the magnitude
of EP (EPabs) increases.
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Fig. 6.3 Effect of perforation (EP) for panels of different perforation ratios. The coupled
formulation is used here. N0 = 750 in all the cases. θ = 600 and ϕ = 00. Baffle is
unperforated.

Figures 6.4(a) and 6.4(b) show the absolute values of the perforate impedance and
their break up into resistive and reactive components, respectively. In these figures,
the perforation ratio is held a constant (σp = 0.95%) by varying both the radii and
the number of holes. The hole radius is varied from rp = 0.5 mm to rp = 5.0 mm,
whereas the total number of holes is varied from N0 = 3000 to N0 = 30. In general,
the reactance dominates over the resistance at high frequencies and decreases with
decreasing frequency. At low frequencies, for small radii perforations, the resistive
component becomes greater than the reactance. This character is predominant at
sub-millimeter radii, i.e., for micro-perforated panels. This behavior reflects in the TL
which is shown in Fig. 6.5. At low frequencies, the TL for rp = 0.5 mm (which has a
higher resistive component) is greater than that of rp = 5.0 mm. The EP curves for
different hole radii are plotted in Fig. 6.6. At higher frequencies, the EPabs decreases
with the increasing hole size (a larger hole is associated with a higher hole reactance
and hence a higher TL). Whereas at lower frequencies, the smaller radius curve is seen
to have a smaller EPabs due to a higher hole resistance.

In all the previous analysis, the angle of incidence was kept constant (θ = 600 and
ϕ = 00). Fig. 6.7(a) shows the variation in TL for different polar angles (θ), keeping
ϕ = 00. For all the cases N0 = 750 and rp = 1 mm with a resulting perforation ratio
σp = 0.95%. The two significant changes in TL brought by varying θ are (1) reduction
in TL with increasing θ and (2) decrease in the coincidence frequency with increase
in θ. The variation in transmitted power with θ is depicted in Fig. 6.7(b). It can be
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Fig. 6.4 Effect of radius on the perforate impedance. (a) Absolute perforate impedance
and (b) components of perforate impedance. Resistive (thin line) and reactive (thick
line). σp = 0.95% for all cases.
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Fig. 6.5 TL of perforated panels with the same perforation ratio (σp = 0.95%). The
hole radius and the total number of holes are varied accordingly. Unperforated baffle.
θ = 600 and ϕ = 00.

seen that the transmitted power does not vary significantly with θ (as the perforate
impedance is independent of θ and the effect of the panel impedance is negligible in
determining the transmitted power). However, the normal incident power decreases
significantly with increasing angle of incidence (due to the cos θ term in the numerator
of Eq. (6.49)). Thus, although the transmitted power remains the same, the TL drops
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Fig. 6.6 Effect of perforation (EP) for panels with the same perforation ratio
(σp = 0.95%). The hole radius and the total number of holes are varied accordingly.
Unperforated baffle. θ = 600 and ϕ = 00.
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Fig. 6.7 (a) TL and (b) transmitted power of a perforated panel for different θ. For all
the cases ϕ = 00, N0 = 750, rp = 1 mm and σp = 0.95%. Unperforated baffle.

as the angle of incidence increases. TL for the unperforated panel for different angles
of incidence (θ) is evaluated and plotted in Fig. 6.8(a). These unperforated panel TL
values are then used to find the EP for the perforated case (rp = 1 mm and N0 = 750)
and are shown in Fig. 6.8(b). It can be observed that the EPabs increases with the



6.7 Results 139

increasing angle of incidence. The variation in EP is largely due to the changes in the
unperforated panel TL.
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Fig. 6.8 (a) TL of an unperforated panel for different angles of incidence θ (ϕ = 00 for
all the cases). (b) Effect of perforation (EP) of a perforated panel for different θ. For
all the cases ϕ = 00, N0 = 750, rp = 1 mm and σp = 0.95%. Unperforated baffle.

6.7.1 Negative transmission loss

It is observed from Fig. 6.2 that for larger perforation ratios (σp = 5.93% and 23.71%),
the transmission loss is negative at lower frequencies. But, this behavior is unexpected
for a passive system considered here. A negative TL implies a transmission coefficient
(Eq. (6.50)) greater than unity and violates power conservation.

Similar cases of negative TL for sound transmission through apertures have been
reported in the literature [69, 70]. And references [71, 54, 72] discuss about the
absorption coefficient being greater than unity for micro-perforated panels backed by
a cavity. In the above formulation, the incident power is a function of the incident
pressure amplitude and its angle of incidence only. It is a frequency independent
quantity. But, the actual power injected includes an additional term [71, 54] as shown
below. Once this term is included, the TL remains positive throughout.
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The reflected power normal to the panel surface is given by [54]

Wrefl = 1
2 Re

{∫∫

Ap

[p2(x, y, z = 0) − pi(x, y, z = 0)]

× [va(x, y, z = 0) − vi(x, y, z = 0)]∗ dA
}
,

where vi(x, y, z = 0) is the normal velocity corresponding to the incident pressure field,
Ap represents the panel area and all other variables are as defined above. The first
square bracket represents the total reflected pressure and the second represents the
total reflected velocity.

We know that p2(x, y, z = 0) = 2pi(x, y, z = 0) + p+(x, y, z = 0) (from Eq. (6.24)
and reference [7]), where p+(x, y, z = 0) is the radiated pressure field on the incident
side. Expanding the above equation

Wrefl = −1
2 Re

{∫∫

Ap

−p2(x, y, z = 0)v∗
a (x, y, z = 0) dA

}

+ 1
2 Re

{∫∫

Ap

−pi(x, y, z = 0)v∗
i (x, y, z = 0) dA

}

+ 1
2 Re

{∫∫

Ap

[
− pi(x, y, z = 0)v∗

a (x, y, z = 0)

− p+(x, y, z = 0)v∗
i (x, y, z = 0)

]
dA
}
. (6.53)

The first term on the right hand side represents the power flow through the perforated
panel (Wflow) and the second term denotes the incident power (Wi) as derived in
Eq. (6.49). The third term is the additional term mentioned above. It is due to
the diffraction caused by the discontinuity of perforate impedance at the panel-baffle
boundary. It represents the power contribution due to cross coupling; the coupling of
the in-phase components of the incident pressure and the radiated normal velocity, and
the radiated pressure and the incident normal velocity. Denoting this term as Winc-rad,
the equation above can be written as

Wrefl +Wflow = Wi +Winc-rad = W̃i, (6.54)
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where W̃i is the total power injected into the perforated panel (see Appendix K for
details).
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Fig. 6.9 Comparison of TL computed using W̃i (Eq. (K.8)) and that usingWi (Eq. (6.49))
for panels with different perforation ratios. In all the cases, the total number of holes
in the panel is N0 = 750. A normally incident plane wave is considered (θ = 00 and
ϕ = 00).

Figure 6.9 shows the TL for panels with different perforation ratios under normal
incidence of a plane wave of unit amplitude. The coupled formulation is used here.
One set of curves uses W̃i (Eq. (K.8)), whereas the other set uses Wi (Eq. (6.49)). For
the unperforated panel, there exists no discontinuity in the perforate impedance along
the panel-baffle boundary and therefore the diffraction phenomenon does not occur.
Thus, the TLs evaluated using both the methods are identical for the unperforated
panel. As the perforation ratio increases, the diffraction effect becomes more significant
at lower frequencies and W̃i differs from Wi. It can be seen from Fig. 6.9 that for all
the cases in which W̃i is used, the TL is positive for the entire frequency range. At
higher frequencies, the diffraction effect becomes negligible. Therefore, for a given
perforation ratio, the TLs evaluated using both the methods are identical at higher
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frequencies. The corresponding EP values are plotted in Fig. 6.10. Here, the TLs of
both the perforated and the unperforated panels are obtained using W̃i.
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Fig. 6.10 Effect of perforation (EP) computed using W̃i (Eq. (K.8)) for panels with
different perforation ratios. In all the cases, the total number of holes in the panel is
N0 = 750. A normally incident plane wave is considered (θ = 00 and ϕ = 00).
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Fig. 6.11 Comparison of (a) Incident power W̃i (Eq. (K.8)) and Wi (Eq. (6.49)) and (b)
TL computed using W̃i and that using Wi for panels of varying size. In all the cases,
rp = 5 mm and σp = 23.71%. A normally incident plane wave is considered (θ = 00

and ϕ = 00).

We have seen that the diffraction phenomenon is caused by the discontinuity in
the perforate impedance. It is also observed that at high frequencies the diffraction
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effect vanishes and the power carried by the incident plane wave alone is sufficient to
evaluate TL correctly (see Appendix K). Thus, it suggests that the diffraction effect
depends upon the relative size of the perforated panel with respect to the acoustic
wavelength. Fig. 6.11 depicts the variation in the incident power (both W̃i and Wi)
and the TL (evaluated using W̃i and Wi) for different panel sizes. For all the cases, the
hole size and perforation ratio are the same (rp = 5 mm and σp = 23.71%). Fig. 6.11(b)
also shows the TL for an infinite flexible perforated panel. The infinite perforated
panel TL can be obtained in closed form using the equivalent circuit model as shown
in Fig. 6.12 [1, 2, 7]. In the figure, zp represents the wave impedance offered by the
flexible perforated panel

zp = ∆p(x, z = 0)
vp(x) = i

ω

[
D∗(1 − iη)k4 sin4 θ −mpω

2] , (6.55)

za = ρc

cos θ is the specific acoustic impedance and z0 = Z0p

σp
is the perforate impedance.

The transmission coefficient for the infinite panel can be obtained as

τ(θ) = |2za|2∣∣∣∣∣∣∣∣
2za + 1(

1
zp/ζI

+ 1
z0

)

∣∣∣∣∣∣∣∣

2 . (6.56)

Now, the TL can be obtained using Eq. (6.51).

Fig. 6.12 Equivalent circuit representation of a flexible perforated panel of infinite
extent.

As the panel area increases, the incident power (both W̃i and Wi) increases (see
Fig. 6.11(a)). At lower frequencies, W̃i is higher than Wi for all the cases. This implies
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that the diffraction effect exists even for the largest panel considered here. However,
the rate at which W̃i increases is lower than that of Wi, i.e., the diffraction effect
reduces with increasing panel size. Consider the TL of the finite panel calculated
using Wi (Fig. 6.11(b)). The TL decreases in magnitude with the increasing panel size
and approaches that of the infinite panel, for which the TL is always positive. The
TL considering W̃i is also seen to reduce in magnitude with the increasing panel size,
but at a lower rate as compared to that computed using Wi. Thus, it is evident that
the diffraction effect depends upon the area of the perforated panel - the larger the
panel area, the effect of diffraction is smaller. This phenomenon is similar to the “area
effect" in the sound absorption by finite absorbers [71, 73]. Also, it can be noticed
from Fig. 6.11(b) that at higher frequencies, the finite panel TL approaches that of the
infinite panel.

6.8 Conclusions

A fully coupled formulation in the 2-D wavenumber domain is used to model the
sound transmission through a fluid-loaded finite perforated panel set in an infinite
unperforated rigid baffle. A locally averaged fluid particle (LAFP) velocity is formulated
as a combination of the sound transmission through the perforations and that due
to the panel vibrations. The change in the resonances caused by the perforations is
accounted for in the panel vibrations. Finally, the LAFP velocity is multiplied by the
acoustic impedance resulting in the transmitted pressure. The formulation takes into
account the self and cross modal coupling coefficients arising due to the fluid-loading
effect. The transmission loss curves are plotted for various cases and the physics is
discussed. Along the way the one-way coupled calculation is also presented for the
sake of comparison. The results presented here are mainly for a light medium like air.

The perforate and the panel impedances are in parallel to each other. And for
a light medium, the perforate impedance is lower than the panel impedance. Thus,
the significant transmission happens through the perforations. The panel velocity
contribution is insignificant and hence the one-way coupled calculation is adequate. For
a heavy fluid (like water), the perforate impedance is higher than the panel impedance.
Thus, a coupled calculation is needed.

In general, the absolute perforate impedance increases with increasing frequency.
For a light medium, the TL curve matches this trend. At low frequencies, the absolute
perforate impedance rises because the resistive component of the hole impedance
increases. Thus, the TL curves rise at lower frequencies. This effect is prominent for
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sub-millimeter hole radii, i.e., for micro-perforations. Here, the increase in TL with the
decreasing frequency begins at a higher frequency. Although, the perforate impedances
rises at high and low frequencies, within the frequency range of interest, for air, it
never compares with the panel impedance. These curves are also plotted in terms of
the effect of perforations (EP).

Since for a light medium, the perforate impedance decides the TL, the transmitted
power is independent of the angle of incidence of the plane wave. However, as the
normal incident power depends on the incidence angle, the TL changes.

An important phenomenon observed in the TL curves at low frequencies is that
the TL values become negative. This violates power conservation. The reason for this
apparent violation is that the input power is defined solely based on the incident plane
wave. In actuality, an additional component of power is incident onto the panel from
the region above the baffle due to diffraction effects. This phenomenon is dominant
at low frequencies and hence when it is ignored, the TL values become negative. An
expression for this additional term is derived. Using this new definition of the incident
power, the TL values remain positive throughout the frequency range. The intensity
quiver plots that show the additional power component flowing from the baffle region
onto the panel are also obtained. It is observed that the diffraction effect reduces with
increasing panel size and the TL of a finite panel approaches that of the infinite panel.

It is observed that the fluid loading couples the in vacuo natural modes of the
perforated panel. This coupling between the in vacuo modes is expressed as the
modal coupling coefficient Θ̄mnpq in the coupled equation of motion of the perforated
panel. The modal coupling coefficient is given in the form of a double integral in the
wavenumber domain. So far, in chapters 5 and 6, the numerical integration method is
used to evaluate this integral. In the next chapter, closed form solutions corresponding
to different panel wavenumbers are obtained for this double integral.
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Chapter 7

Closed form expressions for the
modal coupling coefficient of a
perforated panel

7.1 Introduction

The two-way coupled formulations for the radiation and the transmission problems
result in the in vacuo modes getting coupled due to the fluid loading effect. This
fluid loading effect is entirely captured by the modal coupling coefficient Θ̄mnpq. In
chapters 5 and 6, this modal coupling coefficient which ended up as a double integral
was evaluated numerically. In this chapter, closed form expressions for the same modal
coupling coefficient are derived.

7.2 The modal coupling coefficient

The term Θ̄mnpq in Eq. (5.34) is called the modal coupling coefficient. It is given by

Θ̄mnpq =
∞∫

−∞

∞∫

−∞

Φmn(λ, µ) Φpq(−λ,−µ)
Za(λ, µ) dλ dµ, (7.1)

Before beginning to evaluate the above expression, a brief description is relevant here.
The integrand of the coupling coefficient has a square root branch cut in addition to
the regular singularities in the domain of integration. This makes it difficult to solve
the integral exactly. In this chapter, approximate expressions are derived for all the
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types of modal interactions which can be significant at any given frequency. They are
also applicable for any degree of fluid loading, be it light as for the case of air or be it
heavy as for the case of water.

In the above equation, Φmn(λ, µ) and Φpq(−λ,−µ) can be obtained using Eq. (5.19)
and Za(λ, µ) = ρ0ck√

k2−λ2−µ2
. It can be seen that the numerator of Φmn(λ, µ) Φpq(−λ,−µ)

has a multiplying factor in λ of the form 1 + (−1)m+p − (−1)m eiλa − (−1)p e−iλa. When
m+ p is odd this results in ±2i sin λa and since the rest of the integrand is even in λ,
the integral over λ from −∞ to ∞ vanishes. Similar is the case for the integral over µ
when n+ q is odd. Thus, we can write

Θ̄mnpq = 0, if m+ p or n+ q is odd. (7.2)

On the other hand, when m+p is even, we get 1+(−1)m+p −(−1)m eiλa −(−1)p e−iλa =
2 [1 − (−1)m cosλa]. Similarly, when n+q is even, 1+(−1)n+q−(−1)n eiµb−(−1)q e−iµb =
2 [1 − (−1)n cosµb]. Thus, we see that Θ̄mnpq is non-zero only when m+ p and n+ q

are even, i.e., m and p and n and q have the same parity (either both odd or both
even) [33]. Hence, each mode is coupled to at most only one quarter of all the other
modes. Therefore, the nonzero components of Θ̄mnpq are given by (when m+ p and
n+ q are even)

Θ̄mnpq = 4 km kn kp kq

ρ0ck (2π)2 Imnpq, (7.3)

where

Imnpq =
∞∫

−∞

∞∫

−∞

[1 − (−1)m cosλa] [1 − (−1)n cosµb] (k2 − λ2 − µ2)
1/2

(λ2 − k2
m)
(
λ2 − k2

p

)
(µ2 − k2

n)
(
µ2 − k2

q

) dλ dµ. (7.4)

In the equation above, the integral over λ is denoted as

Imp
1 (µ) =

∞∫

−∞

[1 − (−1)m cosλa] (k2 − λ2 − µ2)
1/2

(λ2 − k2
m)
(
λ2 − k2

p

) dλ, (7.5)

and use the fact that for an even function f(λ)

∞∫

−∞

f(λ) cosλa dλ =
∞∫

−∞

f(λ) eiλa dλ.
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Thus

Imp
1 (µ) =

∞∫

−∞

[
1 − (−1)m eiλa

]
(k2 − λ2 − µ2)

1/2

(λ2 − k2
m)
(
λ2 − k2

p

) dλ. (7.6)

7.2.1 Branch points and branch cuts

The integrand of Imp
1 (µ) has square root branch points at

λ1,2 = ±
(
k2 − µ2)1/2 .

Depending on the value of µ and hence the location of the branch points λ1,2, Imp
1 (µ)

has to be evaluated differently - Case 1: when |µ| < k; λ1,2 = ±
√
k2 − µ2, i.e.,

the branch points lie on the positive and the negative real axis and Case 2: when
|µ| > k; λ1,2 = ±i

√
µ2 − k2, i.e., the branch points lie on the positive and the negative

imaginary axis.
Consider the first case in which λ1,2 lie on the real axis, i.e.,

λ1 = (k2 − µ2)1/2 and λ2 = −λ1.

For z > 0, the radiated pressure wave has the form eiξz−iωt with ξ = (k2 −λ2 −µ2)1/2 =
(λ2

1−λ2)1/2 . We know that for large values of λ, a growing wave is physically inadmissible
and hence ξ must be positive imaginary.

ξ = i(λ2 − λ2
1)

1/2 for real λ such that |λ| > λ1.

Thus, it is necessary that we choose a feasible definition for ξ so that a growing wave
solution never occurs. We will now select an appropriate branch cut and definition for
the function (k2 − λ2 − µ2)1/2 by looking at it as a product of square roots, i.e.,

(
λ2

1 − λ2)1/2 = (λ1 − λ)
1/2 (λ1 + λ)

1/2 = |λ1 − λ|
1/2 ei γ/2 |λ1 + λ|

1/2 ei θ/2 .

The complex functions (λ1 − λ) and (λ1 + λ) are shown in Figs. 7.1(a) and 7.1(b),
respectively.

From Fig. 7.1(a), as γ varies from 0 to 2π, the resulting branch cut of (λ1 − λ)
1/2

runs along the real axis from λ1 to −∞ (see Fig. 7.2(a)). We may now select the
following function definition for (λ1 − λ)

1/2 so that the branch cut modifies to an ‘L’
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Fig. 7.1 Vectors of λ1 − λ and λ1 + λ (case 1) in the complex λ plane.

shaped one as shown Fig. 7.2(b):

(λ1 − λ)
1/2 =





|λ1 − λ|
1/2 ei γ/2 for Re(λ) > 0

− |λ1 − λ|
1/2 ei γ/2 for Re(λ) < 0 and Im(λ) > 0

|λ1 − λ|
1/2 ei γ/2 for Re(λ) < 0 and Im(λ) < 0.

(7.7)

It will be described later how the above modification of branch cut (and the one which
will be explained next) prevent the function (λ2

1 − λ2)
1/2 from assuming any negative

imaginary values for |Re(λ)| > λ1.

Fig. 7.2 (a) Initial and (b) modified branch cuts of (λ1 − λ)
1/2 (case 1) in the complex

λ plane.
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Now assume that θ, the argument of (λ1 + λ), varies from 0 to 2π. The resulting
branch cut of (λ1 + λ)

1/2 extends from −λ1 to ∞ along the real axis, as shown in
Fig. 7.3(a). It is then modified to an ‘L’ shaped one by choosing the following function
definition for (λ1 + λ)

1/2 :

(λ1 + λ)
1/2 =





|λ1 + λ|
1/2 ei θ/2 for Re(λ) < 0

− |λ1 + λ|
1/2 ei θ/2 for Re(λ) > 0 and Im(λ) < 0

|λ1 + λ|
1/2 ei θ/2 for Re(λ) > 0 and Im(λ) > 0.

(7.8)

The modified branch cut is shown in Fig. 7.3(b).

Fig. 7.3 (a) Initial and (b) modified branch cuts of (λ1 + λ)
1/2 (case 1) in the complex

λ plane.

Combining the definitions of (λ1 − λ)
1/2 (Eq. (7.7)) and (λ1 + λ)

1/2 (Eq. (7.8)),
(λ2

1 − λ2)
1/2 can be defined as

(
λ2

1 − λ2)1/2 =





|λ1 − λ|
1/2 |λ1 + λ|

1/2 ei (γ+θ)/2 for Re(λ) > 0 and Im(λ) > 0

− |λ1 − λ|
1/2 |λ1 + λ|

1/2 ei (γ+θ)/2 for Re(λ) < 0 and Im(λ) > 0

|λ1 − λ|
1/2 |λ1 + λ|

1/2 ei (γ+θ)/2 for Re(λ) < 0 and Im(λ) < 0

− |λ1 − λ|
1/2 |λ1 + λ|

1/2 ei (γ+θ)/2 for Re(λ) > 0 and Im(λ) < 0.
(7.9)

The arguments γ and θ varies from 0 to 2π. The resulting branch cut of (λ2
1 − λ2)

1/2 is
shown in Fig. 7.4.

Fig. 7.5 shows the values of arguments γ and θ along the real axis when |Re(λ)| > λ1.
It can be found that for all the four cases, as shown in the figure, (λ2

1 − λ2)
1/2 =
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Fig. 7.4 Branch cut of (λ2
1 − λ2)

1/2 (case 1) in the complex λ plane.

i |λ2
1 − λ2|

1/2 . Hence the selected definition of (λ2
1 − λ2)

1/2 and the associated branch
cut result in an evanescent wave in the z direction for |Re(λ)| > λ1.

Fig. 7.5 Argument values of (λ2
1 − λ2)

1/2 along the real axis when |Re(λ)| > λ1 (case
1).

Let us now consider the case 2 in which the branch points λ1,2 lie on the imaginary
axis of the complex λ plane.

λ1 = i
(
µ2 − k2)1/2 and λ2 = −λ1.
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Again, ξ = (k2 − λ2 − µ2)
1/2 is the z wavenumber. For z > 0 and imaginary λ such

that |Im(λ)| < Im(λ1), ξ must be positive imaginary and thus avoid z directional
growing waves,

ξ = i
(
λ

′ 2
1 − λ

′ 2
)1/2

for imaginary λ such that |λ′ | < λ
′

1.

Here the primed variables denote the imaginary part of the respective unprimed
quantities. We will now select an appropriate branch cut and definition for the function
(k2 − λ2 − µ2)

1/2 which satisfies the above condition.
As before, we have

(
λ2

1 − λ2)1/2 = (λ1 − λ)
1/2 (λ1 + λ)

1/2 = |λ1 − λ|
1/2 ei γ/2 |λ1 + λ|

1/2 ei θ/2 .

The complex functions (λ1 − λ) and (λ1 + λ) are shown in Fig. 7.6. As γ varies from

Fig. 7.6 Illustrations of λ1 − λ and λ1 + λ (case 2) in the complex λ plane.

−π/2 to 3π/2, the resulting branch cut of (λ1 − λ)
1/2 is along the imaginary axis from

λ1 to ∞, as shown in Fig. 7.7(a). Also as θ varies from −π/2 to 3π/2, the branch cut
of (λ1 + λ)

1/2 is along the imaginary axis from −λ1 to −∞, as shown in Fig. 7.7(b).
Thus, we have (

λ2
1 − λ2)1/2 =

∣∣λ2
1 − λ2∣∣1/2 ei (γ+θ)/2 , (7.10)

where γ and θ vary from −π/2 to 3π/2. The resulting branch cut is shown in Fig. 7.8.
It can be seen that for |Im(λ)| < λ

′
1, along the imaginary axis, the argument values

are γ = π/2 and θ = π/2 and hence (λ2
1 − λ2)

1/2 = i |λ2
1 − λ2|

1/2 . Thus, for case 2, by
choosing the above definition of (λ2

1 − λ2)
1/2 we ensure an evanescent wave in the z

direction when |Im(λ)| < λ
′
1.
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Fig. 7.7 Branch cuts of (a) (λ1 − λ)
1/2 and (b) (λ1 + λ)

1/2 for case 2 in the complex λ
plane.

Fig. 7.8 Branch cut of (λ2
1 − λ2)

1/2 (case 2) as illustrated in the complex λ plane.

7.2.2 Integration contours for Imp
1 (µ) (km, kp > k and m ̸= p)

The integral Imp
1 (µ), as defined in Eq. (7.6), can now be evaluated using the Cauchy

residue theorem [67] along a contour in the complex λ plane. The contour is different
for each of the cases as described before [34]. Consider a scenario of km, kp > k, m+ p

even and m ̸= p.
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Case 1 (|µ| < k)

The poles, branch points, branch cuts and the integration contour for case 1 (|µ| < k)
are shown in Fig. 7.9.

Fig. 7.9 Integration contour of Imp
1 (µ) for case 1 (|µ| < k) when km, kp > k and km ̸= kp.

Using the Cauchy residue theorem we get

P [Imp
1 (µ)] = Imp

1 (µ : |µ| < k) = πi [Res(km) + Res(kp) + Res(−km) + Res(−kp)]
− (Γ1 + Γ2 + Γ3 + Γ4),

where P[∗] denotes the principal value of the integral and Res(∗) denotes the residue
of the integrand at the specified poles. The integrals Γ1,Γ2,Γ3 and Γ4 are derived in



158 Closed form expressions for the modal coupling coefficient of a perforated panel

detail in Appendix M and the final forms are given below:

Γ1 = i
∞∫

0

[1 − (−1)m e−ay] |λ2
1 + y2|

1/2

(y2 + k2
m)
(
y2 + k2

p

) dy,

Γ2 = −
λ1∫

0

[1 − (−1)m eiax] |λ2
1 − x2|

1/2

(x2 − k2
m)
(
x2 − k2

p

) dx,

Γ3 = −
λ1∫

0

[1 − (−1)m eiax] |λ2
1 − x2|

1/2

(x2 − k2
m)
(
x2 − k2

p

) dx

and Γ4 = i
∞∫

0

[1 − (−1)m e−ay] |λ2
1 + y2|

1/2

(y2 + k2
m)
(
y2 + k2

p

) dy.

(7.11)

It is shown in the Appendix M that the residues at simple poles km, kp,−km and −kp

identically go to zero, i.e.,

Res(km) = Res(kp) = Res(−km) = Res(−kp) = 0. (7.12)

Thus,
Imp

1 (µ : |µ| < k) = −(Γ1 + Γ2 + Γ3 + Γ4).

Substituting for Γ1,Γ2,Γ3 and Γ4 and grouping the real and imaginary terms we get

Imp
1 (µ : |µ| < k) = 2

λ1∫

0

[1 − (−1)m cos ax] |λ2
1 − x2|

1/2

(x2 − k2
m)
(
x2 − k2

p

) dx

− 2 i




λ1∫

0

(−1)m sin ax |λ2
1 − x2|

1/2

(x2 − k2
m)
(
x2 − k2

p

) dx+
∞∫

0

[1 − (−1)m e−ay] |λ2
1 + y2|

1/2

(y2 + k2
m)
(
y2 + k2

p

) dy


 . (7.13)

Case 2 (|µ| > k)

The poles, branch points, branch cuts and the integration contour for case 2 (|µ| > k)
are shown in Fig. 7.10.

Now, using the Cauchy residue theorem we get

P [Imp
1 (µ)] = Imp

1 (µ : |µ| > k)
= πi [Res(km) + Res(kp) + Res(−km) + Res(−kp)] − (Γ1 + Γ2),
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Fig. 7.10 Integration contour of Imp
1 (µ) for case 2 (|µ| > k) when km, kp > k and

km ̸= kp.

where P[∗] denotes the principal value of the integral and Res(∗) denotes the residue of
the integrand at the specified poles. The integrals Γ1 and Γ2 are different from those in
case 1. They are derived in detail in Appendix N and the final forms are given below.

Γ1 = Γ2 = i
∞∫

λ
′
1

[1 − (−1)m e−ay]
∣∣λ′ 2

1 − y2
∣∣1/2

(y2 + k2
m)
(
y2 + k2

p

) dy. (7.14)

The residues are also derived in Appendix N and are identically zero, i.e.,

Res(km) = Res(kp) = Res(−km) = Res(−kp) = 0.

We now have
Imp

1 (µ : |µ| > k) = −(Γ1 + Γ2).

Substituting for Γ1 and Γ2 we get

Imp
1 (µ : |µ| > k) = −2 i

∞∫

λ
′
1

[1 − (−1)m e−ay]
∣∣λ′ 2

1 − y2
∣∣1/2

(y2 + k2
m)
(
y2 + k2

p

) dy. (7.15)
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Having obtained Imp
1 (µ) for |µ| < k and |µ| > k, the Imnpq integral (Eq. (7.4))

simplifies to

Imnpq = 2
k∫

0

[1 − (−1)n cosµb]
(µ2 − k2

n)
(
µ2 − k2

q

) Imp
1 (µ : |µ| < k) dµ

+ 2
∞∫

k

[1 − (−1)n cosµb]
(µ2 − k2

n)
(
µ2 − k2

q

) Imp
1 (µ : |µ| > k) dµ,

(7.16)

where Imp
1 (µ : |µ| < k) and Imp

1 (µ : |µ| > k) can be evaluated using Eqs. (7.13) and
(7.15), respectively. This equation, however, can be used as a general expression for
evaluating the modal coupling coefficient for the remaining types of modal interactions
as well.

7.3 Derivation of the closed forms for Imnpq

Based on the panel wavenumbers km and kn, the modes of a vibrating panel can be
classified into four categories: corner modes, X/Y edge (single edge) modes, XY edge
(double edge) modes and acoustically fast (AF) modes [12, 33, 34]. The associated
panel wavenumbers are given in Table 7.1.

Type Panel wave numbers

Corner km > k, kn > k

X edge km < k, kn > k

Y edge km > k, kn < k

XY edge km < k, kn < k, k2
m + k2

n > k2

Acoustically fast (AF) km < k, kn < k, k2
m + k2

n < k2

Table 7.1 Types of panel modes based on the panel wavenumbers

The coupling coefficient Θ̄mnpq (Eq. (7.1)) quantifies the interaction between the
panel modes ((m,n)th mode with (p, q)th mode) due to the fluid loading. In this study,
approximate closed form expressions are obtained for Θ̄mnpq based on the type of
interacting modes as listed in Table 7.1. It is readily known that there can be as many
as 25 types of interactions. However, as the modal coupling coefficient is commutative
(see Eq. (7.1)), it is only required to find the approximate expressions for 15 types of
interactions: 1) corner - corner, 2) corner - X edge, 3) corner - Y edge, 4) corner - XY
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edge, 5) corner - AF, 6) X edge - X edge, 7) X edge - Y edge, 8) X edge - XY edge, 9)
X edge - AF, 10) Y edge - Y edge, 11) Y edge - XY edge, 12) Y edge - AF, 13) XY edge
- XY edge, 14) XY edge - AF and 15) AF - AF. Let us start by finding the closed form
for the Y edge - Y edge coupling coefficient, which is the simplest of all. While finding
the closed form expressions, only the dominant terms/contributions are taken into
account. Approximations relevant to each of the cases are made at appropriate places
in the derivation. The Mathematica numerical package [74] is used for the symbolic
calculations.

7.3.1 Y edge - Y edge modes (km, kp > k and kn, kq < k)

The derivation of Imnpq for the Y edge - Y edge case is outlined in Fig. 7.11 as a flow
chart. Eq. (7.16) is used to evaluate Imnpq, in which the inner integrals Imp

1 (µ : |µ| < k)
and Imp

1 (µ : |µ| > k) are evaluated using Eqs. (7.13) and (7.15), respectively. Two
cases are considered: 1) km ̸= kp and kn = kq and 2) km = kp and kn = kq.

km ̸= kp and kn = kq

We have the following approximation by Kraichnan [75, 33, 34] (see Appendix P)

[1 − (−1)n cosµb]
(µ2 − k2

n)
(
µ2 − k2

q

)
∣∣∣∣∣
n=q

≈ πb

4k2
n

δ(µ− kn). (7.17)

Substituting this into Eq. (7.16) and knowing that kn < k we get

Imnpq ≈ πb

2k2
n

Imp
1 (kn : kn < k), (7.18)

where Imp
1 (kn : kn < k) can be evaluated using Eq. (7.13). The detailed derivation of

Imnpq when km ̸= kp and kn = kq is given in Appendix O.1. The result is given in the
box below.
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Imnpq = Imnpq
R + i Imnpq

χ , (7.19)

where the real part of Imnpq is given by

Imnpq
R ≈ π2b

2k2
n



kp

√
k2

m − λ2
1 − km

√
k2

p − λ2
1

k3
mkp − kmk3

p

− λ1(−1)mJ1 (aλ1)
a (λ2

1 − k2
m)
(
λ2

1 − k2
p

)


 δnq

and the imaginary part of Imnpq is given by

Imnpq
χ ≈ −πb

k2
n

(A+B + C) δnq

with

A = πλ1(−1)mH1 (aλ1)
2a (λ2

1 − k2
m)
(
λ2

1 − k2
p

) ,

B =
2k
√

2k2 − k2
n + (k2 − k2

n) log
((√

2k2−k2
n+k

)
2

k2−k2
n

)

4k2
mk

2
p

+
log
(

k2+k2
p

k2+k2
m

)

2
(
k2

p − k2
m

)

and C = (−1)m+1

12ak2
mk

2
p

{
2
√

1
a2 + k2 − k2

n −
(
k2 − k2

n

)

×


−4a2

√
k2 − k2

n + 4a2

√
1
a2 + k2 − k2

n − 3a log




(√
1
a2 + k2 − k2

n + 1
a

)
2

k2 − k2
n










.
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Y edge - Y edge
km > k, kn < k ‖ kp > k, kq < k

Γ1,Γ2,Γ3,Γ4

Is
km = kp

R = 0

Imp
1 (µ : |µ| < k) =
−(Γ1 + Γ2 + Γ3 + Γ4)

Eq. (7.13)

R 6= 0

Imp
1 (µ : |µ| < k) =

R− (Γ1 +Γ2 +Γ3 +Γ4)
Eq. (7.20)

Γ1,Γ2

Is
km = kp

R = 0

Imp
1 (µ : |µ| > k) =
−(Γ1 + Γ2)
Eq. (7.15)

R 6= 0

Imp
1 (µ : |µ| > k) =
R − (Γ1 + Γ2)

Imnpq Eq. (7.16)

Is
kn = kq

Imnpq ≈ 0

Kraichnan’s ap-
prox. δ(µ − kn)

Is
km = kp

Imp
1 (kn : kn < k)

Imnpq

Eq. (7.19)

Imp
1 (kn : kn < k)

Imnpq

Eq. (7.22)

|µ| < k

no yes

|µ| > k

no yes

no

yes

no yes

R : contribution from the residues

Fig. 7.11 A flow chart depicting the derivation of Imnpq for the Y edge - Y dege
interaction.

km = kp and kn = kq

In this case, the poles of the integrand of Imp
1 (µ) (Eq. (7.6)) are at λ = ±km and

are of multiplicity two. The residues at the poles when km = kp are evaluated in the
Appendix M and are given below.

Res(−km) = Res(km) = a |λ2
1 − k2

m|
1/2

4 k2
m

.
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Thus, for case 1, the contour integration around the branch cut as shown in Fig. 7.9
(note that for this case km = kp in the figure) results in

P [Imp
1 (µ)] = Imp

1 (µ : |µ| < k) = πi [Res(km) + Res(−km)] − (Γ1 + Γ2 + Γ3 + Γ4).

Substituting for the residues and the Γi’s from Eq. (7.11) we obtain

Imp
1 (µ : |µ| < k) = 2

λ1∫

0

[1 − (−1)m cos ax] |λ2
1 − x2|

1/2

(x2 − k2
m)2 dx

− 2 i


−πa |λ2

1 − k2
m|

1/2

4 k2
m

+
λ1∫

0

(−1)m sin ax |λ2
1 − x2|

1/2

(x2 − k2
m)2 dx

+
∞∫

0

[1 − (−1)m e−ay] |λ2
1 + y2|

1/2

(y2 + k2
m)2 dy


 .

(7.20)
Using Kraichnan’s assumption (Eq. (7.17)) and knowing that kn < k we get

Imnpq ≈ πb

2k2
n

Imp
1 (kn : kn < k), (7.21)

where Imp
1 (kn : kn < k) is evaluated using Eq. (7.20). A detailed derivation of Imnpq

when km = kp and kn = kq is given in Appendix O.1. The result is summarized below.
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Imnpq = Imnpq
R + i Imnpq

χ , (7.22)

where the real part of Imnpq is given by

Imnpq
R ≈ π2b

2k2
n

[
λ2

1

2k3
m

√
k2

m − λ2
1

− λ1(−1)mJ1 (aλ1)
a (k2

m − λ2
1) 2

]
δmp δnq

and the imaginary part of Imnpq is given by

Imnpq
χ ≈

[
−πb

k2
n

(A+B + C) +D

]
δmp δnq

with

A = πλ1(−1)mH1 (aλ1)
2a (λ2

1 − k2
m)2 ,

B =
2k
√

2k2 − k2
n + (k2 − k2

n) log
((√

2k2−k2
n+k

)
2

k2−k2
n

)

4k4
m

+ 1
2 (k2 + k2

m) ,

C = (−1)m+1

12ak4
m

{
2
√

1
a2 + k2 − k2

n −
(
k2 − k2

n

)

×


−4a2

√
k2 − k2

n + 4a2

√
1
a2 + k2 − k2

n − 3a log




(√
1
a2 + k2 − k2

n + 1
a

)
2

k2 − k2
n











and D = π2ab
√
k2

m − λ2
1

4k2
mk

2
n

.

For all the cases when kn ̸= kq, it is assumed that Imnpq ≈ 0 (see Appendix P).

7.3.2 X edge - X edge modes (km, kp < k and kn, kq > k)

For the two instances, when km = kp < k and kn ̸= kq > k and when km = kp < k

and kn = kq > k, the integral Imnpq can be obtained from Eqs. (7.19) and (7.22),
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respectively, with the transformation rule

m ↔ n, p ↔ q and a ↔ b.

And for all the cases, when km ̸= kp, it is assumed that Imnpq ≈ 0.

7.3.3 Acoustically fast (AF) - Y edge modes (km, kn, kq < k,
kp > k and k2

m + k2
n < k2)

The derivation of Imnpq for the AF - Y edge interaction is outlined in Fig. 7.12. The
integral Imnpq can be evaluated using Eq. (7.16). Prior to this, integral forms of the
terms Imp

1 (µ : |µ| < k) (case 1) and Imp
1 (µ : |µ| > k) (case 2) for the AF - Y edge

interaction have to be obtained.

Case 1 (|µ| < k)

The |µ| < k region is divided into two: (a) when λ1 < km and (b) when λ1 > km, where
λ1 =

√
k2 − µ2 [34].

(a) λ1 < km

λ1 < km implies that k2 − µ2 < k2
m, i.e., µ2 > k2 − k2

m. Therefore in this region

√
k2 − k2

m < |µ| < k.

As λ1 < km, the integration contour for Imp
1 (µ) (Eq. (7.6)) is the same as that shown

in Fig. 7.9, except that λ1 < km < k. Therefore, using Eq. (7.13)

Imp
1 (µ :

√
k2 − k2

m < |µ| < k) = 2
λ1∫

0

[1 − (−1)m cos ax] |λ2
1 − x2|

1/2

(x2 − k2
m)
(
x2 − k2

p

) dx

− 2 i




λ1∫

0

(−1)m sin ax |λ2
1 − x2|

1/2

(x2 − k2
m)
(
x2 − k2

p

) dx+
∞∫

0

[1 − (−1)m e−ay] |λ2
1 + y2|

1/2

(y2 + k2
m)
(
y2 + k2

p

) dy


 . (7.23)

(b) λ1 > km

λ1 > km implies that k2 − µ2 > k2
m, i.e., µ2 < k2 − k2

m. Therefore in this region

|µ| <
√
k2 − k2

m
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AF - Y edge
km, kn < k and k2m + k2n < k2 ‖ kp > k, kq < k

Γ1,Γ2,Γ3,Γ4

Since km 6= kp
R = 0

Imp
1 (µ : |µ| <

√
k2 − k2m) =

−(Γ1 + Γ2 + Γ3 + Γ4)
Eq. (7.25)

Γ1,Γ2,Γ3,Γ4

Since km 6= kp
R = 0

Imp
1 (µ :

√
k2 − k2m < |µ| < k) =

−(Γ1 + Γ2 + Γ3 + Γ4)
Eq. (7.23)

Γ1,Γ2

Since km 6= kp
R = 0

Imp
1 (µ : |µ| > k) =
−(Γ1 + Γ2)
Eq. (7.26)

Imnpq Eq. (7.27)

Is
kn = kq

Imnpq ≈ 0

Kraichnan’s ap-
prox. δ(µ − kn)

Imp
1 (kn : kn <

√
k2 − k2m)

Imnpq

Eq. (7.29)

|µ| <
√
k2 − k2m

√
k2 − k2m < |µ| < k |µ| > k

no

yes
R : contribution from the residues

Fig. 7.12 A flow chart depicting the derivation of Imnpq for the AF - Y edge interaction.

and since km is on the branch cut, Eq. (7.6) is used to evaluate Imp
1 (µ). The integration

contour is shown in Fig. 7.13. Now, using the Cauchy residue theorem we get

P [Imp
1 (µ)] = Imp

1 (µ : |µ| <
√
k2 − k2

m)
= πi [Res(km) + Res(kp) + Res(−km) + Res(−kp)] − (Γ1 + Γ2 + Γ3 + Γ4),
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Fig. 7.13 Integration contour of Imp
1 (µ) for the AF - Y edge modal interaction when

km < λ1 < kp.

where the residues are evaluated at the specified poles using the appropriate form
of the square root function defined in Eq. (7.9). It is important to mention that for
the residue at λ = km, the value of the square root function in the first quadrant
(Re(λ) > 0 and Im(λ) > 0) is used and for residue at λ = −km, the value of the square
root function in the second quadrant (Re(λ) < 0 and Im(λ) > 0) is used. The integrals
Γ1,Γ2,Γ3 and Γ4 are derived in Appendix M and the final forms are given below.

Γ1 = i
∞∫

0

[1 − (−1)m e−ay] |λ2
1 + y2|

1/2

(y2 + k2
m)
(
y2 + k2

p

) dy,

Γ2 = −Pkm

λ1∫

0

[1 − (−1)m eiax] |λ2
1 − x2|

1/2

(x2 − k2
m)
(
x2 − k2

p

) dx,

Γ3 = −Pkm

λ1∫

0

[1 − (−1)m eiax] |λ2
1 − x2|

1/2

(x2 − k2
m)
(
x2 − k2

p

) dx

and Γ4 = i
∞∫

0

[1 − (−1)m e−ay] |λ2
1 + y2|

1/2

(y2 + k2
m)
(
y2 + k2

p

) dy,

(7.24)

Note that while finding Γ2 and Γ3, the principal value of the integrals with respect
to x = km has to be considered and it is denoted as Pkm in the above equation. It is
shown in the Appendix M that when km ≠ kp, the residues at simple poles km, kp,−km
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and −kp identically goes to zero. Hence,

Imp
1 (µ : |µ| <

√
k2 − k2

m) = −(Γ1 + Γ2 + Γ3 + Γ4).

Substituting for Γ1,Γ2,Γ3 and Γ4 and rearranging we get

Imp
1 (µ : |µ| <

√
k2 − k2

m) = 2 Pkm

λ1∫

0

[1 − (−1)m cos ax] |λ2
1 − x2|

1/2

(x2 − k2
m)
(
x2 − k2

p

) dx

− 2 i


Pkm

λ1∫

0

(−1)m sin ax |λ2
1 − x2|

1/2

(x2 − k2
m)
(
x2 − k2

p

) dx+
∞∫

0

[1 − (−1)m e−ay] |λ2
1 + y2|

1/2

(y2 + k2
m)
(
y2 + k2

p

) dy


 .

(7.25)

Case 2 (|µ| > k)

The integration contour for Imp
1 (µ) when |µ| > k is the same as that shown in Fig. 7.10,

except that km < k. Therefore, using Eq. (7.15)

Imp
1 (µ : |µ| > k) = −2 i

∞∫

λ
′
1

[1 − (−1)m e−ay]
∣∣λ′ 2

1 − y2
∣∣1/2

(y2 + k2
m)
(
y2 + k2

p

) dy. (7.26)

Integral Imnpq

Imnpq (Eq. (7.16)) is now modified for the AF - Y edge interaction as

Imnpq = 2

√
k2−k2

m∫

0

[1 − (−1)n cosµb]
(µ2 − k2

n)
(
µ2 − k2

q

) Imp
1 (µ : |µ| <

√
k2 − k2

m) dµ

+ 2
k∫

√
k2−k2

m

[1 − (−1)n cosµb]
(µ2 − k2

n)
(
µ2 − k2

q

) Imp
1 (µ :

√
k2 − k2

m < |µ| < k) dµ

+ 2
∞∫

k

[1 − (−1)n cosµb]
(µ2 − k2

n)
(
µ2 − k2

q

) Imp
1 (µ : |µ| > k) dµ,

(7.27)

where Imp
1 (µ : |µ| <

√
k2 − k2

m), Imp
1 (µ :

√
k2 − k2

m < |µ| < k) and Imp
1 (µ : |µ| > k)

can be evaluated using Eqs. (7.25), (7.23) and (7.26), respectively.
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Assume that kn = kq < k, and we have km < k, kp > k and k2
m + k2

n < k2. Now,
substituting the Kraichnan’s approximation (Eq. (7.17)) into Eq. (7.27) and using the
fact that µ = kn <

√
k2 − k2

m we find that only the first term applies, i.e.,

Imnpq ≈ πb

2k2
n

Imp
1 (kn : kn <

√
k2 − k2

m), (7.28)

where Imp
1 (kn : kn <

√
k2 − k2

m) can be evaluated using Eq. (7.25). A detailed
derivation of Imnpq is given in Appendix O.2 and the result is given below.
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Imnpq ≈ (A + B + C) δnq, (7.29)

where

A = − πb

k2
n

 πλ1(−1)mJ1 (aλ1)
2a (λ2

1 − k2
m)
(
λ2

1 − k2
p

) +
π
(

km

√
k2

p − λ2
1 − ikp

√
λ2

1 − k2
m

)
2k3

mkp − 2kmk3
p

 ,

B = iπ2bλ1(−1)m+1H1 (aλ1)
2ak2

n (λ2
1 − k2

m)
(
λ2

1 − k2
p

)
and

C = − iπb

k2
n

C1 km + 2(π + C2)
√

k2 − k2
m − k2

n

4kmk2
p

+
log
(

k2+k2
p

k2+k2
m

)
2
(
k2

p − k2
m

)
+(−1)m C3

2kmk2
p

+
(−1)m

(
C4 − aC5

√
k2 − k2

m − k2
n

)
2k2

p

]

with

C1 = 2 tanh−1

(
4kk2

m

(√
2k2 − k2

n + k
)

4k2
m

[
k
(√

2k2 − k2
n + 2k

)
− k2

n

]
+
[
k
(
2
√

2k2 − k2
n + 3k

)
− k2

n

]
(k2 − k2

n)

)

+ log
(

−4k2
m

[
k2

n − k
(
2
√

2k2 − k2
n + 3k

)]
− 2k

(
2
√

2k2 − k2
n + 5k

)
k2

n

(k2 − k2
n) (k2 + 4k2

m − k2
n)

+
k3 (12

√
2k2 − k2

n + 17k
)

+ k4
n

(k2 − k2
n) (k2 + 4k2

m − k2
n)

)
,

C2 = −i log
(

k4 − 2ikkm

√
(k2

n − 2k2) (−k2 + k2
m + k2

n) − 3k2k2
m − k2k2

n + k2
mk2

n

(k2 + k2
m) (k2 − k2

n)

)
,

C3 = km log

 k2 − k2
n(√

1
a2 + k2 − k2

n + 1
a

)
2

− 2π
√

k2 − k2
m − k2

n

+ i
√

k2 − k2
m − k2

n log
(

2ikm

√
(a2k2 − a2k2

n + 1) (k2 − k2
m − k2

n)
(k2 − k2

n) (a2k2
m + 1)

+
k2

m

(
a2k2 − a2k2

n + 2
)

− k2 + k2
n

(k2 − k2
n) (a2k2

m + 1)

)
,

C4 = 2
(√

a2k2 − a2k2
n + 1 − a

√
k2 − k2

n

)
and

C5 = 2 log
(

km√
(k2 − k2

n) (k2 − k2
m − k2

n) + k2 − k2
n

)

+ log

(k2 − k2
n

) [
a2 (2k2 − k2

m − 2k2
n

)
+ 2a

√
(a2k2 − a2k2

n + 1) (k2 − k2
m − k2

n) + 1
]

a2k2
m + 1

 .



172 Closed form expressions for the modal coupling coefficient of a perforated panel

For all the cases, when kn ̸= kq, it is assumed that Imnpq ≈ 0.

7.3.4 Y edge - AF modes (kn, kp, kq < k, km > k and k2
p +k2

q < k2)

When kn = kq, the integral Imnpq can be obtained from Eq. (7.29) using the trans-
formation rule m ↔ p. And for all the cases, when kn ≠ kq, it is assumed that
Imnpq ≈ 0.

7.3.5 AF - X edge modes (km, kn, kp < k, kq > k and k2
m+k2

n < k2)

When km = kp, the integral Imnpq can be obtained from Eq. (7.29) using the transfor-
mation rules m ↔ n, p ↔ q and a ↔ b. For all the cases, when km ≠ kp, it is assumed
that Imnpq ≈ 0.

7.3.6 X edge - AF modes (km, kp, kq < k, kn > k and k2
p +k2

q < k2)

When km = kp, the integral Imnpq can be obtained from Eq. (7.29) using the transfor-
mation rules m ↔ q, p ↔ n and a ↔ b. For all the cases, when km ≠ kp, it is assumed
that Imnpq ≈ 0.

7.3.7 Y edge - corner modes (km, kp, kq > k and kn < k)

The derivation of Imnpq for the Y edge - corner interaction is outlined in Fig. 7.14. The
general expression for the integral Imnpq is given by Eq. (7.16) as

Imnpq = 2
k∫

0

[1 − (−1)n cosµb]
(µ2 − k2

n)
(
µ2 − k2

q

) Imp
1 (µ : |µ| < k) dµ

+ 2
∞∫

k

[1 − (−1)n cosµb]
(µ2 − k2

n)
(
µ2 − k2

q

) Imp
1 (µ : |µ| > k) dµ,
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Y edge - Corner
km > k, kn < k ‖ kp, kq > k

Is
km = kp

R = 0

Γ1,Γ2,Γ3,Γ4

Imp
1 (µ : |µ| < k) =
−(Γ1 + Γ2 + Γ3 + Γ4)

Imnpq
1

Eq. (O.33)

Γ1,Γ2

Imp
1 (µ : |µ| > k) =
−(Γ1 + Γ2) ≈ 0

Imnpq
2 ≈ 0
Eq. (O.35)

Imnpq

Eq. (O.36)

R 6= 0

Γ1,Γ2,Γ3,Γ4

Imp
1 (µ : |µ| < k) =

−(Γ1+Γ2+Γ3+Γ4)+R

Imnpq
1

Eq. (O.41)

Γ1,Γ2

Imp
1 (µ : |µ| > k) =
−(Γ1 + Γ2) +R ≈ 0

Imnpq
2 ≈ 0
Eq. (O.44)

Imnpq

Eq. (O.45)

Imnpq

Eq. (7.30)

no

|µ| < k |µ| > k

yes

|µ| < k |µ| > k

R : contribution from the residues

Fig. 7.14 A flow chart depicting the derivation of Imnpq for the Y edge - corner
interaction.

where Imp
1 (µ : |µ| < k) is obtained from Eq. (7.13)

Imp
1 (µ : |µ| < k) = 2

λ1∫

0

[1 − (−1)m cos ax] |λ2
1 − x2|

1/2

(x2 − k2
m)
(
x2 − k2

p

) dx

− 2 i




λ1∫

0

(−1)m sin ax |λ2
1 − x2|

1/2

(x2 − k2
m)
(
x2 − k2

p

) dx+
∞∫

0

[1 − (−1)m e−ay] |λ2
1 + y2|

1/2

(y2 + k2
m)
(
y2 + k2

p

) dy




and Imp
1 (µ : |µ| > k) is evaluated using Eq. (7.15)

Imp
1 (µ : |µ| > k) = −2 i

∞∫

λ
′
1

[1 − (−1)m e−ay]
∣∣λ′ 2

1 − y2
∣∣1/2

(y2 + k2
m)
(
y2 + k2

p

) dy.
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Appendix O.3 presents a detailed derivation of Imnpq. Expressions are obtained for
two different cases: (a) when km ̸= kp and (b) when km = kp and the results can be
summarized as given below.

Imnpq ≈ Aδmp +B, (7.30)

where
A =

πa
(
π + 2i tanh−1 (kn

k

))

2kmknk2
q

and

B =
π
[
k2
(

log
(

kn+k
k−kn

)
− iπ

)
+ 2kkn + k2

n

(
log
(

k−kn

kn+k

)
+ iπ

)]

2k2
mknk2

pk
2
q

.

7.3.8 X edge - corner modes (kn, kp, kq > k and km < k)

The integral Imnpq can be obtained from Eq. (7.30) using the transformation rules
m ↔ n, p ↔ q and a ↔ b.

7.3.9 AF - AF modes (km, kn, kq, kp < k, k2
m+k2

n < k2 and k2
p+k2

q <

k2)

The derivation of Imnpq for the AF - AF interaction is outlined in Fig. 7.15. Imnpq can
be evaluated using Eq. (7.16). For this, the integral forms of the terms Imp

1 (µ : |µ| < k)
(case 1) and Imp

1 (µ : |µ| > k) (case 2) for the AF - AF interaction have to be obtained.

Case 1 (|µ| < k)

The following derivation assumes that km < kp. Further, the region |µ| < k is divided
into three depending on the value of λ1 (=

√
k2 − µ2): (a) when λ1 < km, (b) when

km < λ1 < kp and (c) when λ1 > kp.

(a) λ1 < km

λ1 < km implies that k2 − µ2 < k2
m, i.e., µ2 > k2 − k2

m. Therefore in this region

√
k2 − k2

m < |µ| < k.



7.3 Derivation of the closed forms for Imnpq 175

AF - AF
km, kn < k and k2m+k2n < k2 ‖ kp, kq < k and k2p+k2q < k2

Is
km = kp

R = 0

Γ1,Γ2,Γ3,Γ4

Imp
1 (µ : |µ| <√
k2 − k2p) =

−(Γ1 +Γ2 +Γ3 +Γ4)
Eq. (7.40)

Γ1,Γ2,Γ3,Γ4

Imp
1 (µ :

√
k2 − k2p <

|µ| <
√
k2 − k2m) =

−(Γ1 + Γ2 + Γ3 + Γ4)
Eq. (7.32)

Γ1,Γ2,Γ3,Γ4

Imp
1 (µ :

√
k2 − k2m <

|µ| < k) =
−(Γ1 + Γ2 + Γ3 + Γ4)

Eq. (7.31)

Γ1,Γ2

Imp
1 (µ : |µ| > k) =
−(Γ1 + Γ2)
Eq. (7.41)

Imnpq

Eq. (7.42)

Is
kn = kq

Imnpq ≈ 0

Kraichnan’s ap-
prox. δ(µ − kn)

Imp
1 (kn : kn <

√
k2 − k2p)

Imnpq

Eq. (7.44)

Is
kn = kq

Imnpq

Using Eq. (7.44)

Imnpq

Eq. (7.45)

Kraichnan’s ap-
prox. δ(λ − km)

Kraichnan’s ap-
prox. δ(µ − kn)

Imnpq

Eq. (7.46)

no Assum: km < kp

|µ| <
√
k2 − k2p

√
k2 − k2p < |µ| <

√
k2 − k2m

√
k2 − k2m < |µ| < k

|µ| > k

no

yes

no

Assum: kn < kq

yes

yes

T
ra

n
sf

or
m

a
ti

on
ru

le
:
m
↔
n
,p
↔
q,
a
↔
b

R : contribution from the residues

Fig. 7.15 A flow chart depicting the derivation of Imnpq for the AF - AF interaction.

As λ1 < km, the integration contour for Imp
1 (µ) (Eq. (7.6)) is the same as that shown

in Fig. 7.9, except that λ1 < km, kp < k. Therefore, using Eq. (7.13)

Imp
1 (µ :

√
k2 − k2

m < |µ| < k) = 2
λ1∫

0

[1 − (−1)m cos ax] |λ2
1 − x2|

1/2

(x2 − k2
m)
(
x2 − k2

p

) dx

− 2 i




λ1∫

0

(−1)m sin ax |λ2
1 − x2|

1/2

(x2 − k2
m)
(
x2 − k2

p

) dx+
∞∫

0

[1 − (−1)m e−ay] |λ2
1 + y2|

1/2

(y2 + k2
m)
(
y2 + k2

p

) dy


 . (7.31)
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(b) km < λ1 < kp

km < λ1 < kp implies that k2
m < k2 − µ2 < k2

p, i.e., k2 − k2
p < µ2 < k2 − k2

m. Therefore
in this region √

k2 − k2
p < |µ| <

√
k2 − k2

m.

The integration contour for evaluating Imp
1 (µ) (Eq. (7.6)) is the same as that shown in

Fig. 7.13, except that λ1 < kp < k. Therefore, using Eq. (7.25)

Imp
1

(
µ :
√
k2 − k2

p < |µ| <
√
k2 − k2

m

)
= 2 Pkm

λ1∫

0

[1 − (−1)m cos ax] |λ2
1 − x2|

1/2

(x2 − k2
m)
(
x2 − k2

p

) dx

− 2 i


Pkm

λ1∫

0

(−1)m sin ax |λ2
1 − x2|

1/2

(x2 − k2
m)
(
x2 − k2

p

) dx+
∞∫

0

[1 − (−1)m e−ay] |λ2
1 + y2|

1/2

(y2 + k2
m)
(
y2 + k2

p

) dy


 .

(7.32)

(c) λ1 > kp

λ1 > kp implies that k2 − µ2 > k2
p, i.e., µ2 < k2 − k2

p. Therefore in this region

|µ| <
√
k2 − k2

p,

and since km and kp are on the branch cut, Eq. (7.6) is used to evaluate Imp
1 (µ). The

integration contour is shown in Fig. 7.16. Now, using the Cauchy residue theorem we

Fig. 7.16 Integration contour of Imp
1 (µ) for the AF - AF modal interaction when

km < kp < λ1.
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get

P [Imp
1 (µ)] = Imp

1

(
µ : |µ| <

√
k2 − k2

p

)

= πi [Res(km) + Res(kp) + Res(−km) + Res(−kp)] − (Γ1 + Γ2 + Γ3 + Γ4), (7.33)

where the residues are evaluated at the specified poles using the appropriate form of
the square root function defined in Eq. (7.9). Note that, while evaluating the residues
at λ = km and λ = kp, the value of the square root function in the first quadrant
(Re(λ) > 0 and Im(λ) > 0) is used and while evaluating the residues at λ = −km and
λ = −kp, the value of the square root function in the second quadrant (Re(λ) < 0 and
Im(λ) > 0) is used.

The residues are evaluated in the similar way as explained in the Appendix M. It
can be deduced from Appendix M that when km ̸= kp, the residues at λ = ±km and
λ = ±kp are identically equal to zero. Therefore, when km ̸= kp

Res(km) + Res(kp) + Res(−km) + Res(−kp) = 0. (7.34)

When km = kp, the poles at λ = ±km are of order two. As mentioned before, while
evaluating the residue at λ = km, the definition of the square root function in the first
quadrant (from Eq. (7.9)) has to be used. It can be seen from Figs. 7.4 and 7.16 that
near λ = km, γ = 2π and θ = 0. Thus,

(
λ2

1 − λ2)1/2 =
∣∣λ2

1 − λ2∣∣1/2 ei (γ+θ)/2 = −
∣∣λ2

1 − λ2∣∣1/2 .

Therefore,

Res(km) = − d
dλ

[[
1 − (−1)m eiλa

]
|λ2

1 − λ2|
1/2

(λ+ km)2

]∣∣∣∣∣
λ=km

.

Thus, knowing that km = mπ/a we get

Res(km) = ia |λ2
1 − k2

m|
1/2

4 k2
m

. (7.35)

Now, while evaluating the residue at λ = −km, the definition of the square root function
in the second quadrant (from Eq. (7.9)) has to be used. Near λ = −km, we have γ = 2π
and θ = 0 (see Figs. 7.4 and 7.16). Thus,

(
λ2

1 − λ2)1/2 = −
∣∣λ2

1 − λ2∣∣1/2 ei (γ+θ)/2 =
∣∣λ2

1 − λ2∣∣1/2 .
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Therefore,

Res(−km) = d
dλ

[[
1 − (−1)m eiλa

]
|λ2

1 − λ2|
1/2

(λ− km)2

]∣∣∣∣∣
λ=−km

.

Thus, knowing that km = mπ/a we get

Res(−km) = − ia |λ2
1 − k2

m|
1/2

4 k2
m

. (7.36)

Therefore, when km = kp (using Eqs. (7.35) and (7.36))

Res(km) + Res(kp) + Res(−km) + Res(−kp) = Res(km) + Res(−km) = 0. (7.37)

Hence, for all the cases (km ̸= kp or km = kp), Eq. (7.33) results in

Imp
1

(
µ : |µ| <

√
k2 − k2

p

)
= −(Γ1 + Γ2 + Γ3 + Γ4), (7.38)

where the integrals Γ1,Γ2,Γ3 and Γ4 are derived in Appendix M and the final forms
are given below.

Γ1 = i
∞∫

0

[1 − (−1)m e−ay] |λ2
1 + y2|

1/2

(y2 + k2
m)
(
y2 + k2

p

) dy,

Γ2 = −Pkm,kp

λ1∫

0

[1 − (−1)m eiax] |λ2
1 − x2|

1/2

(x2 − k2
m)
(
x2 − k2

p

) dx,

Γ3 = −Pkm,kp

λ1∫

0

[1 − (−1)m eiax] |λ2
1 − x2|

1/2

(x2 − k2
m)
(
x2 − k2

p

) dx

and Γ4 = i
∞∫

0

[1 − (−1)m e−ay] |λ2
1 + y2|

1/2

(y2 + k2
m)
(
y2 + k2

p

) dy.

(7.39)

Note that, while finding Γ2 and Γ3, the principal value of the integrals with respect
to x = km and x = kp have to be considered and it is denoted as Pkm,kp in the above
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equation. Substituting for Γ1,Γ2,Γ3 and Γ4 and rearranging we get

Imp
1

(
µ : |µ| <

√
k2 − k2

p

)
= 2 Pkm,kp

λ1∫

0

[1 − (−1)m cos ax] |λ2
1 − x2|

1/2

(x2 − k2
m)
(
x2 − k2

p

) dx

− 2 i


Pkm,kp

λ1∫

0

(−1)m sin ax |λ2
1 − x2|

1/2

(x2 − k2
m)
(
x2 − k2

p

) dx+
∞∫

0

[1 − (−1)m e−ay] |λ2
1 + y2|

1/2

(y2 + k2
m)
(
y2 + k2

p

) dy


 .

(7.40)

Case 2 (|µ| > k)

The integration contour for Imp
1 (µ) when |µ| > k is the same as that shown in Fig. 7.10,

except that km, kp < k. Therefore, using Eq. (7.15)

Imp
1 (µ : |µ| > k) = −2 i

∞∫

λ
′
1

[1 − (−1)m e−ay]
∣∣λ′ 2

1 − y2
∣∣1/2

(y2 + k2
m)
(
y2 + k2

p

) dy, (7.41)

where λ′
1 =

√
µ2 − k2.

Integral Imnpq

Now, Imnpq (Eq. (7.4)) for the AF - AF modal interaction can be written as

Imnpq = 2

√
k2−k2

p∫

0

[1 − (−1)n cosµb]
(µ2 − k2

n)
(
µ2 − k2

q

) Imp
1

(
µ : |µ| <

√
k2 − k2

p

)
dµ

+ 2

√
k2−k2

m∫

√
k2−k2

p

[1 − (−1)n cosµb]
(µ2 − k2

n)
(
µ2 − k2

q

) Imp
1

(
µ :
√
k2 − k2

p < |µ| <
√
k2 − k2

m

)
dµ

+ 2
k∫

√
k2−k2

m

[1 − (−1)n cosµb]
(µ2 − k2

n)
(
µ2 − k2

q

) Imp
1

(
µ :
√
k2 − k2

m < |µ| < k
)

dµ

+ 2
∞∫

k

[1 − (−1)n cosµb]
(µ2 − k2

n)
(
µ2 − k2

q

) Imp
1 (µ : |µ| > k) dµ,

(7.42)
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where the Imp
1 (µ) terms in the four integrals can be evaluated using Eqs. (7.40), (7.32),

(7.31) and (7.41).

(a) km ̸= kp and kn = kq

Assume that kn = kq < k, and km ̸= kp < k (km < kp), k2
m + k2

n < k2 and k2
p + k2

q < k2.
Substituting the Kraichnan’s assumption (Eq. (7.17)) into Eq. (7.42) and knowing that
kn <

√
k2 − k2

p we get

Imnpq ≈ πb

2k2
n

Imp
1

(
kn : kn <

√
k2 − k2

p

)
, (7.43)

where Imp
1
(
kn : kn <

√
k2 − k2

p

)
can be evaluated using Eq. (7.40). A detailed deriva-

tion of Imnpq is given in Appendix O.4 and the result is given below.

Imnpq ≈ (A+B + C +D) δnq, (7.44)

where

A =
iπ2b

(
kp

√
λ2

1 − k2
m − km

√
λ2

1 − k2
p

)

2k2
n

(
k3

mkp − kmk3
p

) ,

B = − iπb
k2

n




log
(

k2
m+λ2

1
k2

p+λ2
1

)

2k2
m − 2k2

p

+
λ1

(
km tan−1

(
λ1
kp

)
− kp tan−1

(
λ1
km

))

k3
mkp − kmk3

p


 ,

C = iπbλ1(−1)m+1

2kmk2
nkp

(
k2

m − k2
p

)
[
km

(
akp log

(
k2

m

(
k2

p + λ2
1
)

k2
p (k2

m + λ2
1)

)
− 2 tan−1

(
λ1

kp

))

+2kp tan−1
(
λ1

km

)]

and

D = iπb(−1)m+1

2k2
n

(
k2

m − k2
p

)
[
2akm

(
tan−1

(
k

km

)
− tan−1

(
λ1

km

))

+2akp

(
tan−1

(
λ1

kp

)
− tan−1

(
k

kp

))
+ log

(
(k2 + k2

m)
(
k2

p + λ2
1
)

(
k2 + k2

p

)
(k2

m + λ2
1)

)]
.

If km > kp and kn = kq, Imnpq can be obtained by using the transformation rule
m ↔ p and n ↔ q on the above equation (remember that Imnpq is symmetric).
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(b) km = kp and kn ̸= kq

When km = kp and kn ̸= kq (kn < kq), Imnpq can be evaluated using

Imnpq ≈ πa

2k2
m

Inq
1

(
km : km <

√
k2 − k2

q

)
,

where Inq
1
(
km : km <

√
k2 − k2

q

)
is obtained from Imp

1
(
kn : kn <

√
k2 − k2

p

)
using the

transformation rule m ↔ n, p ↔ q and a ↔ b. The same transformation rule can be
used with Eq. (7.44) to obtain the closed form for Imnpq. When kn > kq we can use
the transformation rule m ↔ q, p ↔ n and a ↔ b in Eq. (7.44) instead.

(c) km = kp and kn = kq

Now, when km = kp and kn = kq, Imnpq is evaluated using the Kraichnan’s approxima-
tion [34] for both the λ and µ domains. We have from Eq. (7.4)

Imnpq = 4
∞∫

0

∞∫

0

[1 − (−1)m cosλa] [1 − (−1)n cosµb] (k2 − λ2 − µ2)
1/2

(λ2 − k2
m)
(
λ2 − k2

p

)
(µ2 − k2

n)
(
µ2 − k2

q

) dλ dµ. (7.45)

When km = kp, Kraichnan’s assumption leads to

[1 − (−1)m cosλa]
(λ2 − k2

m)
(
λ2 − k2

p

)
∣∣∣∣∣
m=p

≈ πa

4k2
m

δ(λ− km).

Similarly, when kn = kq

[1 − (−1)n cosµb]
(µ2 − k2

n)
(
µ2 − k2

q

)
∣∣∣∣∣
n=q

≈ πb

4k2
n

δ(µ− kn).

For λ = km and µ = kn (kn < k and km <
√
k2 − k2

n),

(
k2 − λ2 − µ2)1/2

∣∣∣
(λ,µ)=(km,kn)

=
∣∣k2 − k2

m − k2
n

∣∣1/2 .

In the above step, a positive sign is chosen for the square root in order to have a
positive traveling wave in the z direction. Substituting the above results, Eq. (7.45)
can be approximated as

Imnpq ≈ π2ab

4k2
mk

2
n

∣∣k2 − k2
m − k2

n

∣∣1/2 δmp δnq. (7.46)
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When km ̸= kp and kn ̸= kq, it is assumed that Imnpq ≈ 0 (a similar case for the Y
edge - Y edge interaction is explained in Appendix P).

7.3.10 XY edge - XY edge modes (km, kn, kp, kq < k, k2
m+k2

n > k2

and k2
p + k2

q > k2)

The derivation of Imnpq for the XY edge - XY edge interaction is outlined in Fig. 7.17.
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XY edge - XY edge
km, kn < k and k2m+k2n > k2 ‖ kp, kq < k and k2p+k2q > k2

Is
km = kp

R = 0

Γ1,Γ2,Γ3,Γ4

Imp
1 (µ : |µ| < k) =
−(Γ1 +Γ2 +Γ3 +Γ4)

Eq. (7.48)

Γ1,Γ2

Imp
1 (µ : |µ| > k) =
−(Γ1 + Γ2)
Eq. (7.49)

Imnpq

Eq. (7.47)

Is
kn = kq

Imnpq ≈ 0

Kraichnan’s ap-
prox. δ(µ − kn)

Imp
1 (kn : kn < k)

Imnpq

Eq. (7.51)

Is
kn = kq

Imnpq

Using Eq. (7.51)

Imnpq

Eq. (7.45)

Kraichnan’s ap-
prox. δ(λ − km)

Kraichnan’s ap-
prox. δ(µ − kn)

Imnpq

Eq. (7.52)

no

|µ| < k |µ| > k

no

yes

no

yes

yes

T
ra

n
sf

or
m

at
io

n
ru

le
:
m
↔
n
,p
↔
q,
a
↔
b

R : contribution from the residues

Fig. 7.17 A flow chart depicting the derivation of Imnpq for the XY edge - XY edge
interaction.
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The working expression for the integral Imnpq is given by (Eq. (7.16))

Imnpq = 2
k∫

0

[1 − (−1)n cosµb]
(µ2 − k2

n)
(
µ2 − k2

q

) Imp
1 (µ : |µ| < k) dµ

+ 2
∞∫

k

[1 − (−1)n cosµb]
(µ2 − k2

n)
(
µ2 − k2

q

) Imp
1 (µ : |µ| > k) dµ, (7.47)

where Imp
1 (µ : |µ| < k) can be obtained from Eq. (7.13) (assuming km ̸= kp and hence

the contribution from the poles is zero)

Imp
1 (µ : |µ| < k) = 2

λ1∫

0

[1 − (−1)m cos ax] |λ2
1 − x2|

1/2

(x2 − k2
m)
(
x2 − k2

p

) dx

− 2 i




λ1∫

0

(−1)m sin ax |λ2
1 − x2|

1/2

(x2 − k2
m)
(
x2 − k2

p

) dx+
∞∫

0

[1 − (−1)m e−ay] |λ2
1 + y2|

1/2

(y2 + k2
m)
(
y2 + k2

p

) dy


 , (7.48)

where the first and second integrals on the right hand side have to be evaluated with
due consideration of whether km < λ1 and/or kp < λ1 (λ2

1 = k2 − µ2). The term
Imp

1 (µ : |µ| > k) in Eq. (7.47) can be evaluated using Eq. (7.15) (assuming km ≠ kp

and hence the contribution from the poles is zero)

Imp
1 (µ : |µ| > k) = −2 i

∞∫

λ
′
1

[1 − (−1)m e−ay]
∣∣λ′ 2

1 − y2
∣∣1/2

(y2 + k2
m)
(
y2 + k2

p

) dy, (7.49)

where λ′ 2
1 = µ2 − k2.

(a) km ̸= kp and kn = kq

Assume that kn = kq < k, and km ≠ kp < k. Substituting the Kraichnan’s approxima-
tion (Eq. (7.17)) into Eq. (7.47) and knowing that kn < k we get

Imnpq ≈ πb

2k2
n

Imp
1 (kn : kn < k) , (7.50)

where Imp
1 (kn : kn < k) can be evaluated using Eq. (7.48) by substituting µ = kn. Note

that, since km, kp > λ1 (=
√
k2 − k2

n), there exist no regular singularities in the first
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and second integrals on the right hand side of Eq. (7.48). A detailed derivation of
Imnpq is given in Appendix O.5 and the result is given below.

Imnpq = Imnpq
R + i Imnpq

χ , (7.51)

where the real part of Imnpq is given by

Imnpq
R ≈ π2b

2k2
n



kp

√
k2

m − λ2
1 − km

√
k2

p − λ2
1

k3
mkp − kmk3

p

− λ1(−1)mJ1 (aλ1)
ak2

mk
2
p


 δnq

and the imaginary part is

Imnpq
χ ≈ −πb

k2
n

(A+B + C) δnq

with
A = πλ1(−1)mH1 (aλ1)

2ak2
mk

2
p

,

B =
2k
√

2k2 − k2
n + (k2 − k2

n) log
((√

2k2−k2
n+k

)
2

k2−k2
n

)

4k2
mk

2
p

+
log
(

k2+k2
p

k2+k2
m

)

2
(
k2

p − k2
m

)

and

C = (−1)m+1

12ak2
mk

2
p

{
2
√

1
a2 + k2 − k2

n −
(
k2 − k2

n

)

×


−4a2

√
k2 − k2

n + 4a2

√
1
a2 + k2 − k2

n − 3a log




(√
1
a2 + k2 − k2

n + 1
a

)
2

k2 − k2
n










.

(b) km = kp and kn ̸= kq

Similarly, when km = kp and kn ̸= kq, Imnpq can be evaluated using

Imnpq ≈ πa

2k2
m

Inq
1 (km : km < k) ,

where Inq
1 (km : km < k) is obtained from Imp

1 (kn : kn < k) using the transformation
rule m ↔ n, p ↔ q and a ↔ b. The same transformation rule can be used with
Eq. (7.51) to obtain the closed form for Imnpq.
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(c) km = kp and kn = kq

When km = kp and kn = kq, Imnpq is evaluated using the Kraichnan’s approximation
for both λ and µ domains. We have Eq. (7.45)

Imnpq = 4
∞∫

0

∞∫

0

[1 − (−1)m cosλa] [1 − (−1)n cosµb] (k2 − λ2 − µ2)
1/2

(λ2 − k2
m)
(
λ2 − k2

p

)
(µ2 − k2

n)
(
µ2 − k2

q

) dλ dµ.

When km = kp, Kraichnan’s assumption leads to

[1 − (−1)m cosλa]
(λ2 − k2

m)
(
λ2 − k2

p

)
∣∣∣∣∣
m=p

≈ πa

4k2
m

δ(λ− km).

Similarly, when kn = kq,

[1 − (−1)n cosµb]
(µ2 − k2

n)
(
µ2 − k2

q

)
∣∣∣∣∣
n=q

≈ πb

4k2
n

δ(µ− kn).

For λ = km and µ = kn (kn < k and km >
√
k2 − k2

n),

(
k2 − λ2 − µ2)1/2

∣∣∣
(λ,µ)=(km,kn)

= i
∣∣k2

m + k2
n − k2∣∣1/2 .

Above, a positive imaginary solution is chosen in order to have an evanescent wave
rather than a growing wave in the z direction. Substituting the above results into
Eq. (7.45) we get

Imnpq ≈ iπ2ab

4k2
mk

2
n

∣∣k2
m + k2

n − k2∣∣1/2 δmp δnq. (7.52)

When km ̸= kp and kn ̸= kq, it is assumed that Imnpq ≈ 0 (a similar case for the Y
edge - Y edge interaction is explained in Appendix P).

7.3.11 Corner - corner modes (km, kn, kp, kq > k)

The derivation of Imnpq for the corner - corner interaction is outlined in Fig. 7.18. The
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Corner - Corner
km, kn > k ‖ kp, kq > k

Is
km = kp

R = 0

Γ1,Γ2,Γ3,Γ4

Imp1 (µ : |µ| < k) =
−(Γ1 + Γ2 + Γ3 + Γ4)

Eq. (7.13)

Γ1,Γ2

Imp1 (µ : |µ| > k) =
−(Γ1 + Γ2)
Eq. (7.15)

Imnpq when km 6= kp

R 6= 0

Γ1,Γ2,Γ3,Γ4

Imp1 (µ : |µ| < k) =
−(Γ1+Γ2+Γ3+Γ4)+R

Eq. (7.20)

Γ1,Γ2

Imp1 (µ : |µ| > k) =
−(Γ1 + Γ2) + R

Eq. (7.61)

Imnpq when km = kp

Is
kn = kq

Kraichnan’s ap-
prox. δ(µ − kn)

ImnpqR

Eq. (7.55)

Imnpqχ

Eq. (7.58)

Imnpq = ImnpqR + i Imnpqχ

Eq. (7.64)

Imnpq ≈ 0
Is

kn = kq

Kraichnan’s ap-
prox. δ(µ − kn)

ImnpqR

Eq. (7.55)

Imnpqχ

Eq. (7.63)

Imnpq = ImnpqR + i Imnpqχ

Eq. (7.64)

Imnpq = ImnpqR + i Imnpqχ

Eq. (7.64)

no

|µ| < k |µ| > k

yes

|µ| < k |µ| > k

yes

no

yes

no

R : contribution from the residues

Fig. 7.18 A flow chart depicting the derivation of Imnpq for the corner - corner interaction.

integral Imnpq can be evaluated using Eq. (7.16)

Imnpq = 2
k∫

0

[1 − (−1)n cosµb]
(µ2 − k2

n)
(
µ2 − k2

q

) Imp
1 (µ : |µ| < k) dµ

+ 2
∞∫

k

[1 − (−1)n cosµb]
(µ2 − k2

n)
(
µ2 − k2

q

) Imp
1 (µ : |µ| > k) dµ,
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where Imp
1 (µ : |µ| < k) is evaluated using Eq. (7.13)

Imp
1 (µ : |µ| < k) = 2

λ1∫

0

[1 − (−1)m cos ax] |λ2
1 − x2|

1/2

(x2 − k2
m)
(
x2 − k2

p

) dx

− 2 i




λ1∫

0

(−1)m sin ax |λ2
1 − x2|

1/2

(x2 − k2
m)
(
x2 − k2

p

) dx+
∞∫

0

[1 − (−1)m e−ay] |λ2
1 + y2|

1/2

(y2 + k2
m)
(
y2 + k2

p

) dy


 .

As km, kp > λ1 (λ2
1 = k2 −µ2), there exist no regular singularities in the above integrals.

The term Imp
1 (µ : |µ| > k) in Eq. (7.16) can be evaluated using Eq. (7.15)

Imp
1 (µ : |µ| > k) = −2 i

∞∫

λ
′
1

[1 − (−1)m e−ay]
∣∣λ′ 2

1 − y2
∣∣1/2

(y2 + k2
m)
(
y2 + k2

p

) dy,

where λ′ 2
1 = µ2 − k2.

(a) km ̸= kp and kn = kq

Assume that km ̸= kp > k, and kn = kq > k. Substituting the Kraichnan’s approxima-
tion (Eq. (7.17)) into Eq. (7.16) and knowing that kn > k we get

Imnpq ≈ πb

2k2
n

Imp
1 (kn : kn > k) , (7.53)

where Imp
1 (kn : kn > k) can be evaluated using Eq. (7.15) by substituting µ = kn, which

is purely an imaginary quantity. However, for the corner - corner type of interaction,
there must exist a real term, although small, associated with the radiation coupling in
addition to the inertial coupling part (imaginary term) in the modal coupling coefficient
[33, 34]. Here, the real part of Imnpq can be evaluated using

Imnpq
R = 2

k∫

0

[1 − (−1)n cosµb]
(µ2 − k2

n)
(
µ2 − k2

q

) Re [Imp
1 (µ : |µ| < k)] dµ. (7.54)

From Eq. (7.13)

Re [Imp
1 (µ : |µ| < k)] = 2

λ1∫

0

[1 − (−1)m cos ax] |λ2
1 − x2|

1/2

(x2 − k2
m)
(
x2 − k2

p

) dx.
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Therefore, by the approximation (x2 − k2
m)
(
x2 − k2

p

)
(µ2 − k2

n)
(
µ2 − k2

q

)
≈ k2

m k
2
n k

2
p k

2
q

we get

Imnpq
R ≈ 4

k2
m k

2
n k

2
p k

2
q

k∫

0

√
k2−µ2∫

0

[1 − (−1)m cosxa] [1 − (−1)n cosµb]
√
k2 − µ2 − x2 dx dµ.

After a few simplifications [34, 33],

Imnpq
R ≈ 4

k2
m k

2
n k

2
p k

2
q

[
π(−1)m(ak cos(ak) − sin(ak))

2a3 + π(−1)n(bk cos(bk) − sin(bk))
2b3

+
π(−1)m+n

(
k
√
a2 + b2 cos

(
k
√
a2 + b2

)
− sin

(
k
√
a2 + b2

))

2 (a2 + b2)3/2 + πk3

6

]
. (7.55)

Now, the imaginary part of Imnpq when kn = kq and km ≠ kp is given by Eq. (7.53)

Imnpq
χ ≈ πb

2k2
n

Im [Imp
1 (kn : kn > k)] . (7.56)

As mentioned earlier, Imp
1 (kn : kn > k) is purely an imaginary quantity (see Eq. (7.15)).

A detailed derivation of Imp
1 (kn : kn > k) is given in Appendix O.6 and the result is

given below.

Imp
1 (kn : kn > k) ≈ −

i log
(

k2+k2
m

k2+k2
p

)

k2
m − k2

p

δnq. (7.57)

Substituting this into Eq. (7.56) we get

Imnpq
χ ≈ −

πb log
(

k2+k2
m

k2+k2
p

)

2k2
n

(
k2

m − k2
p

) δnq. (7.58)

(b) km = kp and kn ̸= kq

The real part of Imnpq can be obtained from Eq. (7.55) using the transformation rule
m ↔ n, p ↔ q and a ↔ b. The imaginary part of Imnpq can be obtained from

Imnpq
χ ≈ πa

2k2
m

Im [Inq
1 (km : km > k)] . (7.59)
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Using the transformation rule m ↔ n, p ↔ q and a ↔ b in Eq. (7.58) we get

Imnpq
χ ≈ −

πa log
(

k2+k2
n

k2+k2
q

)

2k2
m

(
k2

n − k2
q

) δmp. (7.60)

(c) km = kp and kn = kq

The real part of Imnpq can be evaluated using Eq. (7.54). When km = kp we have to
include the contribution from the residues at ±km in the integral Imp

1 (µ : |µ| < k). The
resulting expression for Imp

1 (µ : |µ| < k) is the same as given in Eq. (7.20). It can be
seen that the contribution from the residues is purely imaginary. Hence, the residues
do not contribute to the real part of Imnpq. Therefore, the Eq. (7.55) for Imnpq

R is still
valid when km = kp and kn = kq.

When km = kp and kn = kq, either Eq. (7.56) or Eq. (7.59) can be used to evaluate
Imnpq

χ . Consider Eq. (7.56). When km = kp, the integral Imp
1 (kn : kn > k), given by

Eq. (7.15), has to be modified to account for the poles of multiplicity two at ±km. For
the case 2 (|µ| > k), the residues at the poles are (see Appendix N)

Res(−km) = Res(km) = a |λ2
1 − k2

m|
1/2

4 k2
m

,

where λ1 = iλ′
1 = i (µ2 − k2)

1/2 . Thus, the contour integration around the branch cut,
as shown in Fig. 7.10 (note that for this case km = kp in the figure), results in

P [Imp
1 (µ)] = Imp

1 (µ : |µ| > k) = πi [Res(km) + Res(−km)] − (Γ1 + Γ2).

Substituting for the residues and the Γi’s from Eq. (7.14) we obtain

Imp
1 (µ : |µ| > k) = −2 i


−πa |λ2

1 − k2
m|

1/2

4 k2
m

+
∞∫

λ
′
1

[1 − (−1)m e−ay]
∣∣λ′ 2

1 − y2
∣∣1/2

(y2 + k2
m)2 dy


δmp.

(7.61)
We obtain (see Appendix O.6)

Imp
1 (kn : kn > k) ≈ i

[
πa |k2

m + k2
n − k2|

1/2

2 k2
m

− 1
(k2 + k2

m)

]
δmp. (7.62)
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Substituting the above equation into Eq. (7.56) we get

Imnpq
χ ≈

[
π2ab |k2

m + k2
n − k2|

1/2

4 k2
m k

2
n

− πb

2 k2
n (k2 + k2

m)

]
δmp δnq.

However, it is found that the above expression is a poor approximation when km = kp

and kn = kq. A correction term − πb
2 k2

n(k2+k2
m) , similar to the second term inside the

square bracket, is added to the above expression. Thus, for km = kp and kn = kq, the
imaginary part of Imnpq is given by

Imnpq
χ ≈

[
π2ab |k2

m + k2
n − k2|

1/2

4 k2
m k

2
n

− πa

2 k2
m (k2 + k2

n) − πb

2 k2
n (k2 + k2

m)

]
δmp δnq. (7.63)

Summarizing, using Eqs. (7.55), (7.58), (7.60) and (7.63),

Imnpq = Imnpq
R + i Imnpq

χ , (7.64)

where

Imnpq
R ≈ 4

k2
m k

2
n k

2
p k

2
q

[
πk3

6 + π(−1)m(ak cos(ak) − sin(ak))
2a3 + π(−1)n(bk cos(bk) − sin(bk))

2b3

+
π(−1)m+n

(
k
√
a2 + b2 cos

(
k
√
a2 + b2

)
− sin

(
k
√
a2 + b2

))

2 (a2 + b2)3/2

]

and
Imnpq

χ ≈ Aδmp +B δnq − (A+B) δmp δnq + C δmp δnq

with

A = −
πa log

(
k2+k2

n

k2+k2
q

)

2k2
m

(
k2

n − k2
q

) ,

B = −
πb log

(
k2+k2

m

k2+k2
p

)

2k2
n

(
k2

m − k2
p

)

and

C = π2ab |k2
m + k2

n − k2|
1/2

4 k2
m k

2
n

− πa

2 k2
m (k2 + k2

n) − πb

2 k2
n (k2 + k2

m) .
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7.3.12 XY edge - Y edge modes (km, kn, kq < k, kp > k and
k2

m + k2
n > k2)

The derivation of Imnpq for the XY edge - Y edge interaction is outlined in Fig. 7.19.
The integral Imnpq can be evaluated using Eq. (7.16). The integral forms of the terms

XY edge - Y edge
km, kn < k and k2m + k2n > k2 ‖ kp > k, kq < k

Γ1,Γ2,Γ3,Γ4

Since km 6= kp
R = 0

Imp
1 (µ : |µ| <

√
k2 − k2m) =

−(Γ1 + Γ2 + Γ3 + Γ4)
Eq. (7.66)

Γ1,Γ2,Γ3,Γ4

Since km 6= kp
R = 0

Imp
1 (µ :

√
k2 − k2m < |µ| < k) =

−(Γ1 + Γ2 + Γ3 + Γ4)
Eq. (7.65)

Γ1,Γ2

Since km 6= kp
R = 0

Imp
1 (µ : |µ| > k) =
−(Γ1 + Γ2)
Eq. (7.67)

Imnpq Eq. (7.68)

Is
kn = kq

Imnpq ≈ 0

Kraichnan’s ap-
prox. δ(µ − kn)

Imp
1 (kn :

√
k2 − k2m) < kn < k

Imnpq

Eq. (7.70)

|µ| <
√
k2 − k2m

√
k2 − k2m < |µ| < k |µ| > k

no

yes
R : contribution from the residues

Fig. 7.19 A flow chart depicting the derivation of Imnpq for the XY edge - Y edge
interaction.
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Imp
1 (µ : |µ| < k) (case 1) and Imp

1 (µ : |µ| > k) (case 2) are obtained below.

Case 1 (|µ| < k)

The |µ| < k region can be divided into two: (a) when λ1 < km and (b) when λ1 > km,
where λ1 =

√
k2 − µ2.

(a) λ1 < km

λ1 < km implies that k2 − µ2 < k2
m, i.e., µ2 > k2 − k2

m. Therefore,

√
k2 − k2

m < |µ| < k.

For λ1 < km, the integration contour for Imp
1 (µ) (Eq. (7.6)) is the same as that shown

in Fig. 7.9, except that λ1 < km < k. Therefore, Imp
1 (µ :

√
k2 − k2

m < |µ| < k) is given
by Eq. (7.13):

Imp
1 (µ :

√
k2 − k2

m < |µ| < k) = 2
λ1∫

0

[1 − (−1)m cos ax] |λ2
1 − x2|

1/2

(x2 − k2
m)
(
x2 − k2

p

) dx

− 2 i




λ1∫

0

(−1)m sin ax |λ2
1 − x2|

1/2

(x2 − k2
m)
(
x2 − k2

p

) dx+
∞∫

0

[1 − (−1)m e−ay] |λ2
1 + y2|

1/2

(y2 + k2
m)
(
y2 + k2

p

) dy


 . (7.65)

(b) λ1 > km

λ1 > km implies that k2 − µ2 > k2
m, i.e., µ2 < k2 − k2

m. Therefore,

|µ| <
√
k2 − k2

m.

The integration contour for evaluating Imp
1 (µ) (Eq. (7.6)) is shown in Fig. 7.13. Thus,

Imp
1 (µ : |µ| <

√
k2 − k2

m) is given by Eq. (7.25):

Imp
1 (µ : |µ| <

√
k2 − k2

m) = 2 Pkm

λ1∫

0

[1 − (−1)m cos ax] |λ2
1 − x2|

1/2

(x2 − k2
m)
(
x2 − k2

p

) dx

− 2 i


Pkm

λ1∫

0

(−1)m sin ax |λ2
1 − x2|

1/2

(x2 − k2
m)
(
x2 − k2

p

) dx+
∞∫

0

[1 − (−1)m e−ay] |λ2
1 + y2|

1/2

(y2 + k2
m)
(
y2 + k2

p

) dy


 .

(7.66)
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Case 2 (|µ| > k)

The integration contour for Imp
1 (µ) when |µ| > k is the same as that shown in Fig. 7.10,

except that km < k. Therefore, Imp
1 (µ : |µ| > k) is given by Eq. (7.15):

Imp
1 (µ : |µ| > k) = −2 i

∞∫

λ
′
1

[1 − (−1)m e−ay]
∣∣λ′ 2

1 − y2
∣∣1/2

(y2 + k2
m)
(
y2 + k2

p

) dy. (7.67)

Integral Imnpq

The integral Imnpq (Eq. (7.16)) can be modified for the XY edge - Y edge interaction as

Imnpq = 2

√
k2−k2

m∫

0

[1 − (−1)n cosµb]
(µ2 − k2

n)
(
µ2 − k2

q

) Imp
1 (µ : |µ| <

√
k2 − k2

m) dµ

+ 2
k∫

√
k2−k2

m

[1 − (−1)n cosµb]
(µ2 − k2

n)
(
µ2 − k2

q

) Imp
1 (µ :

√
k2 − k2

m < |µ| < k) dµ

+ 2
∞∫

k

[1 − (−1)n cosµb]
(µ2 − k2

n)
(
µ2 − k2

q

) Imp
1 (µ : |µ| > k) dµ,

(7.68)

where Imp
1 (µ : |µ| <

√
k2 − k2

m), Imp
1 (µ :

√
k2 − k2

m < |µ| < k) and Imp
1 (µ : |µ| > k)

can be evaluated using Eqs. (7.66), (7.65) and (7.67), respectively.
Assuming kn = kq < k and substituting the Kraichnan’s approximation (Eq. (7.17))

into Eq. (7.68) while knowing that
√
k2 − k2

m < kn < k we get

Imnpq ≈ πb

2k2
n

Imp
1 (kn :

√
k2 − k2

m < kn < k), (7.69)

where Imp
1 (kn :

√
k2 − k2

m < kn < k) can be evaluated using Eq. (7.65) (corresponding
to the λ1 < km case) after substituting µ = kn. As km, kp > λ1, Imp

1 (kn :
√
k2 − k2

m <

kn < k) can be approximated to Imp
1 (kn : kn < k) of the Y edge -Y edge case (for

km ̸= kp and kn = kq). The derivation of Imp
1 (kn : kn < k) is given in the Appendix

O.1. It follows that the integral Imnpq (Eq. (7.69)) is the same as that for the Y edge -
Y edge interaction (see Eq. (7.18). Thus, using Eq. (7.19) we obtain
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Imnpq = Imnpq
R + i Imnpq

χ , (7.70)

where the real part of Imnpq is given by

Imnpq
R ≈ π2b

2k2
n



kp

√
k2

m − λ2
1 − km

√
k2

p − λ2
1

k3
mkp − kmk3

p

− λ1(−1)mJ1 (aλ1)
a (λ2

1 − k2
m)
(
λ2

1 − k2
p

)


 δnq

and the imaginary part of Imnpq is given by

Imnpq
χ ≈ −πb

k2
n

(A+B + C) δnq

with

A = πλ1(−1)mH1 (aλ1)
2a (λ2

1 − k2
m)
(
λ2

1 − k2
p

) ,

B =
2k
√

2k2 − k2
n + (k2 − k2

n) log
((√

2k2−k2
n+k

)
2

k2−k2
n

)

4k2
mk

2
p

+
log
(

k2+k2
p

k2+k2
m

)

2
(
k2

p − k2
m

)

and C = (−1)m+1

12ak2
mk

2
p

{
2
√

1
a2 + k2 − k2

n −
(
k2 − k2

n

)

×


−4a2

√
k2 − k2

n + 4a2

√
1
a2 + k2 − k2

n − 3a log




(√
1
a2 + k2 − k2

n + 1
a

)
2

k2 − k2
n










.

It is assumed that when kn ̸= kq, Imnpq ≈ 0.

7.3.13 XY edge - X edge modes (km, kn, kp < k, kq > k and
k2

m + k2
n > k2)

When km = kp, the integral Imnpq can be obtained from Eq. (7.70) using the trans-
formation rules m ↔ n, p ↔ q and a ↔ b. It is assumed that when km ̸= kp,
Imnpq ≈ 0.
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7.3.14 AF - XY edge modes (km, kn, kq, kp < k, k2
m + k2

n < k2 and
k2

p + k2
q > k2)

The derivation of Imnpq for the AF - XY edge interaction is outlined in Fig. 7.20. The
integral Imnpq can be evaluated using Eq. (7.16), where the integral domain is classified
into two regions: |µ| < k (case 1) and |µ| > k (case 2). However, as in the case of AF
- AF interaction (section 7.3.9), the case 1 is further divided into three sub-regions
depending on the value of µ and the resulting λ1. An appropriate integral form of
Imp

1 (µ) is defined in each of these regions/sub-regions.

Case 1 (|µ| < k)

The following derivation assumes that km < kp. The |µ| < k region can be divided
into three depending on the value of λ1 (=

√
k2 − µ2): (a) when λ1 < km, (b) when

km < λ1 < kp and (c) when λ1 > kp.

(a) λ1 < km

λ1 < km implies that k2 − µ2 < k2
m, i.e., µ2 > k2 − k2

m. Therefore in this region

√
k2 − k2

m < |µ| < k.

As λ1 < km, the integration contour of Imp
1 (µ) (Eq. (7.6)) is the same as that shown

in Fig. 7.9, except that λ1 < km, kp < k. Therefore, Imp
1 (µ :

√
k2 − k2

m < |µ| < k) is
given by Eq. (7.13):

Imp
1 (µ :

√
k2 − k2

m < |µ| < k) = 2
λ1∫

0

[1 − (−1)m cos ax] |λ2
1 − x2|

1/2

(x2 − k2
m)
(
x2 − k2

p

) dx

− 2 i




λ1∫

0

(−1)m sin ax |λ2
1 − x2|

1/2

(x2 − k2
m)
(
x2 − k2

p

) dx+
∞∫

0

[1 − (−1)m e−ay] |λ2
1 + y2|

1/2

(y2 + k2
m)
(
y2 + k2

p

) dy


 . (7.71)

(b) km < λ1 < kp

km < λ1 < kp implies that k2
m < k2 − µ2 < k2

p, i.e., k2 − k2
p < µ2 < k2 − k2

m. Therefore
in this region √

k2 − k2
p < |µ| <

√
k2 − k2

m.

The integration contour for evaluating Imp
1 (µ) (Eq. (7.6)) is the same as that shown in

Fig. 7.13, except that λ1 < kp < k. Therefore, Imp
1

(
µ :
√
k2 − k2

p < |µ| <
√
k2 − k2

m

)
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AF - XY edge
km, kn < k and k2m+k2n < k2 ‖ kp, kq < k and k2p+k2q > k2

Is
km = kp

R = 0

Γ1,Γ2,Γ3,Γ4

Imp
1 (µ : |µ| <√
k2 − k2p) =

−(Γ1 +Γ2 +Γ3 +Γ4)
Eq. (7.73)

Γ1,Γ2,Γ3,Γ4

Imp
1 (µ :

√
k2 − k2p <

|µ| <
√
k2 − k2m) =

−(Γ1 + Γ2 + Γ3 + Γ4)
Eq. (7.72)

Γ1,Γ2,Γ3,Γ4

Imp
1 (µ :

√
k2 − k2m <

|µ| < k) =
−(Γ1 + Γ2 + Γ3 + Γ4)

Eq. (7.71)

Γ1,Γ2

Imp
1 (µ : |µ| > k) =
−(Γ1 + Γ2)
Eq. (7.74)

Imnpq

Eq. (7.75)

Is
kn = kq

Imnpq ≈ 0

Kraichnan’s ap-
prox. δ(µ − kn)

Imp
1 (kn :

√
k2 − k2p < kn <

√
k2 − k2m)

Imnpq

Eq. (7.77)

kn < kq

Imnpq

Using Eq. (7.77)

no Assum: km < kp

|µ| <
√
k2 − k2p

√
k2 − k2p < |µ| <

√
k2 − k2m

√
k2 − k2m < |µ| < k

|µ| > k

no

yes

yes

T
ra

n
sf

or
m

at
io

n
ru

le
:
m
↔
n
,p
↔
q,
a
↔
b

R : contribution from the residues

Fig. 7.20 A flow chart depicting the derivation of Imnpq for the AF - XY edge interaction.
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is given by Eq. (7.25):

Imp
1

(
µ :
√
k2 − k2

p < |µ| <
√
k2 − k2

m

)
= 2Pkm

λ1∫

0

[1 − (−1)m cos ax] |λ2
1 − x2|

1/2

(x2 − k2
m)
(
x2 − k2

p

) dx

− 2 i


Pkm

λ1∫

0

(−1)m sin ax |λ2
1 − x2|

1/2

(x2 − k2
m)
(
x2 − k2

p

) dx+
∞∫

0

[1 − (−1)m e−ay] |λ2
1 + y2|

1/2

(y2 + k2
m)
(
y2 + k2

p

) dy


 .

(7.72)

(c) λ1 > kp

λ1 > kp implies that k2 − µ2 > k2
p, i.e., µ2 < k2 − k2

p. Therefore in this region

|µ| <
√
k2 − k2

p.

The integration contour for evaluating Imp
1 (µ) (Eq. (7.6)) is as shown in Fig. 7.16. The

integral Imp
1
(
µ : |µ| <

√
k2 − k2

p

)
is given by Eq. (7.40):

Imp
1

(
µ : |µ| <

√
k2 − k2

p

)
= 2 Pkm,kp

λ1∫

0

[1 − (−1)m cos ax] |λ2
1 − x2|

1/2

(x2 − k2
m)
(
x2 − k2

p

) dx

− 2 i


Pkm,kp

λ1∫

0

(−1)m sin ax |λ2
1 − x2|

1/2

(x2 − k2
m)
(
x2 − k2

p

) dx+
∞∫

0

[1 − (−1)m e−ay] |λ2
1 + y2|

1/2

(y2 + k2
m)
(
y2 + k2

p

) dy


 .

(7.73)

Case 2 (|µ| > k)

The integration contour for Imp
1 (µ) when |µ| > k is the same as that shown in Fig. 7.10,

except that km, kp < k. Therefore, Imp
1 (µ : |µ| > k) is given by Eq. (7.15):

Imp
1 (µ : |µ| > k) = −2 i

∞∫

λ
′
1

[1 − (−1)m e−ay]
∣∣λ′ 2

1 − y2
∣∣1/2

(y2 + k2
m)
(
y2 + k2

p

) dy, (7.74)

where λ′
1 =

√
µ2 − k2.
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Integral Imnpq

The integral Imnpq (Eq. (7.4)) for the AF - XY edge modal interaction can be written
as

Imnpq = 2

√
k2−k2

p∫

0

[1 − (−1)n cosµb]
(µ2 − k2

n)
(
µ2 − k2

q

) Imp
1

(
µ : |µ| <

√
k2 − k2

p

)
dµ

+ 2

√
k2−k2

m∫

√
k2−k2

p

[1 − (−1)n cosµb]
(µ2 − k2

n)
(
µ2 − k2

q

) Imp
1

(
µ :
√
k2 − k2

p < |µ| <
√
k2 − k2

m

)
dµ

+ 2
k∫

√
k2−k2

m

[1 − (−1)n cosµb]
(µ2 − k2

n)
(
µ2 − k2

q

) Imp
1

(
µ :
√
k2 − k2

m < |µ| < k
)

dµ

+ 2
∞∫

k

[1 − (−1)n cosµb]
(µ2 − k2

n)
(
µ2 − k2

q

) Imp
1 (µ : |µ| > k) dµ,

(7.75)

where the Imp
1 (µ) terms in the four integrals can be evaluated using Eqs. (7.73), (7.72),

(7.71) and (7.74).

(a) km ̸= kp and kn = kq

Assume that kn = kq < k, and km ̸= kp < k (for the AF - XY edge interaction,
when kn = kq it turns out that km < kp). Substituting the Kraichnan’s assumption
(Eq. (7.17)) into Eq. (7.75) and knowing that

√
k2 − k2

p < kn <
√
k2 − k2

m we get

Imnpq ≈ πb

2k2
n

Imp
1

(
kn :

√
k2 − k2

p < kn <
√
k2 − k2

m

)
, (7.76)

where Imp
1

(
kn :

√
k2 − k2

p < kn <
√
k2 − k2

m

)
can be evaluated using Eq. (7.72), for

which, km < λ1 < kp. The integration contour of Imp
1

(
kn :

√
k2 − k2

p<kn<
√
k2 − k2

m

)

is similar to what appears in the evaluation of Imp
1 (kn : kn <

√
k2 − k2

m) for the AF
- Y edge type of interaction (see Eq. (7.25) and Fig. 7.13), except that λ1 < kp < k.
Thus, Imp

1

(
kn :

√
k2 − k2

p < kn <
√
k2 − k2

m

)
can be approximated to Imp

1 (kn : kn <√
k2 − k2

m) of the AF - Y edge interaction presented in the Appendix O.2. It follows
that the above expression for Imnpq when km ̸= kp and kn = kq is also the same as that
obtained in section 7.3.3 (see Eq. (7.28)). Therefore, Eq. (7.29) gives
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Imnpq ≈ (A + B + C) δnq, (7.77)

where

A = − πb

k2
n

 πλ1(−1)mJ1 (aλ1)
2a (λ2

1 − k2
m)
(
λ2

1 − k2
p

) +
π
(

km

√
k2

p − λ2
1 − ikp

√
λ2

1 − k2
m

)
2k3

mkp − 2kmk3
p

 ,

B = iπ2bλ1(−1)m+1H1 (aλ1)
2ak2

n (λ2
1 − k2

m)
(
λ2

1 − k2
p

)
and

C = − iπb

k2
n

C1 km + 2(π + C2)
√

k2 − k2
m − k2

n

4kmk2
p

+
log
(

k2+k2
p

k2+k2
m

)
2
(
k2

p − k2
m

)
+(−1)m C3

2kmk2
p

+
(−1)m

(
C4 − aC5

√
k2 − k2

m − k2
n

)
2k2

p

]

with

C1 = 2 tanh−1

(
4kk2

m

(√
2k2 − k2

n + k
)

4k2
m

[
k
(√
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(b) km = kp and kn ̸= kq

When km = kp < k and kn ̸= kq < k (kn < kq), Imnpq is given by

Imnpq ≈ πb

2k2
m

Inq
1

(
km :

√
k2 − k2

q < km <
√
k2 − k2

n

)
. (7.78)

The approximate closed form can be obtained by applying the transformation rule
m ↔ n, p ↔ q and a ↔ b in Eq. (7.77). It is assumed that when km ≠ kp and kn ̸= kq,
Imnpq ≈ 0.

Since, both the AF (supersonic) and the corner (subsonic) types of radiation can
rarely be significant at a given frequency, it is assumed that Imnpq ≈ 0 for the AF -
corner type of modal coupling. This assumption is also applicable for the XY edge -
corner interaction. The effect of any interaction between the X edge and the Y edge
modes on the modal coupling coefficient is also neglected.

The right expression for Θ̄mnpq is chosen depending on the panel wavenumbers. Now,
the response of the panel to a harmonic force excitation is obtained using Eq. (5.38)
and the radiated pressure field is computed using Eq. (5.39). The expression for finding
the radiation efficiency is presented in the next section.

7.4 The radiation efficiency

The far-field radiated power from the perforated panel set in an unperforated baffle is
(see section 5.6)

W = 1
2Re





k∫

−k

√
k2−µ2∫

−
√

k2−µ2

P+(λ, µ, z = 0)V ∗
a (λ, µ) dλ dµ




. (7.79)

In the above equation, only the far-field radiating components of the wavenumber
spectrum (k2 > λ2 + µ2) are included . The integration is approximated by a sum over
the range of discrete values of λ and µ.

Now, the radiation efficiency of the perforated panel [7]

σ = W
1
2ρ0cab < |vp|2 >

, (7.80)
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where W is the radiated power (Eq. (7.79)) and < |vp|2 > is the spatially averaged
squared velocity of the perforated panel defined as [7]

< |vp|2 >= 1
ab

b/2∫

−b/2

a/2∫

−a/2

|vp(x, y)|2 dx dy.

Using Eq. (5.38) and simplifying we get

< |vp|2 >= 1
4
∑

r,s

∑

m,n

BrB
∗
sUmnrU

∗
mns, (7.81)

where ∗ represents the complex conjugate. In a matrix form

< |vp|2 >= 1
4 {Br}T [Umn,r]T

[
U∗

mn,s

]
{B∗

s } . (7.82)

Using Eqs. (7.79) and (7.81), the radiation efficiency of a perforated panel to a point
harmonic excitation (Eq. (7.80)) is

σ = 4
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
.

(7.83)
The radiation efficiencies and the resonance frequencies of fluid-loaded perforated

panels are presented in the next section. Also, the characteristics of the modal coupling
coefficient are discussed. Note, that the modal coupling coefficient is evaluated using
the closed form expressions derived earlier.
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7.5 Results

Panel dimensions a = 0.455 m, b = 0.546 m and h = 0.003 m
Panel material properties
(aluminum)

E = 70 GPa, ρp = 2700 kg/m3 and ν = 0.33

Properties of water ρ0 = 998.2 kg/m3, c = 1481 m/s and η0 = 8.9 ×
10−4 Ns/m2

Properties of air ρ0 = 1.204 kg/m3, c = 343 m/s and η0 = 1.8 ×
10−5 Ns/m2

Table 7.2 The perforated panel dimensions and material properties.

Consider a panel with dimensions and material properties as given in Table 7.2. All
the in vacuo panel modes below 10,000 Hz are considered in the analysis. The panel is
excited by a unit amplitude harmonic point force.

7.5.1 Radiation efficiency

Consider an unperforated panel of the above prescribed size, excited at the center.
The radiation efficiencies of the panel are evaluated with air and water as the acoustic
medium. Fig. 7.21 shows a comparison of the two results. The fluid loading essentially
has both resistive and reactive characteristics, modeled as the real and the imaginary
parts of the modal coupling coefficient. When the panel is immersed in water, it
experiences greater resistive and reactive load from the acoustic medium than when
it is immersed in air. Consequently, both the panel response and the radiated power
reduce resulting in a lower radiation efficiency when the panel is immersed in water.

The radiation efficiency of perforated panels when they are immersed in water is
shown in Fig. 7.22, where different perforation ratios are achieved by varying the hole
radius from 0 mm to 5 mm; the total number of holes in the panel is kept constant at
N0 = 750. As the perforation ratio increases, the perforate impedance Z0p/σp decreases
and hence the propagation of acoustic waves through the perforations becomes easier.
Accordingly, the radiated power decreases and hence the radiation efficiency also
decreases. It is noted that when immersed in water, the radiation efficiency of the
perforated panel is less than when it is immersed in air.
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Fig. 7.21 Comparison of radiation efficiency of an unperforated panel when the acoustic
medium is air vs. water. The excitation is at the center of the panel. The modal
coupling coefficient is evaluated using the closed form expressions.
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Fig. 7.22 Radiation efficiency of water-loaded panels for various perforation ratios.
For all the cases, the excitation is at the center of the panel and the modal coupling
coefficient is evaluated using the closed form expressions. In all the cases the total
number of holes is N0 = 750.
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7.5.2 Mean quadratic velocity and natural frequencies

Consider the perforated panel immersed in water and excited by a simple harmonic
force off from the center at (0.1, 0.1). The mean quadratic velocity of the panel is
evaluated for different perforation ratios using the closed form analytical expressions
of the modal coupling coefficient (mean quadratic velocity is equal to <|vp|2>

2 [37],
see Eq. (7.82)). In Fig. 7.23, the mean quadratic velocities are compared with those
obtained using the numerical integration. The natural frequencies of fluid-loaded panels
can be identified from the peaks of mean quadratic velocity spectrum. The first four
natural frequencies of the water-loaded panels (Fig. 7.23) are tabulated in Table 7.3
along with the corresponding in vacuo values. The natural frequencies computed using
the closed form expressions of the modal coupling coefficient match very well with
those obtained using the numerically computed coupling coefficient.
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Fig. 7.23 Comparison of mean quadratic velocity (<|vp|2>

2 ) for various perforated panels
under water-loading condition. Total number of holes in each of the panels is N0 = 750.
The panels are excited at (0.1,0.1). The peaks in the mean quadratic velocity plots
correspond to the resonances.

The reactive part of the modal coupling coefficient arising due to the fluid loading,
acts as virtual mass addition to the panel mass and thus causes a reduction in the
natural frequencies from the respective in vacuo values. However, as the perforation
ratio increases, both the stiffness and inertia of the panel reduces. In addition, there
occurs a reduction in the virtual mass addition as a result of the reduction in the effective
solid area of the panel. When the acoustic medium is water, the reduction in the total
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(a) σp = 0%

Mode order In vacuo
Θ̄mnpq evaluation:

Water-loaded (Fig. 7.23(a))

Numerical Closed form

(1,1) 60.06 9.69 9.43
(1,2) 133.90 28.15 27.39
(2,1) 166.39 37.01 36.01
(2,2) 240.23 58.93 57.34

(b) σp = 0.24%

Mode order In vacuo
Θ̄mnpq evaluation:

Water-loaded (Fig. 7.23(b))

Numerical Closed form

(1,1) 59.95 10.52 9.96
(1,2) 133.66 29.74 28.15
(2,1) 166.09 39.10 37.01
(2,2) 239.80 60.57 58.93

(c) σp = 0.95%

Mode order In vacuo
Θ̄mnpq evaluation:

Water-loaded (Fig. 7.23(c))

Numerical Closed form

(1,1) 59.65 12.06 11.73
(1,2) 132.99 32.28 31.41
(2,1) 165.26 41.29 41.29
(2,2) 238.60 65.75 63.97

(d) σp = 5.93%

Mode order In vacuo
Θ̄mnpq evaluation:

Water-loaded (Fig. 7.23(d))

Numerical Closed form

(1,1) 57.85 16.74 16.74
(1,2) 128.98 41.29 40.18
(2,1) 160.28 52.82 51.40
(2,2) 231.40 79.62 77.48

(e) σp = 23.71%

Mode order In vacuo
Θ̄mnpq evaluation:

Water-loaded (Fig. 7.23(e))

Numerical Closed form

(1,1) 53.26 21.42 21.42
(1,2) 118.75 50.01 50.01
(2,1) 147.56 62.25 62.25
(2,2) 213.05 91.30 91.30

Table 7.3 Comparison of natural frequencies (in Hz) of panels with different perforation
ratios under in vacuo and water-loaded conditions. The natural frequencies of water-
loaded panels are computed using the mean quadratic velocity plots shown in Fig 7.23.

inertia loading is more than the reduction in the stiffness, which in turn results in the
increase in the natural frequencies with perforation ratio. The radiation efficiencies of
the water-loaded perforated panels are shown in Fig. 7.24. As the resonances of the
water-loaded panels are relatively very close in the frequency spectrum, the reduction
in the radiation efficiency with the perforation ratio is not evident in Fig. 7.24.

7.5.3 Modal coupling coefficient

As mentioned before, the fluid loading couples the in vacuo modes of the panel and
is captured by the modal coupling coefficient. The vibrations of the (m,n)th mode of
the panel generate an acoustic pressure field with wavenumber components spanning
the whole spectrum. This acoustic pressure field influences the vibrations of the
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Fig. 7.24 Radiation efficiencies for water-loaded (in both the half-spaces) panels of
different perforation ratios when the excitation is at an off-center location (0.1,0.1).
Total number of holes in each of the panels is N0 = 750. The modal coupling coefficient
is evaluated using the closed form expressions.

(p, q)th mode of the panel. The modal coupling coefficient Θ̄mnpq signifies the effect of
vibrations of the (m,n)th mode on that of the (p, q)th mode of the panel. At the same
time, the pressure field generated by the (p, q)th mode influences the response by the
(m,n)th mode of the panel as well.

This interaction between the two panel modes through the associated radiated
pressure fields can be either resistive or reactive. For the resistive case, the pressure
field generated by one mode dampens the vibrations of the other mode. Looking at
differently, the pressure field of one mode offers resistive load on the vibrations of the
other mode and thus, the energy from the acoustic field is transferred to the panel. On
the other hand when the interaction is reactive, the acoustic field generated by one
mode acts as a mass loading on the vibrations of the other mode and no net energy is
transferred from the acoustic medium to the panel. This interaction between panel
modes is shown in Fig. 7.25.

The modal coupling coefficient Θ̄mnpq, as defined in Eq. (7.1) is a complex quantity.
Its real part is termed as the radiation coupling coefficient as it represents the radiation
loading offered by the surrounding acoustic medium to the panel vibration [33]. The
radiation coupling coefficient acts along with the structural damping of the panel.
The imaginary part of the modal coupling coefficient is termed as the inertia coupling
coefficient, for it results in a virtual mass term to be added to the panel mass [33].
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Response of the (m,n)th panel mode, 

vmn

Pressure waves generated 

by the (m,n)th panel mode, 

pmn

Response of the (p,q)th panel mode,

vpq

Pressure waves generated 

by the (p,q)th panel mode, 

ppq

Fig. 7.25 Schematic of the panel modal interaction as a result of the fluid loading.

The combined effect of this radiation and inertia coupling terms causes a decrease in
the vibration amplitude of a fluid-loaded panel from its in vacuo values. Consequently,
a corresponding decrease in the radiated power and the radiation efficiency are also
observed. This effect of fluid loading has been demonstrated in Fig. 7.21, however,
between a light (air) and a heavy (water) fluid loading cases (we have observed in
chapter 5 that for the case of air, the radiation efficiency match very well with that
obtained using the one way coupled formulation).

For the wave motion in an infinite panel with subsonic phase velocities, the sur-
rounding fluid acts as a virtual mass and hence no energy is transferred to the acoustic
medium. Whereas, when the phase velocities in the panel are supersonic the sur-
rounding fluid acts as a damper and the energy is transferred from the panel to the
acoustic medium in the form of acoustic radiation [7, 33, 34]. For a finite panel, the
‘uncancelled’ components of the volume velocity at subsonic wave speeds cause the
sound radiation [12] and therefore the modal coupling coefficient at subsonic wave
speeds has a non-zero real part. The non-zero real term in the coupling coefficient was
also derived by Davies [33] for the corner - corner interaction, which is the predominant
form of coupling at subsonic wave speeds. However, Davies neglected the influence of
the ‘cross’ inertia coupling terms in the radiated power.

We now look at the behavior of the modal coupling coefficient, which is classified
according to the associated panel wavenumbers. It is assumed that the acoustic medium
is air, since it is clear from Eq. (7.3) that for any other acoustic medium the modal
coupling coefficient follows a similar behavior; the magnitude is inversely proportional
to the density of the medium and the speed of sound in that medium. As Θ̄mnpq

defined in Eq. (7.1) is general for panels of any given perforation ratio, it is sufficient we
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consider an unperforated panel to analyze the behavior of modal coupling coefficient.
The characteristics are analyzed at different frequencies, viz., 100.77 Hz (ω/ωc = 0.03),
507.79 Hz (ω/ωc = 0.13), 3007.88 Hz (ω/ωc = 0.75), 5000.31 Hz (ω/ωc = 1.25) and
8312.51 Hz (ω/ωc = 2.07), where ωc denotes the critical frequency of the panel in air.
They correspond to different regions which distinguish different types of panel radiation
[12] (radiation efficiency of the unperforated panel with air as the acoustic medium is
shown in Fig. 7.21). The real and the imaginary parts of the modal coupling coefficient
at these frequencies are shown in Fig. 7.26. All types of modal interactions (based on
the panel wavenumber/phase velocities) of a finite simply supported panel are included
in this study. In brief, there are as many as eight different types of interactions which
can be significant at any given frequency, namely, corner - corner (C-C), edge - corner
(E-C), edge - edge (E-E), two edge - edge (XYE-E), two edge - two edge (XYE-XYE),
acoustically fast - edge (AF-E), acoustically fast - two edge (AF-XYE) and acoustically
fast - acoustically fast (AF-AF). The types of interactions which are present at a
given frequency are also shown in Fig. 7.26. Each point in the figure corresponds to a
specified type of interaction. The number of occurrences of a particular interaction is
shown by the range which the interaction spans along the x axis.
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(a) At 100.77 Hz (ω/ωc = 0.03)
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(b) At 507.79 Hz (ω/ωc = 0.13)
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(c) At 3007.88 Hz (ω/ωc = 0.75)
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(d) At 5000.31 Hz (ω/ωc = 1.25)
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(e) At 8312.52 Hz (ω/ωc = 2.07)
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Fig. 7.26 Real and imaginary parts of the modal coupling coefficient (Θ̄mnpq) of an
unperforated simply supported panel with air in both the half-spaces and is excited at
its center by a unit harmonic force at different frequencies.

It is evident from Fig. 7.26 that for the corner - corner interactions there exists
a radiation term (real) in the modal coupling coefficient in addition to the inertia
term (imaginary). This was also reported by Davies [33]. Note that in this study, the
effect of ‘cross’ inertia coupling terms is taken into account while evaluating the panel
response, which was neglected by Davies in his approximation. We know that at very
low frequencies, the coupling is predominantly due to the modal interactions involving
the subsonic modes. Although there exist non-zero real terms in the associated modal
coupling coefficients, leading to the sound radiation in the acoustic medium, they are
dominated by the inertia coupling terms (see Fig. 7.26a). This radiation behavior
associated with the real part of the coupling coefficient is also seen for the other modal
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interactions involving corner type of panel modes (see Figs. 7.26a - 7.26d). With the
increase in frequency, more panel modes become supersonic and hence the radiation
coupling increases with the frequency. At the same time, as the frequency increases,
the inertia coupling reduces and becomes less significant as compared to the radiation
coupling (see Figs. 7.26d and 7.26e).

7.6 Conclusions

A two-way coupled formulation in the wavenumber domain is presented to study the
sound radiation from a finite perforated panel set in baffle. The formulation is general
and assumes arbitrary fluid loading on the panel. The fluid loading leads to a complex
modal coupling coefficient in the coupled equation of motion. The modal coupling
coefficient, defined in integral form, is different from that defined by Davies [33] and
Pope [34] - the square root function now appears in the numerator of the integrand. The
real part of the coupling coefficient acts as the radiation damping and the imaginary
part offers virtual mass addition to the structure. Individual approximate expressions
in closed form are obtained for the modal coupling coefficient based on the panel modal
wavenumbers. The approximations are valid for the entire frequency range of interest
and for any given fluid loading conditions.

It is found that the radiation efficiency of the panel immersed in water is less than
when it is in air. The higher radiation damping and fluid inertia loading on the panel
when it is in water reduces its vibration velocity amplitude. It is then reflected in the
reduced radiated power and radiation efficiency of the panel immersed in water. The
radiation efficiency of the water-loaded panel is found to decrease with the increasing
perforation ratio. This behavior is due to the decrease in the perforate impedance with
the increasing perforation ratio. Similar behavior was reported earlier while studying
the panel sound radiation in air using the one-way coupled formulation.

The inertia coupling terms are responsible for the decrease in the natural frequencies
of the panel when the fluid loading is taken into account. The natural frequencies
of the perforated panels are obtained from the peaks of the mean quadratic velocity
plots. The mean quadratic velocity and the natural frequencies of water-loaded panels
are compared for various perforation ratios using either the closed form for the modal
coupling coefficient or evaluating it using numerical integration technique. The closed
form method is found to be in good agreement with the numerical scheme. It has been
observed that under water loading conditions, the resonance frequency of a particular
mode increases with the increase in the perforation ratio, as a result of the relatively
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larger reduction in the total inertia loading of the panel as compared to the reduction
in its stiffness.

The real and the imaginary parts of the modal coupling coefficient are compared at
different frequencies. It has been found that there are effectively only eight types of
modal interactions that can be significant at any given frequency. These interactions
are characterised by their modal wavenumbers. For any interaction involving subsonic
modes there exists a small real term in the coupling coefficient which causes the sound
radiation. This form of sound radiation by the subsonic modes are significant at low
frequencies. However, at low frequencies, the dominant inertia coupling for the subsonic
modal interaction offers significant inertia loading on the panel. As the frequency is
increased more modes become supersonic and the interaction involving these modes
are characterised by a larger real term in the coupling coefficient and results in the
increased radiation damping at higher frequencies. At the same time, the inertia
loading caused by these interactions at higher frequencies are small.



Chapter 8

Conclusions

The main work of this thesis relates to the sound radiation and transmission from
a fluid loaded finite perforated panel set in an unperforated baffle. The work is
presented in three parts: first, a one-way coupled analysis is presented followed by a
complex two-way coupled formulation and in the last part, closed form expressions are
derived for the modal coupling coefficient. In this chapter, a brief description of the
mathematical models developed and the important results obtained is presented. Some
of the directions in which this work can be further extended are also discussed in this
chapter.

8.1 The one-way coupled analysis

In this part of the thesis (chapters 3 and 4), a one-way coupled formulation, neglecting
the fluid loading on the panel is presented. Chapter 3 develops a model for the sound
radiation from a flexible perforated panel set in an unperforated baffle. The panel
is excited by a harmonic point force. This work extends the studies by Fahy and
Thompson [5] and Putra and Thompson [4]. In this study, the in vacuo natural
frequencies of the perforated panel are calculated using the Receptance method. Also,
the discontinuity in the perforate impedance at the panel edges is modeled by an
average velocity field (LAFP velocity) at the fluid-structure boundary. The model
neglects the effect of radiated pressure on the panel response. However, the radiated
pressure is taken into account while finding the LAFP velocity.

It is observed that for a given mode, the natural frequency of the perforated panel
is less than that of the unperforated panel. Also, the natural frequency predictions
agree very well with the finite element results. It is found that for a finite perforated
panel the perforations reduces the radiation efficiency. In the monopole region at lower
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frequencies, the slope of the radiation efficiency curve is less than the 20 dB/decade
slope of an unperforated panel.

The radiation efficiency is found to decrease with the decreasing perforate impedance.
For a given hole radius, increasing the number of holes in the panel results in a lower
perforate impedance and hence causes a reduction in the radiation efficiency. At low
frequencies, for a panel with sub-millimeter hole radii, the sound radiation is more
controlled by the resistive perforate impedance than the reactive component. A mean
value of the radiation efficiency, averaged over all the forcing points on the panel
surface, is also obtained for various perforation ratios.

Chapter 4 presents the one-way coupled model for the sound transmission through
the finite perforated panel when a plane wave is incident upon it. The model predictions
for the specific case of an unperforated panel are verified. The transmission loss
decreases when perforations are made in the panel. A lower perforate impedance
leads to a better transmission of sound through the perforations and hence in a lower
transmission loss. The relatively higher resistive perforate impedance (as compared to
the reactive impedance) at low frequencies brings about a high transmission loss for a
panel with sub-millimeter size holes. It is found that the transmitted power does not
vary significantly with the angle of incidence of the plane wave. Whereas, the incident
power decreases with the increasing angle of incidence. Consequently, the transmission
loss is also decreased.

8.2 The two-way coupled analysis

In this part of the thesis (chapters 5 and 6), a two-way coupled formulation is presented,
which includes the effect of fluid loading on the panel response. The fluid loading
invokes a coupling between the in vacuo natural modes of the perforated panel and is
mathematically represented as a modal coupling coefficient in the equation of motion.

Chapter 5 develops the fully coupled model for the sound radiation from a flexible
perforated panel set in an unperforated baffle, when the panel is excited by a harmonic
point force. The formulation is presented as an extension of the work carried out in
chapter 3. The model is also used to predict the natural frequencies of the fluid-loaded
perforated panel. The natural frequencies of fluid-loaded panel are smaller than the
corresponding in vacuo values. It is observed that when the panel is immersed in
water, the natural frequency of a given mode increases with the increase in perforation
ratio. As for the one-way coupled case, the perforate impedance influences the sound
radiation more than the panel impedance, although the modal coupling coefficient
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alters the effective panel impedance. It is observed that the perforate impedance
decreases with the increase in the perforation ratio, so is the radiation efficiency. Also,
for a perforated panel immersed in water, the radiation efficiency is less than when it
is immersed in air. It is observed that for light medium like air, the one-way coupled
model is sufficient to predict the radiation efficiency.

In chapter 6, a fully coupled model for the sound transmission through the perforated
panel under plane wave incidence is presented. The surrounding fluid load reduces the
panel response. For an unperforated panel, the fluid loading causes an increase in the
transmission loss as compared to the one-way coupled prediction. For a perforated
panel, the perforate impedance controls the transmission through the perforated panel
- the influence of the panel vibration is negligible, even after including the fluid loading
effect. As a result, the transmission loss decreases with the increase in the perforation
ratio. It is observed that when the acoustic medium is light, the one-way coupled
model is sufficient to predict the transmission loss of a perforated panel.

It is observed that at low frequencies, the transmission loss of a perforated panel
becomes negative. This apparent violation of the conservation of power is related
to the definition of the incident power, which considered only the power carried by
the incident plane wave. There exists an additional component in the incident power
owing to the discontinuous perforate impedance at the panel-baffle boundary. And
this additional incident power on the panel surface comes from above the baffle region
by the diffraction effect. Further, an expression for this additional incident power is
derived. The new transmission loss, calculated after including the diffracted component,
remains positive in the entire frequency range.

8.3 Closed form expressions for the modal coupling
coefficient

In this part (chapter 7), approximate expressions for the modal coupling coefficient are
obtained based on the associated panel wavenumbers using the contour integration
technique. The closed form expressions are then used to compute the resonance
frequencies and the radiation efficiency of the finite flexible perforated panel. The
results are in close agreement with that reported in chapter 5, where the modal
coupling coefficient is evaluated using the numerical integration technique. The derived
expressions for the modal coupling coefficient are valid for the entire frequency range
and for any fluid loading conditions; for a given acoustic medium the coupling coefficient
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is inversely proportional to the density of the medium and the speed of sound in that
medium. Also, the closed form expressions can be used for any given perforation ratio.

The modal coupling coefficient represents the interaction between different in vacuo
panel modes. It is a complex quantity - the real part represents the radiation damping
and acts along with the structural damping, whereas the imaginary part represents
the inertia loading on the perforated panel. The combined effect of the radiation and
the inertia coupling terms causes a reduction in the panel response from its in vacuo
values. Therefore, the radiation efficiency also gets reduced when the fluid loading is
included in the analysis. The inertia coupling term is responsible for the decrease in
the resonance frequencies of the fluid-loaded panel. It is observed that of the fifteen
different modal interactions only eight are significant at any given frequency, namely,
corner - corner (C-C), edge - corner (E-C), edge - edge (E-E), two edge - edge (XYE-E),
two edge - two edge (XYE-XYE), acoustically fast - edge (AF-E), acoustically fast -
two edge (AF-XYE) and acoustically fast - acoustically fast (AF-AF) interactions.

At very low frequencies, the coupling is predominantly due to the interaction
between the subsonic modes. The corresponding modal coupling coefficient has a large
reactive part (inertia coupling). The real part (radiation coupling), although very
small, is responsible for the sound radiation by these subsonic panel modes. As the
frequency increases, more panel modes become supersonic and the radiation coupling
increases with frequency. And at higher frequencies, the radiation coupling dominates
over the inertia coupling.

Thus, the novelty of this work lies in modeling the sound radiation and transmission
through a finite flexible perforated panel set in an infinite rigid unperforated baffle using
the one-way and the two-way coupled formulations and also in finding the resonance
frequencies of a fluid-loaded perforated panel. The novelty is also due to the closed form
expressions of the modal coupling coefficient for different types of modal interactions
of the fluid-loaded perforated panel.

8.4 Design guidelines

The use of perforated panel as a sound barrier can achieve sound reduction at the
receiver side. The sound reduction can be computed from the sound transmission
loss (TL) across the perforated panel. The objective of a noise control engineer using
perforated panel is to achieve maximum TL in a specific frequency band. The following
guidelines are drawn from the present study and can be useful in the design of perforated
panel for the sound transmission applications:
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• A smaller size perforation can achieve the highest TL threshold (the required
minimum of TL in the whole frequency range). For example, if the required
minimum TL is 15 dB for a perforated panel with dimensions 0.455 m × 0.546 m,
the hole radius should be ≤ 0.5 mm (see Fig. 6.9 for the constant number of holes
case). For the panel with 0.5 mm hole radius, the minimum TL of 15 dB occurs
at 390 Hz. In comparison, for the panel with 1 mm hole radius, the minimum
TL is 7 dB and it occurs at 145 Hz.

• At low frequencies, a perforated panel with a smaller hole size (radius < 0.5 mm) is
preferred as it can provide the maximum TL (see Fig. 6.5 for constant perforation
ratio and Fig. 6.9 for constant number of holes cases). For the 0.5 mm radius
case shown in Fig. 6.9, the TL at 10 Hz is 32 dB, whereas for the 1 mm radius
case, it is 18 dB at the same frequency.

• Panels with larger holes (radius > 2 mm) have very low TL at low frequencies.
The TL will increase only at high frequencies. For example, in the present study,
the panel with 2.5 mm radius holes has TL < 10 dB up to 2000 Hz; TL reaches
the 20 dB level only at 10000 Hz (see Fig. 6.9 for the constant number of holes
case).

Perforated panels are used in machine casings. In such applications, the perforation
helps to reduce the noise generated by panel vibrations. In this thesis, the sound
generated by the vibrating perforated panel is measured in terms of the sound radiation
efficiency (σ). The objective of a design engineer is to achieve a minimum radiation
efficiency in the operating frequency range. The following guidelines are proposed to
ensure minimum radiation efficiency from the perforated panel:

• A lower radiation efficiency can be achieved by increasing the perforation ratio.
For small perforation ratios, the radiation efficiency is very close to that of an
unperforated panel. As shown in Fig. 5.9, the radiation efficiency of panels with
perforation ratio 0.24% and 0.95% is very close to unperforated panel radiation
efficiency.

• The reduction in radiation efficiency with larger perforation ratio is significant
only up to the coincidence frequency (see Figs. 3.8, 3.10 and 5.9). At high
frequencies, the perforated panel acts as a perfect sound radiator. Therefore, the
panel should be designed such that its coincidence frequency must be greater
than the operating frequency range of the machinery.
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• For low frequency applications, perforations with large hole size (radius > 2 mm)
is suggested. For small holes, the resistive impedance is significant at low
frequencies, resulting in a higher radiation efficiency (see Figs. 3.12 and 3.13).

8.5 Future research directions

• In this thesis, the hole size is assumed to be relatively small compared to the
acoustic wavelength so that the acoustic field of one hole does not affect the
pressure field at the other holes. Also, it is assumed that the hole separation is
small with respect to the acoustic wavelength. This assumption is necessary to
derive the acoustic impedance of an array of holes (perforate impedance) from
that of one hole [2]. It will be interesting to test the validity of these assumptions
for the flexible panel by studying the interaction between two adjacent holes and
incorporating it in the perforate impedance expression.

• Li et al. [3] derived the hole impedance model for a micro-perforated membrane
by including the no-slip condition for the fluid particle at the hole wall boundary.
In line with this development, an improved expression for the perforate impedance
using the thin plate theory can be developed and implemented in the model
developed in this thesis.

• In finding the in vacuo natural frequencies and modeshapes of the perforated
panel, the holes are considered as point mass voids, without accounting for the
area effect. The present study can be further extended to include the area effect
of the holes in the panel modal behavior.

• In this thesis, only two types of external excitations on the perforated panel are
considered, viz., the point force and the plane wave excitations. However, the
methodology presented here can be further modified to study the perforated
panel response to line force and turbulent boundary layer excitations.

• In many practical applications of the perforated panel, it is backed by a finite
cavity, with rigid or flexible walls. A one-way coupled analysis of a similar system
was performed by Bravo et al. [55]. A fully coupled analysis including the fluid
loading effects, as implemented in this thesis, along with the backing cavity
dynamics will certainly help to achieve a better design of the perforated panel
for greater sound absorption.
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• The modal coefficient γpq arising due to the external excitation is evaluated
numerically in this thesis. An analytical solution to the underlying integral
will help to understand the physics of interaction between different external
excitations and the in vacuo modes of the perforated panel.

• Developing a fully coupled model which includes the effect of mean fluid flow over
the perforated panel will be an exciting problem to solve. This can be further
extended to investigate more complex problems involving turbulent flows.
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Appendix A

Numerical evaluation of the Fourier
transform of the LAFP velocity

The Fourier transform of the LAFP velocity can be obtained by solving Eq. (3.27)
numerically. Eq. (3.27) is given by

[
1 + 2σb

Z0b

Za(λ, µ)
]
Va(λ, µ, z = 0) = ζIVp(λ, µ) + ab

2π2

[
σb

Z0b

− σp

Z0p

]

×





∞∫

−∞

∞∫

−∞

Za(λ′, µ′)Va(λ′, µ′, z = 0) sinc
[

(λ− λ′)a
2

]
sinc

[
(µ− µ′)b

2

]
dλ′ dµ′



 .

We select a finite 2-D wavenumber domain for λ and µ and discretize it into Nλµ (=Nλ

× Nµ) smaller sub-domains of size dλ × dµ. Further, we identify each sub-domains
with the corresponding (λi, µi) values. Thus, the above equation can be represented as

[
1 + 2σb

Z0b

Za(λi, µi)
]
Va(λi, µi, z = 0) = ζIVp(λi, µi) + ab

2π2

[
σb

Z0b

− σp

Z0p

]

×

{
Nλ×Nµ∑

j=1

Za(λj, µj)Va(λj, µj, z = 0) sinc
[

(λi − λj)a
2

]
sinc

[
(µi − µj)b

2

]
dλ dµ

}
.

(A.1)

Note, that the integral over the infinite 2-D wavenumber domain is approximated by a
sum over a discretized, finite 2-D wavenumber domain. Now, define vectors: {Va}Nλµ×1,
{Vp}Nλµ×1 and {Za}Nλµ×1 and matrices: [Zad]Nλµ×Nλµ

and
[
Z̄a

]
Nλµ×Nλµ

, whose elements
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are given by

Va i = Va(λi, µi, z = 0),
Vp i = Vp(λi, µi),
Za i = Za(λi, µi),

Zad ij = Za(λi, µi)δij

and

Z̄a ij = Za(λj, µj) sinc
[

(λi − λj)a
2

]
sinc

[
(µi − µj)b

2

]
dλ dµ,

Now, Eq. (A.1) can be expressed in matrix form as given below.
[
[I] + 2σb

Z0b

[Zad]
]

{Va} = ζI {Vp} + ab

2π2

(
σb

Z0b

− σp

Z0p

)[
Z̄a

]
{Va} ,

where [I] is an identity matrix of order Nλµ ×Nλµ. Rearranging the above equation,
we obtain

[
[I] + 2σb

Z0b

[Zad] − ab

2π2

(
σb

Z0b

− σp

Z0p

)[
Z̄a

]]
{Va} = ζI {Vp} . (A.2)

Above equation can be solved for {Va} using matrix inversion.
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Modal average radiation efficiency:
similarly perforated panel and
baffle

Consider a simply supported perforated panel (−a/2 ≤ x ≤ a/b, −b/2 ≤ y ≤ b/2) of
perforation ratio σp set in a perforated baffle of same perforation ratio. A harmonic
point force of magnitude F and angular frequency ω is applied at (xi, yi) on the panel.
It is assumed that the perforations do not affect the modal characteristics of the panel.
Hence, the response of the perforated panel at point (x, y) can be obtained from the
modal sum of the unperforated panel and is given by [11]

vp(x, y) =
∞∑

m=1

∞∑

n=1

Umnϕmn(x, y), (B.1)

where
Umn = −iωϕmn(xi, yi)F

Mmn[ω2
mn(1 − iη) − ω2] , (B.2)

ϕmn(x, y) = sin mπ(x+ a/2)
a

sin nπ(y + b/2)
b

. (B.3)

In the above equations, ϕmn(x, y) denotes the modeshape for the mode (m,n) and
Umn is the corresponding modal coefficient of an unperforated simply supported panel.
η represents the damping loss factor and Mmn is known as the modal mass as given
below.

Mmn =
b/2∫

−b/2

a/2∫

−a/2

ρphϕ
2
mn(x, y) dx dy = ρphab

4 . (B.4)
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Now, the spatial Fourier transform of the panel velocity is given by

Vp (λ, µ) =
∞∑

m=1

∞∑

n=1

UmnΦmn (λ, µ) , (B.5)

where

Φmn (λ, µ) = 1
2π

b/2∫

−b/2

a/2∫

−a/2

sin mπ(x+ a/2)
a

sin nπ(y + b/2)
b

eiλx+iµy dx dy.

Note that the integration is truncated to the panel area alone as the panel velocity
vp(x, y) is zero over the baffle region. Thus,

Φmn(λ, µ) = ambn

2π

[
(−1)meiλa/2 − e−iλa/2]

[λ2 − a2
m]

[
(−1)neiµb/2 − e−iµb/2]

[µ2 − b2
n] , (B.6)

with am = mπ
a

and bn = nπ
b

. The Fourier transform of the LAFP velocity over the
perforated panel, for a similarly perforated baffle case is given by Eq. (3.30).

Va(λ, µ, z = 0) = ζI[
1 + 2σp

Z0p
Za(λ, µ)

]Vp(λ, µ).

B.1 Average radiated power

The radiated power from the perforated panel is given by Eq. (3.31).

W = 1
2Re





∞∫

−∞

∞∫

−∞

P+(λ, µ, z = 0)V ∗
a (λ, µ) dλ dµ



 .

In the above equation, the average fluid particle velocity due to panel motion and flow
of fluid through the perforate is used to evaluate the radiated power. Substituting for
P+(λ, µ, z = 0) from Eq. (3.13) we get

W = 1
2Re





∞∫

−∞

∞∫

−∞

Za(λ, µ)|Va(λ, µ, z = 0)|2 dλ dµ



 . (B.7)
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In order to find a mean value of radiated power, let us take an average over all forcing
locations [11]. The average radiated power is defined as

W = 1
ab

b/2∫

−b/2

a/2∫

−a/2

W (xi, yi) dxi dyi. (B.8)

Substituting for W from Eq. (B.7) and rearranging the order of integration we obtain

W = 1
2Re





∞∫

−∞

∞∫

−∞

Za(λ, µ)


 1
ab

b/2∫

−b/2

a/2∫

−a/2

|Va(λ, µ, z = 0)|2 dxi dyi


 dλ dµ




. (B.9)

The equation above is the power radiated by the entire panel at a given frequency
(hence responding in several modes) averaged over all the force locations. Let the
integral inside the square bracket be denoted as

|Va(λ, µ, z = 0)|2 = 1
ab

b/2∫

−b/2

a/2∫

−a/2

|Va(λ, µ, z = 0)|2 dxi dyi. (B.10)

Using the equation for Va(λ, µ, z = 0) (Eq. (3.30)), the integral on the right hand side
is evaluated as below.

|Va(λ, µ, z = 0)|2 = |ζI |2∣∣∣1 + 2σp

Z0p
Za(λ, µ)

∣∣∣
2


 1
ab

b/2∫

−b/2

a/2∫

−a/2

|Vp(λ, µ)|2 dxi dyi




= |ζI |2∣∣∣1 + 2σp

Z0p
Za(λ, µ)

∣∣∣
2

×


 1
ab

b/2∫

−b/2

a/2∫

−a/2

∞∑

m=1

∞∑

n=1

∞∑

p=1

∞∑

q=1

UmnU
∗
pqΦmn(λ, µ)Φ∗

pq(λ, µ) dxi dyi




= |ζI |2∣∣∣1 + 2σp

Z0p
Za(λ, µ)

∣∣∣
2

×
∞∑

m=1

∞∑

n=1

∞∑

p=1

∞∑

q=1


 1
ab

b/2∫

−b/2

a/2∫

−a/2

UmnU
∗
pq dxi dyi


Φmn(λ, µ)Φ∗

pq(λ, µ).
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Due to orthogonality property of eigenfunctions, the summation over cross modal terms
(m ̸= p or n ̸= q) vanish. Hence, we get

|Va(λ, µ, z = 0)|2 =
∞∑

m=1

∞∑

n=1

|ζI |2|Φmn(λ, µ)|2∣∣∣1 + 2σp

Z0p
Za(λ, µ)

∣∣∣
2


 1
ab

b/2∫

−b/2

a/2∫

−a/2

|Umn|2 dxi dyi


 .

Let,

|Umn|2 = 1
ab

b/2∫

−b/2

a/2∫

−a/2

|Umn|2 dxi dyi.

Now, using the expression for Umn (Eq. (B.2)),

|Umn|2 = ω2|F |2

4M2
mn |ω2

mn(1 − iη) − ω2|2
. (B.11)

Therefore,

|Va(λ, µ, z = 0)|2 =
∞∑

m=1

∞∑

n=1

|ζI |2∣∣∣1 + 2σp

Z0p
Za(λ, µ)

∣∣∣
2 |Umn|2 |Φmn(λ, µ)|2. (B.12)

Hence, the average radiated power is obtained as

W =
∞∑

m=1

∞∑

n=1

|Umn|2
2 Re





∞∫

−∞

∞∫

−∞

Za(λ, µ) |ζI |2∣∣∣1 + 2σp

Z0p
Za(λ, µ)

∣∣∣
2 |Φmn(λ, µ)|2 dλ dµ




.

where, Φmn(λ, µ) and |Umn|2 are given by Eqs. (B.6) and (B.11) respectively. In the
above equation, only the wavenumber components satisfying the equation k2 > λ2 +µ2

will radiate into the far field. Hence, for the average power radiated into the far field,
the limits of integration is truncated as shown below.

W =
∞∑

m=1

∞∑

n=1

|Umn|2
2 Re





k∫

−k

√
k2−µ2∫

−
√

k2−µ2

Za(λ, µ) |ζI |2∣∣∣1 + 2σp

Z0p
Za(λ, µ)

∣∣∣
2 |Φmn(λ, µ)|2 dλ dµ




.

(B.13)
Before finding the average radiation efficiency, let’s look at the average radiated power
in detail. Let, Wmn be the average modal radiated power for the perforated panel.
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This is defined as (using Eq. (B.8))

Wmn = 1
ab

b/2∫

−b/2

a/2∫

−a/2

Wmn(xi, yi) dxi dyi. (B.14)

Substituting for Wmn, we obtain

Wmn = 1
2Re





k∫

−k

√
k2−µ2∫

−
√

k2−µ2

Za(λ, µ)|Va,mn(λ, µ, z = 0)|2 dλ dµ




,

where |Va,mn(λ, µ, z = 0)|2 is the modulus squared average fluid particle velocity for
the mode (m,n), averaged over all forcing locations on the panel. Using Eqs. (B.10)
and (B.12), we get

|Va,mn(λ, µ, z = 0)|2 = |ζI |2∣∣∣1 + 2σp

Z0p
Za(λ, µ)

∣∣∣
2 |Umn|2 |Φmn(λ, µ)|2.

Therefore, the averaged modal radiated power is

Wmn = |Umn|2
2 Re





k∫

−k

√
k2−µ2∫

−
√

k2−µ2

Za(λ, µ) |ζI |2∣∣∣1 + 2σp

Z0p
Za(λ, µ)

∣∣∣
2 |Φmn(λ, µ)|2 dλ dµ




. (B.15)

Comparing Eqs. (B.13) and (B.15), we obtain

W =
∞∑

m=1

∞∑

n=1

Wmn. (B.16)

Thus, the average radiated power is the sum of averaged modal radiated powers [11, 4].

B.2 Average radiation efficiency

The average modal radiation efficiency is given by [11]

σmn = Wmn

1
2ρ0cab< |vmn|2 >

, (B.17)
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where Wmn is given by Eq. (B.15) and < |vmn|2 > is the spatially averaged squared
velocity amplitude in mode (m,n) averaged over all forcing locations. The spatially
averaged squared modal velocity is given by

< |vmn|2 >= 1
ab

b/2∫

−b/2

a/2∫

−a/2

|vmn(x, y)|2 dx dy. (B.18)

Substituting for the panel velocity of mode (m,n)

< |vmn|2 >= 1
ab

b/2∫

−b/2

a/2∫

−a/2

|Umn|2ϕ2
mn(x, y) dx dy.

But we know that
b/2∫

−b/2

a/2∫

−a/2

ϕ2
mn(x, y) dx dy = ab

4 . (B.19)

Therefore,
< |vmn|2 >= |Umn|2

4 .

Now, averaging over all the forcing locations,

< |vmn|2 > = 1
ab

b/2∫

−b/2

a/2∫

−a/2

< |vmn(xi, yi)|2 > dxi dyi.

or
< |vmn|2 > = |Umn|2

4 , (B.20)

where |Umn|2 is given by Eq. (B.11). Therefore, using Eq. (B.15), the average modal
radiation efficiency Eq. (B.17) is given by

σmn = 4
ρ0cab

Re





k∫

−k

√
k2−µ2∫

−
√

k2−µ2

Za(λ, µ) |ζI |2∣∣∣1 + 2σp

Z0p
Za(λ, µ)

∣∣∣
2 |Φmn(λ, µ)|2 dλ dµ




. (B.21)
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The average radiation efficiency is defined as

σ = W
1
2ρ0cab< |vp|2 >

, (B.22)

where W is the average radiated power given by Eq. (B.13) and < |vp|2 > is the spatially
mean squared panel velocity averaged over all forcing locations. The spatially mean
squared panel velocity is given by

< |vp|2 >= 1
ab

b/2∫

−b/2

a/2∫

−a/2

|vp(x, y)|2 dx dy. (B.23)

Substituting for panel velocity vp(x, y) and rearranging,

< |vp|2 >=
∞∑

m=1

∞∑

n=1

∞∑

p=1

∞∑

q=1

UmnU
∗
pq

1
ab

b/2∫

−b/2

a/2∫

−a/2

ϕmn(x, y)ϕpq(x, y) dx dy.

Substitute for ϕmn(x, y) in the above equation and knowing that

b/2∫

−b/2

a/2∫

−a/2

sin mπ(x+ a/2)
a

sin n pi(y + b/2)
b

sin pπ(x+ a/2)
a

sin qπ(y + b/2)
b

dx dy

=





ab

4 when m = p and n = q

0 otherwise

we get,

< |vp|2 >=
∞∑

m=1

∞∑

n=1

|Umn|2

4 .

Averaging over all the forcing locations,

< |vp|2 > = 1
ab

b/2∫

−b/2

a/2∫

−a/2

< |vp(xi, yi)|2 > dxi dyi.

Thus,

< |vp|2 > =
∞∑

m=1

∞∑

n=1

|Umn|2
4 =

∞∑

m=1

∞∑

n=1

< |vmn|2 >. (B.24)
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Hence, the average radiation efficiency of the perforated panel set in a similarly
perforated baffle can be written as

σ =
∑∞

m=1
∑∞

n=1 Wmn

1
2ρ0cab

∑∞
m=1

∑∞
n=1 < |vmn|2 >

. (B.25)

The integrals are evaluated numerically for discrete values of λ and µ.
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Expression for Mr

We have

Mr =
b/2∫

−b/2

a/2∫

−a/2

ρphψ
2
r(x, y) dx dy, (C.1)

where ρp, h and ψr(x, y) are the density, thickness and rth mode shape of perforated
panel respectively. We know that

ψr(x, y) =
∞∑

m=1

∞∑

n=1

Umnr sin mπ(x+ a/2)
a

sin nπ(y + b/2)
b

. (C.2)

Therefore,

Mr =
b/2∫

−b/2

a/2∫

−a/2

ρph
∞∑

m=1

∞∑

n=1

Umnr sin mπ(x+ a/2)
a

sin nπ(y + b/2)
b

×
∞∑

p=1

∞∑

q=1

U∗
pqr sin pπ(x+ a/2)

a
sin qπ(y + b/2)

b
dx dy

⇒ Mr =
∞∑

m=1

∞∑

n=1

∞∑

p=1

∞∑

q=1

ρphUmnrU
∗
pqr

×
b/2∫

−b/2

a/2∫

−a/2

sin mπ(x+ a/2)
a

sin nπ(y + b/2)
b

sin pπ(x+ a/2)
a

sin qπ(y + b/2)
b

dx dy.
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But the integral

b/2∫

−b/2

a/2∫

−a/2

sin mπ(x+ a/2)
a

sin nπ(y + b/2)
b

sin pπ(x+ a/2)
a

sin qπ(y + b/2)
b

dx dy

=





ab

4 when m = p and n = q

0 otherwise

Therefore,

Mr = ρphab

4

∞∑

m=1

∞∑

n=1

|Umnr|2. (C.3)
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Expression for Φmn (λ, µ)

The (m,n)th modeshape of an unperforated simply supported panel ϕmn(x, y) is

ϕmn(x, y) = sin mπ(x+ a/2)
a

sin nπ(y + b/2)
b

, (D.1)

where a and b are the panel dimensions. Taking the double Fourier transform

Φmn(λ, µ) = 1
2π

b/2∫

−b/2

a/2∫

−a/2

ϕmn(x, y) eiλx+iµy dx dy

= 1
2π

b/2∫

−b/2

a/2∫

−a/2

sin mπ(x+ a/2)
a

sin nπ(y + b/2)
b

eiλx+iµy dx dy. (D.2)

Considering the integral in the x direction

a/2∫

−a/2

sin mπ(x+ a/2)
a

eiλx dx =
a/2∫

−a/2

1
2i

[
e

imπ(x+a/2)
a − e

−imπ(x+a/2)
a

]
eiλx dx

= 1
2i

a/2∫

−a/2

eimπ/2 ei(λ+mπ/a)x dx− 1
2i

a/2∫

−a/2

e−imπ/2 ei(λ−mπ/a)x dx.

But we know that

a/2∫

−a/2

ei(λ+mπ/a)x dx = a sinc
[

(λ+mπ/a) a
2

]
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and
a/2∫

−a/2

ei(λ−mπ/a)x dx = a sinc
[

(λ−mπ/a) a
2

]
.

Therefore

a/2∫

−a/2

sin mπ(x+ a/2)
a

eiλx dx = a

2i

{
eimπ/2 sinc

[
(λ+mπ/a) a

2

]

− e−imπ/2 sinc
[

(λ−mπ/a) a
2

]}
. (D.3)

Similarly the integral over the y space yields

b/2∫

−b/2

sin nπ(y + b/2)
b

eiµy dy = b

2i

{
einπ/2 sinc

[
(µ+ nπ/b) b

2

]

− e−inπ/2 sinc
[

(µ− nπ/b) b
2

]}
. (D.4)

Therefore, using Eqs. (D.3) and (D.4), Eq. (D.2) turns out to be

Φmn (λ, µ) = − ab

8π

{
eimπ/2 sinc

[
(λ+mπ/a) a

2

]
− e−imπ/2 sinc

[
(λ−mπ/a) a

2

]}

×
{
einπ/2 sinc

[
(µ+ nπ/b) b

2

]
− e−inπ/2 sinc

[
(µ− nπ/b) b

2

]}
.
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Integral
∞∫

−∞

∞∫
−∞

Φmn(λ, µ) Φpq(−λ,−µ) dλ dµ

Using the double Fourier transform, we can write

∞∫

−∞

∞∫

−∞

Φmn(λ, µ)Φpq(−λ,−µ) dλ dµ =
∞∫

−∞

∞∫

−∞


 1

2π

b/2∫

−b/2

a/2∫

−a/2

ϕmn(x, y) eiλx+iµy dx dy




×


 1

2π

b/2∫

−b/2

a/2∫

−a/2

ϕpq(x′, y′) e−iλx′−iµy′ dx′ dy′


 dλ dµ.

Rearranging the integrals, we get

∞∫

−∞

∞∫

−∞

Φmn(λ, µ)Φpq(−λ,−µ) dλ dµ = 1
4π2

b/2∫

−b/2

a/2∫

−a/2

b/2∫

−b/2

a/2∫

−a/2

ϕmn(x, y)ϕpq(x′, y′)

×




∞∫

−∞

∞∫

−∞

eiλ(x−x′)+iµ(y−y′) dλ dµ


 dx dy dx′ dy′.

But, we know that

∞∫

−∞

∞∫

−∞

eiλ(x−x′)+iµ(y−y′) dλ dµ = 4π2 δ(x− x′) δ(y − y′).
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∞∫

−∞

∞∫
−∞

Φmn(λ, µ) Φpq(−λ,−µ) dλ dµ

Therefore

∞∫

−∞

∞∫

−∞

Φmn(λ, µ)Φpq(−λ,−µ) dλ dµ =
b/2∫

−b/2

a/2∫

−a/2

b/2∫

−b/2

a/2∫

−a/2

ϕmn(x, y)ϕpq(x′, y′)

δ(x− x′) δ(y − y′) dx dy dx′ dy′.

Consider the integral over the x′ − y′ space. We know that ϕpq(x′, y′) is defined only
over the panel area, everywhere else it equals to zero. Now, define two rect() functions,
such that

rect
(
x′

a

)
=
{

1 −a/2 ≤ x′ ≤ a/2
0 otherwise

(E.1)

and

rect
(
y′

b

)
=
{

1 −b/2 ≤ y′ ≤ b/2
0 otherwise

. (E.2)

Using rect() functions, the integral over x′ − y′ domain can be written as

b/2∫

−b/2

a/2∫

−a/2

ϕpq(x′, y′) δ(x− x′) δ(y − y′) dx′ dy′

=
∞∫

−∞

∞∫

−∞

ϕpq(x′, y′) δ(x− x′) δ(y − y′) rect
(
x′

a

)
rect

(
y′

b

)
dx′ dy′

= ϕpq(x, y) rect
(x
a

)
rect

(y
b

)
.

Therefore

∞∫

−∞

∞∫

−∞

Φmn(λ, µ)Φpq(−λ,−µ) dλ dµ =
b/2∫

−b/2

a/2∫

−a/2

ϕmn(x, y) ϕpq(x, y)

× rect
(x
a

)
rect

(y
b

)
dx dy.

Using the definition of rect() function (Eqs. (E.1) and (E.2)), we can write

∞∫

−∞

∞∫

−∞

Φmn(λ, µ)Φpq(−λ,−µ) dλ dµ =
b/2∫

−b/2

a/2∫

−a/2

ϕmn(x, y)ϕpq(x, y) dx dy. (E.3)
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We have
ϕmn(x, y) = sin mπ(x+ a/2)

a
sin nπ(y + b/2)

b

and it can be found out that

b/2∫

−b/2

a/2∫

−a/2

sin mπ(x+ a/2)
a

sin nπ(y + b/2)
b

sin pπ(x+ a/2)
a

sin qπ(y + b/2)
b

dx dy

=





ab

4 if m = p and n = q

0 otherwise
.

(E.4)
Thus, Eq. (E.3) turns out to be

∞∫

−∞

∞∫

−∞

Φmn(λ, µ)Φpq(−λ,−µ) dλ dµ = ab

4 δmp δnq. (E.5)
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Numerical evaluation of the Fourier
transform of the LAFP velocity

The Fourier transform of the LAFP velocity can be obtained by solving Eq. (4.31) numer-
ically. Knowing P− (λ, µ, z = 0) = −Za (λ, µ)Va(λ, µ, z = 0) (Eq. (4.12)), Eq. (4.31)
turns out to be
[
1 + 2σb

Z0b

Za(λ, µ)
]
Va(λ, µ, z = 0) = ζIVp(λ, µ) − 2πP̃i

2σb

Z0b

δ(λ+ kx) δ(µ+ ky)

−
[

2σp

Z0p

− 2σb

Z0b

]
ab

4π2

∞∫

−∞

∞∫

−∞

Za(λ′, µ′)Va (λ′, µ′, z = 0)

× sinc
[

(λ− λ′)a
2

]
sinc

[
(µ− µ′)b

2

]
dλ′ dµ′

−
[

2σp

Z0p

− 2σb

Z0b

]
P̃iab

2π sinc
[

(λ+ kx)a
2

]
sinc

[
(µ+ ky)b

2

]
,

We select a finite 2-D wavenumber domain for λ and µ, and discretize it into Nλµ

(= Nλ ×Nµ) smaller sub-domains of size dλ×dµ. Further, we identify each sub-domain
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with the corresponding (λi, µi) values. Thus, the above equation can be represented as

[
1 + 2σb

Z0b

Za(λi, µi)
]
Va(λi, µi, z = 0) = ζIVp(λi, µi) − 2πP̃i

2σb

Z0b

δλi kx δµi ky

−
[

2σp

Z0p

− 2σb

Z0b

]
ab

4π2

Nλµ∑

j=1

Za(λj, µj)Va (λj, µj, z = 0) sinc
[

(λi − λj)a
2

]

× sinc
[

(µi − µj)b
2

]
dλ dµ

−
[

2σp

Z0p

− 2σb

Z0b

]
P̃iab

2π sinc
[

(λi + kx)a
2

]
sinc

[
(µi + ky)b

2

]
, (F.1)

Note, that the integral over the infinite 2-D wavenumber domain is approximated by
a sum over a discretized finite 2-D wavenumber domain. Now, define the following
vectors: {Va}Nλµ×1, {Vp}Nλµ×1, {Za}Nλµ×1, {C1}Nλµ×1 and {C2}Nλµ×1 and matrices:
[Zad]Nλµ×Nλµ

and
[
Z̄a

]
Nλµ×Nλµ

, whose elements are given by

Va i = Va(λi, µi, z = 0),
Vp i = Vp(λi, µi),
Za i = Za(λi, µi),

C1 i = sinc
[

(λi + kx)a
2

]
sinc

[
(µi + ky)b

2

]
,

C2 i = δλi kx δµi ky ,

Zad ij = Za(λi, µi) δij

and

Z̄a ij = Za(λj, µj) sinc
[

(λi − λj)a
2

]
sinc

[
(µi − µj)b

2

]
dλ dµ,

Next, Eq. (F.1) can be expressed in a matrix form as
[
[I] + 2σb

Z0b

[Zad]
]

{Va} = ζI {Vp} − ab

2π2

(
σp

Z0p

− σb

Z0b

)[
Z̄a

]
{Va}

− P̃i ab

π

(
σp

Z0p

− σb

Z0b

)
{C1} − 4π P̃i

σb

Z0b

{C2} ,
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where [I] is an identity matrix of order Nλµ ×Nλµ. Rearranging the above equation

[
[I] + 2σb

Z0b

[Zad] + ab

2π2

(
σp

Z0p

− σb

Z0b

)[
Z̄a

]]
{Va}

= ζI {Vp} − P̃i ab

π

(
σp

Z0p

− σb

Z0b

)
{C1} − 4π P̃i

σb

Z0b

{C2} , (F.2)

The above equation can be solved for {Va} using matrix inversion.





Appendix G

The transmitted power

G.1 Transmitted power through a perforated panel
set in an unperforated baffle

Let start by assuming an unperforated panel. Given the panel velocity, vp(x, y), the
transmitted power is given by

Wt = 1
2Re





b/2∫

−b/2

a/2∫

−a/2

p−(x, y, z = 0)v∗
p(x, y) dx dy




, (G.1)

where p−(x, y, z = 0) is the transmitted pressure field on the panel-baffle surface. Using
the inverse Fourier transform

Wt = 1
2Re





b/2∫

−b/2

a/2∫

−a/2


 1

2π

∞∫

−∞

∞∫

−∞

P−(λ, µ, z = 0)e−iλx−iµy dλ dµ




×


 1

2π

∞∫

−∞

∞∫

−∞

V ∗
p (λ′, µ′)eiλ′x+iµ′y dλ′ dµ′


 dx dy



 .
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Rearranging, we get

Wt = 1
8π2 Re





∞∫

−∞

∞∫

−∞

∞∫

−∞

∞∫

−∞

P−(λ, µ, z = 0)V ∗
p (λ′, µ′)

×




b/2∫

−b/2

a/2∫

−a/2

ei(λ′−λ)x+i(µ′−µ)y dx dy


 dλ dµ dλ′ dµ′




.

(G.2)

In fact, the panel velocity vp(x, y) is zero in the baffle region of z = 0 plane. Hence, it
is possible to extend the integral over the finite panel region in Eq. (G.1) to an infinite
one (infinite panel-baffle plane). Thus

Wt = 1
8π2 Re





∞∫

−∞

∞∫

−∞

∞∫

−∞

∞∫

−∞

P−(λ, µ, z = 0)V ∗
p (λ′, µ′)

×




∞∫

−∞

∞∫

−∞

ei(λ′−λ)x+i(µ′−µ)y dx dy


 dλ dµ dλ′ dµ′



 .

(G.3)

But we know that
∞∫

−∞

∞∫

−∞

ei(λ′−λ)x+i(µ′−µ)y dx dy = 4π2 δ(λ′ − λ) δ(µ′ − µ). (G.4)

Therefore

Wt = 1
2Re





∞∫

−∞

∞∫

−∞

P−(λ, µ, z = 0)V ∗
p (λ, µ) dλ dµ



 . (G.5)

However, for the case of a perforated panel fixed in a baffle, we can replace the
panel velocity Vp(λ, µ) with the LAFP velocity Va(λ, µ, z = 0), provided the baffle is
unperforated.

Wt = 1
2Re





∞∫

−∞

∞∫

−∞

P−(λ, µ, z = 0)V ∗
a (λ, µ, z = 0) dλ dµ



 . (G.6)

where P−(λ, µ, z = 0) = −Za(λ, µ)Va(λ, µ, z = 0). If the baffle is perforated, the LAFP
velocity va(x, y, z = 0) over the baffle region is nonzero and hence the assumption in
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arriving at Eq. (G.3) is violated. In the next section, an expression for the transmitted
power through a perforated panel set in a perforated baffle is derived.

G.2 Transmitted power through a perforated panel
set in a perforated baffle

Let us start with Eq. (G.2) with the LAFP velocity Va(λ, µ, z = 0) in the place of
panel velocity Vp(λ, µ) as shown below.

Wt = 1
8π2 Re





∞∫

−∞

∞∫

−∞

∞∫

−∞

∞∫

−∞

P−(λ, µ, z = 0)V ∗
a (λ′, µ′, z = 0)

×




b/2∫

−b/2

a/2∫

−a/2

ei(λ′−λ)x+i(µ′−µ)y dx dy


 dλ dµ dλ′ dµ′




.

In the next step we will not make an assumption of zero fluid particle velocity as we
have done before. We know that

b/2∫

−b/2

a/2∫

−a/2

ei(λ′−λ)x+i(µ′−µ)y dx dy = ab sinc
[

(λ′ − λ)a
2

]
sinc

[
(µ′ − µ)b

2

]
. (G.7)

Thus

Wt = ab

8π2 Re





∞∫

−∞

∞∫

−∞

∞∫

−∞

∞∫

−∞

P−(λ, µ, z = 0)V ∗
a (λ′, µ′, z = 0)

×sinc
[

(λ′ − λ)a
2

]
sinc

[
(µ′ − µ)b

2

]
dλ dµ dλ′ dµ′

}
.

(G.8)

The above equation is applicable in any case irrespective of whether the baffle is
perforated or unperforated. Thus it can rather be called as a general expression for the
power transmitted through a panel set in a baffle whose perforation ratios may differ.
The integral in the above equation has to be evaluated numerically as a sum over a
finite wavenumber domain using discrete values of λ and µ. The numerical scheme is
presented below.
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G.2.1 A numerical scheme to evaluate the transmitted power
for the perforated baffle case

We select a finite 2-D wavenumber domain for λ and µ and discretize it into Nλµ

(= Nλ × Nµ) smaller sub-domains of size dλ × dµ. Further, we identify each sub-
domains with the corresponding (λi, µi) values. Thus, the above equation can be
represented as

Wt = ab

8π2 Re





Nλµ∑

i=1

Nλµ∑

j=1

−Za(λi, µi)Va(λi, µi, z = 0)V ∗
a (λj, µj, z = 0)

×sinc
[

(λj − λi)a
2

]
sinc

[
(µj − µi)b

2

]
(dλ dµ)2

}
.

(G.9)

Note, that the integral over the infinite 2-D wavenumber domain is approximated by
a sum over a discretized, finite 2-D wavenumber domain. Now, define vector {Va}Nλµ×1

and matrices: [Zad]Nλµ×Nλµ
and [C]Nλµ×Nλµ

, whose elements are given by

Va i = Va(λi, µi, z = 0),

Zad ij = Za(λi, µi)δij

and
Cij = sinc

[
(λj − λi)a

2

]
sinc

[
(µj − µi)b

2

]
(dλ dµ)2 .

Therefore the transmitted power (Eq. (G.9)) can be written in matrix form as

Wt = ab

8π2 Re
{

− {[Zad] {Va}}T [C] {V ∗
a }
}
,

= ab

8π2 Re
{

− {Va}T [Zad]T [C] {V ∗
a }
}
.

But [Zad]T = [Zad]. Therefore the transmitted power is given by

Wt = ab

8π2 Re
{

− {Va}T [Zad] [C] {V ∗
a }
}
. (G.10)
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Simplification of the coupled
equation

Eq. (5.23) is repeated here for convenience,

[
1 + 2σb

Z0b

Za(λ, µ)
][

1
2iωZa (λ, µ)

∑

r,m,n

BrŪmnrΦmn(λ, µ) + F̃

4πZa (λ, µ) e
iλx0+iµy0

]

= ζI

∑

r,m,n

BrUmnrΦmn(λ, µ)

− ab

2π2

[
σp

Z0p

− σb

Z0b

] ∞∫

−∞

∞∫

−∞

[
1

2iω
∑

r,m,n

BrŪmnrΦmn(λ′, µ′) + F̃

4π e
iλ′x0+iµ′y0

]

× sinc
[

(λ− λ′)a
2

]
sinc

[
(µ− µ′)b

2

]
dλ′ dµ′,

where

Ūmnr =
[
D∗(1 − iη)

{(mπ
a

)2
+
(nπ
b

)2
}2

−mpω
2

]
Umnr.
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Expanding

1
2iω

[
1 + 2σb

Z0b

Za(λ, µ)
] ∑

r,m,n

BrŪmnrΘmn(λ, µ) + F̃

4π

[
1 + 2σb

Z0b

Za(λ, µ)
]
eiλx0+iµy0

Za (λ, µ)

= ζI

∑

r,m,n

BrUmnrΦmn(λ, µ) − ab

2π2

[
σp

Z0p

− σb

Z0b

]
1

2iω
∑

r,m,n

BrŪmnrXmn(λ, µ)

− F̃ ab

8π3

[
σp

Z0p

− σb

Z0b

] ∞∫

−∞

∞∫

−∞

sinc
[

(λ− λ′)a
2

]
sinc

[
(µ− µ′)b

2

]
eiλ′x0+iµ′y0 dλ′ dµ′,

(H.1)

where
Θmn(λ, µ) = Φmn(λ, µ)

Za(λ, µ) (H.2)

and

Xmn(λ, µ) =
∞∫

−∞

∞∫

−∞

Φmn(λ′, µ′) sinc
[

(λ− λ′)a
2

]
sinc

[
(µ− µ′)b

2

]
dλ′ dµ′. (H.3)

We know that
∞∫

−∞

sinc
[
λ

2

]
e−iλx dλ = 2π rect(x), (H.4)

where

rect(x) =
{

1 −1/2 ≤ x ≤ 1/2
0 otherwise

. (H.5)

Consider a function of λ′, f
(

α−βλ′

2

)
with α and β are constants. Now

∞∫

−∞

f

(
α− βλ′

2

)
eiλ′x0 dλ′ = − 1

β

∞∫

−∞

f

(
λ̄

2

)
e

i(α−λ̄)
β

x0 dλ̄,

where the transformed variable λ̄ is given by

λ̄ = α− βλ′.
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Expanding the above integral

∞∫

−∞

f

(
α− βλ′

2

)
eiλ′x0 dλ′ = − 1

β

∞∫

−∞

f

(
λ̄

2

)
e−iλ̄(x0/β) eiαx0/β dλ̄.

Thus,
∞∫

−∞

f

(
α− βλ′

2

)
eiλ′x0 dλ′ = − 1

β
eiαx0/β

∞∫

−∞

f

(
λ̄

2

)
e−iλ̄(x0/β) dλ̄. (H.6)

Now consider the integral

∞∫

−∞

sinc
[

(λ− λ′)a
2

]
eiλ′x0 dλ′.

On comparing with Eq. (H.6), we can find that

∞∫

−∞

sinc
[

(λ− λ′)a
2

]
eiλ′x0 dλ′ = −1

a
eiλ′x0

∞∫

−∞

sinc
[
λ̄

2

]
e−iλ̄(x0/a) dλ̄.

Using Eq. (H.4)

∞∫

−∞

sinc
[

(λ− λ′)a
2

]
eiλ′x0 dλ′ = −2π

a
rect

(x0

a

)
eiλx0 . (H.7)

Similarly
∞∫

−∞

sinc
[

(µ− µ′)b
2

]
eiµ′y0 dµ′ = −2π

b
rect

(y0

b

)
eiµy0 . (H.8)

Therefore

∞∫

−∞

∞∫

−∞

sinc
[

(λ− λ′)a
2

]
sinc

[
(µ− µ′)b

2

]
eiλ′x0+iµ′y0 dλ′ dµ′

= 4π2

ab
rect

(x0

a

)
rect

(y0

b

)
eiλx0+iµy0 .
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But we know that if −a/2 ≤ x0 ≤ a/2 and −b/2 ≤ y0 ≤ b/2, rect
(

x0
a

)
= rect

(
y0
b

)
= 1.

Therefore
∞∫

−∞

∞∫

−∞

sinc
[

(λ− λ′)a
2

]
sinc

[
(µ− µ′)b

2

]
eiλ′x0+iµ′y0 dλ′ dµ′ = 4π2

ab
eiλx0+iµy0 . (H.9)

Substituting Eq. (H.9) in Eq. (H.1)

1
2iω

[
1 + 2σb

Z0b

Za(λ, µ)
] ∑

r,m,n

BrŪmnrΘmn(λ, µ) + F̃

4π

[
1 + 2σb

Z0b

Za(λ, µ)
]
eiλx0+iµy0

Za (λ, µ)

= ζI

∑

r,m,n

BrUmnrΦmn(λ, µ) − ab

2π2

[
σp

Z0p

− σb

Z0b

]
1

2iω
∑

r,m,n

BrŪmnrXmn(λ, µ)

− F̃

2π

[
σp

Z0p

− σb

Z0b

]
eiλx0+iµy0 .

After removing the identical terms

1
2iω

[
1 + 2σb

Z0b

Za(λ, µ)
] ∑

r,m,n

BrŪmnrΘmn(λ, µ) + F̃

4π
eiλx0+iµy0

Za (λ, µ)

= ζI

∑

r,m,n

BrUmnrΦmn(λ, µ) − ab

2π2

[
σp

Z0p

− σb

Z0b

]
1

2iω
∑

r,m,n

BrŪmnrXmn(λ, µ)

− F̃

2π
σp

Z0p

eiλx0+iµy0 .

Rearranging gives

1
2iω

[
1 + 2σb

Z0b

Za(λ, µ)
] ∑

r,m,n

BrŪmnrΘmn(λ, µ) − ζI

∑

r,m,n

BrUmnrΦmn(λ, µ)

+ ab

8π2iω

[
2σp

Z0p

− 2σb

Z0b

] ∑

r,m,n

BrŪmnrXmn(λ, µ) = − F̃

4π
2σp

Z0p

eiλx0+iµy0 − F̃

4π
eiλx0+iµy0

Za (λ, µ) .
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Integrals in the coupled equation

I.1 Integral
∞∫

−∞

∞∫
−∞

Θmn(λ, µ)Φpq(−λ,−µ) dλ dµ

We have
Θmn(λ, µ) = Φmn(λ, µ)

Za(λ, µ) .

Therefore

Θ̄mnpq =
∞∫

−∞

∞∫

−∞

Θmn(λ, µ)Φpq(−λ,−µ) dλ dµ =
∞∫

−∞

∞∫

−∞

Φmn(λ, µ)Φpq(−λ,−µ)
Za(λ, µ) dλ dµ.

(I.1)
The above integral is evaluated numerically. The integral over the infinite 2-D wavenum-
ber domain is approximated by a sum over a finite discretized wavenumber domain.

I.2 Integral
∞∫

−∞

∞∫
−∞

Φmn(λ, µ)Φpq(−λ,−µ) dλ dµ

Using the double Fourier transform

∞∫

−∞

∞∫

−∞

Φmn(λ, µ)Φpq(−λ,−µ) dλ dµ =
∞∫

−∞

∞∫

−∞


 1

2π

b/2∫

−b/2

a/2∫

−a/2

ϕmn(x, y) eiλx+iµy dx dy




×


 1

2π

b/2∫

−b/2

a/2∫

−a/2

ϕpq(x′, y′) e−iλx′−iµy′ dx′ dy′


 dλ dµ.
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Rearranging the integrals

∞∫

−∞

∞∫

−∞

Φmn(λ, µ)Φpq(−λ,−µ) dλ dµ = 1
4π2

b/2∫

−b/2

a/2∫

−a/2

b/2∫

−b/2

a/2∫

−a/2

ϕmn(x, y)ϕpq(x′, y′)

×




∞∫

−∞

∞∫

−∞

eiλ(x−x′)+iµ(y−y′) dλ dµ


 dx dy dx′ dy′.

But we know that
∞∫

−∞

∞∫

−∞

eiλ(x−x′)+iµ(y−y′) dλ dµ = 4π2 δ(x− x′) δ(y − y′).

Therefore

∞∫

−∞

∞∫

−∞

Φmn(λ, µ)Φpq(−λ,−µ) dλ dµ

=
b/2∫

−b/2

a/2∫

−a/2

b/2∫

−b/2

a/2∫

−a/2

ϕmn(x, y)ϕpq(x′, y′) δ(x− x′) δ(y − y′) dx dy dx′ dy′.

We know that ϕpq(x′, y′) is defined only over the panel area and on the baffle surface it
is equal to zero. Now define two rect() functions such that

rect
(
x′

a

)
=
{

1 −a/2 ≤ x′ ≤ a/2
0 otherwise

(I.2)

and

rect
(
y′

b

)
=
{

1 −b/2 ≤ y′ ≤ b/2
0 otherwise

. (I.3)



I.2 Integral
∞∫

−∞

∞∫
−∞

Φmn(λ, µ)Φpq(−λ,−µ) dλ dµ 261

Using rect() functions, the integral over x′ − y′ domain can be written as

b/2∫

−b/2

a/2∫

−a/2

ϕpq(x′, y′) δ(x− x′) δ(y − y′) dx′ dy′

=
∞∫

−∞

∞∫

−∞

ϕpq(x′, y′) δ(x− x′) δ(y − y′) rect
(
x′

a

)
rect

(
y′

b

)
dx′ dy′

= ϕpq(x, y) rect
(x
a

)
rect

(y
b

)
.

Therefore

∞∫

−∞

∞∫

−∞

Φmn(λ, µ)Φpq(−λ,−µ) dλ dµ

=
b/2∫

−b/2

a/2∫

−a/2

ϕmn(x, y) ϕpq(x, y) rect
(x
a

)
rect

(y
b

)
dx dy.

Using the definition of rect() function (Eqs. (I.2) and (I.3))

∞∫

−∞

∞∫

−∞

Φmn(λ, µ)Φpq(−λ,−µ) dλ dµ =
b/2∫

−b/2

a/2∫

−a/2

ϕmn(x, y)ϕpq(x, y) dx dy. (I.4)

We have
ϕmn(x, y) = sin mπ(x+ a/2)

a
sin nπ(y + b/2)

b

and it can be seen that

b/2∫

−b/2

a/2∫

−a/2

sin mπ(x+ a/2)
a

sin nπ(y + b/2)
b

sin pπ(x+ a/2)
a

sin qπ(y + b/2)
b

dx dy

=





ab

4 if m = p and n = q

0 otherwise
.

(I.5)
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Thus, Eq. (I.4) turns out to be

∞∫

−∞

∞∫

−∞

Φmn(λ, µ)Φpq(−λ,−µ) dλ dµ = ab

4 δmp δnq. (I.6)

I.3 Integral
∞∫

−∞

∞∫
−∞

Xmn(λ, µ)Φpq(−λ,−µ) dλ dµ

We have

Xmn(λ, µ) =
∞∫

−∞

∞∫

−∞

Φmn(λ′, µ′) sinc
[

(λ− λ′)a
2

]
sinc

[
(µ− µ′)b

2

]
dλ′ dµ′.

Using the double Fourier transform

∞∫

−∞

∞∫

−∞

Xmn(λ, µ)Φpq(−λ,−µ) dλ dµ

=
∞∫

−∞

∞∫

−∞

∞∫

−∞

∞∫

−∞


 1

2π

b/2∫

−b/2

a/2∫

−a/2

ϕmn(x′, y′) eiλ′x′+iµ′y′ dx′ dy′




×


 1

2π

b/2∫

−b/2

a/2∫

−a/2

ϕpq(x, y) e−iλx−iµy dx dy


 sinc

[
(λ− λ′)a

2

]
sinc

[
(µ− µ′)b

2

]
dλ dµ dλ′ dµ′.

Rearranging the integrals



I.3 Integral
∞∫

−∞

∞∫
−∞

Xmn(λ, µ)Φpq(−λ,−µ) dλ dµ 263

∞∫

−∞

∞∫

−∞

Xmn(λ, µ)Φpq(−λ,−µ) dλ dµ = 1
4π2

b/2∫

−b/2

a/2∫

−a/2

b/2∫

−b/2

a/2∫

−a/2

ϕmn(x′, y′)ϕpq(x, y)

×




∞∫

−∞

∞∫

−∞

eiλ′x′−iλx sinc
[

(λ− λ′)a
2

]
dλ dλ′




×




∞∫

−∞

∞∫

−∞

eiµ′y′−iµy sinc
[

(µ− µ′)b
2

]
dµ dµ′


 dx dy dx′ dy′. (I.7)

We know that
∞∫

−∞

sinc
[
λ

2

]
e−iλx dλ = 2π rect(x), (I.8)

where

rect(x) =
{

1 −1/2 ≤ x ≤ 1/2
0 otherwise

. (I.9)

Now, f
(

αλ−β
2

)
is a function of λ with α and β as constants

∞∫

−∞

f

(
αλ− β

2

)
e−iλx dλ = 1

α

∞∫

−∞

f

(
λ̄

2

)
e

−i(λ̄+β)
α

x dλ̄,

where the transformed variable λ̄ is given by

λ̄ = αλ− β.

Expanding the integrand we get

∞∫

−∞

f

(
αλ− β

2

)
e−iλx dλ = 1

α

∞∫

−∞

f

(
λ̄

2

)
e−iλ̄(x/α) e−iβx/α dλ̄.

Thus,
∞∫

−∞

f

(
αλ− β

2

)
e−iλx dλ = 1

α
e−iβx/α

∞∫

−∞

f

(
λ̄

2

)
e−iλ̄(x/α) dλ̄. (I.10)
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Now, consider the integral

∞∫

−∞

sinc
[

(λ− λ′)a
2

]
e−iλx dλ.

On comparing with Eq. (I.10) we can find that

∞∫

−∞

sinc
[

(λ− λ′)a
2

]
e−iλx dλ = 1

a
e−iλ′x

∞∫

−∞

sinc
[
λ̄

2

]
e−iλ̄(x/a) dλ̄.

Using Eq. (I.8) we get

∞∫

−∞

sinc
[

(λ− λ′)a
2

]
e−iλx dλ = 2π

a
rect

(x
a

)
e−iλ′x. (I.11)

Now, the integral in Eq. (I.7) turns out to be

∞∫

−∞

∞∫

−∞

eiλ′x′−iλx sinc
[

(λ− λ′)a
2

]
dλ dλ′ = 2π

a
rect

(x
a

) ∞∫

−∞

eiλ′x′−iλ′x dλ′.

But we know that
∞∫

−∞

eiλ′x′−iλ′x dλ′ = 2π δ(x′ − x).

Therefore
∞∫

−∞

∞∫

−∞

eiλ′x′−iλx sinc
[

(λ− λ′)a
2

]
dλ dλ′ = 4π2

a
rect

(x
a

)
δ(x′ − x). (I.12)

Similarly,

∞∫

−∞

∞∫

−∞

eiµ′y′−iµy sinc
[

(µ− µ′)b
2

]
dµ dµ′ = 4π2

b
rect

(y
b

)
δ(y′ − y). (I.13)
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Using Eqs. (I.12) and (I.13) we can rewrite Eq. (I.7) as

∞∫

−∞

∞∫

−∞

Xmn(λ, µ)Φpq(−λ,−µ) dλ dµ = 4π2

ab

b/2∫

−b/2

a/2∫

−a/2

b/2∫

−b/2

a/2∫

−a/2

ϕmn(x′, y′)ϕpq(x, y)

× rect
(x
a

)
rect

(y
b

)
δ(x′ − x) δ(y′ − y) dx dy dx′ dy′.

The presence of the rect() function allows us to extend the integral limits to infinity.
Thus,

∞∫

−∞

∞∫

−∞

Xmn(λ, µ)Φpq(−λ,−µ) dλ dµ = 4π2

ab

b/2∫

−b/2

a/2∫

−a/2

ϕmn(x′, y′)
∞∫

−∞

∞∫

−∞

ϕpq(x, y)

× rect
(x
a

)
rect

(y
b

)
δ(x′ − x) δ(y′ − y) dx dy dx′ dy′

= 4π2

ab

b/2∫

−b/2

a/2∫

−a/2

ϕmn(x′, y′)ϕpq(x′, y′) rect
(
x′

a

)
rect

(
y′

b

)
dx′ dy′.

However, by the definition of rect() functions (Eqs. (I.2) and (I.3)), we get

∞∫

−∞

∞∫

−∞

Xmn(λ, µ)Φpq(−λ,−µ) dλ dµ = 4π2

ab

b/2∫

−b/2

a/2∫

−a/2

ϕmn(x′, y′)ϕpq(x′, y′) dx′ dy′.

We have
ϕmn(x, y) = sin mπ(x+ a/2)

a
sin nπ(y + b/2)

b
.

And using Eq. (I.5) we can find that

∞∫

−∞

∞∫

−∞

Xmn(λ, µ)Φpq(−λ,−µ) dλ dµ = π2 δmp δnq. (I.14)
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I.4 Integral
∞∫

−∞

∞∫
−∞

Φpq(−λ,−µ)
Za(λ,µ) eiλx0+iµy0 dλ dµ

γpq (x0, y0) =
∞∫

−∞

∞∫

−∞

Φpq(−λ,−µ)
Za (λ, µ) eiλx0+iµy0 dλ dµ. (I.15)

The above integral is evaluated numerically. The integral over the infinite 2-D wavenum-
ber domain is approximated by a sum over a finite discretized wavenumber domain.

I.5 Integral
∞∫

−∞

∞∫
−∞

Φpq(−λ,−µ) eiλx0+iµy0 dλ dµ

Let λ̄ = −λ and µ̄ = −µ. Therefore

∞∫

−∞

∞∫

−∞

Φpq(−λ,−µ) eiλx0+iµy0 dλ dµ =
∞∫

−∞

∞∫

−∞

Φpq(λ̄, µ̄) e−iλ̄x0−iµ̄y0 dλ̄ dµ̄ (I.16)

= 2π ϕpq (x0, y0) .

The last deduction uses the definition of inverse Fourier transforms.
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Simplifying the coupled equation

The initial form of the coupled equation is (Eq. (6.35))

[
1 + 2σb

Z0b

Za(λ, µ)
][

1
2iωZa (λ, µ)

∑

r,m,n

BrŪmnrΦmn(λ, µ) − 2πP̃i

Za (λ, µ)δ(λ+ kx) δ(µ+ ky)
]

= ζI

∑

r,m,n

BrUmnrΦmn(λ, µ) − 2σb

Z0b

2πP̃i δ(λ+ kx) δ(µ+ ky)

−
[

2σp

Z0p

− 2σb

Z0b

]
P̃iab

2π sinc
[

(λ+ kx)a
2

]
sinc

[
(µ+ ky)b

2

]

−
[

2σp

Z0p

− 2σb

Z0b

]
ab

4π2

∞∫

−∞

∞∫

−∞

[
1

2iω
∑

r,m,n

BrŪmnrΦmn(λ′, µ′) − 2πP̃i δ(λ′ + kx) δ(µ′ + ky)
]

× sinc
[

(λ− λ′)a
2

]
sinc

[
(µ− µ′)b

2

]
dλ′ dµ′,

where

Ūmnr =
[
D∗(1 − iη)

{(mπ
a

)2
+
(nπ
b

)2
}2

−mpω
2

]
Umnr.
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Expanding
[
1 + 2σb

Z0b

Za(λ, µ)
]

1
2iω

∑

r,m,n

BrŪmnrΘmn(λ, µ)

− 2πP̃i

Za (λ, µ) δ(λ+ kx) δ(µ+ ky) − 2σb

Z0b

2πP̃i δ(λ+ kx) δ(µ+ ky)

= ζI

∑

r,m,n

BrUmnrΦmn(λ, µ) − 2σb

Z0b

2πP̃i δ(λ+ kx) δ(µ+ ky)

−
[

2σp

Z0p

− 2σb

Z0b

]
P̃iab

2π sinc
[

(λ+ kx)a
2

]
sinc

[
(µ+ ky)b

2

]

−
[

2σp

Z0p

− 2σb

Z0b

]
ab

4π2
1

2iω
∑

r,m,n

BrŪmnrXmn(λ, µ)

+
[

2σp

Z0p

− 2σb

Z0b

]
P̃iab

2π sinc
[

(λ+ kx)a
2

]
sinc

[
(µ+ ky)b

2

]
,

where
Θmn(λ, µ) = Φmn(λ, µ)

Za(λ, µ) (J.1)

and

Xmn(λ, µ) =
∞∫

−∞

∞∫

−∞

Φmn(λ′, µ′) sinc
[

(λ− λ′)a
2

]
sinc

[
(µ− µ′)b

2

]
dλ′ dµ′. (J.2)

After removing the identical terms we get
[
1 + 2σb

Z0b

Za(λ, µ)
]

1
2iω

∑

r,m,n

BrŪmnrΘmn(λ, µ) − 2πP̃i

Za (λ, µ) δ(λ+ kx) δ(µ+ ky)

= ζI

∑

r,m,n

BrUmnrΦmn(λ, µ) −
[

2σp

Z0p

− 2σb

Z0b

]
ab

4π2
1

2iω
∑

r,m,n

BrŪmnrXmn(λ, µ).
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Rearranging

1
2iω

[
1 + 2σb

Z0b

Za(λ, µ)
] ∑

r,m,n

BrŪmnrΘmn(λ, µ) − ζI

∑

r,m,n

BrUmnrΦmn(λ, µ)

+ ab

8π2iω

[
2σp

Z0p

− 2σb

Z0b

] ∑

r,m,n

BrŪmnrXmn(λ, µ) = 2πP̃i

Za (λ, µ) δ(λ+ kx) δ(µ+ ky).

(J.3)





Appendix K

Negative transmission loss

The power balance equation (Eq. (6.53)) is written as

Wrefl +Wflow = Wi +Winc-rad = W̃i. (K.1)

Let us now find the expression for Winc-rad in terms of the pressure and velocity fields
in the wavenumber domain given that

Winc-rad = −1
2 Re

{∫∫

Ap

[
pi(x, y, z = 0)v∗

a (x, y, z = 0)

+ p+(x, y, z = 0)v∗
i (x, y, z = 0)

]
dA
}
. (K.2)

First, consider the integral

T 1
inc-rad =

∫∫

Ap

pi(x, y, z = 0)v∗
a (x, y, z = 0) dA. (K.3)

Using Eq. (6.1) and the definition of inverse double Fourier transform

T 1
inc-rad =

b/2∫

−b/2

a/2∫

−a/2

P̃i eikxx+ikyy


 1

2π

∞∫

−∞

∞∫

−∞

V ∗
a (λ, µ, z = 0) eiλx+iµy dλ dµ


 dx dy.

We know that va(x, y, z = 0) = 0 on the baffle region if the baffle is unperforated.
We may now extend the surface integral over the entire z = 0 plane. Thus, after
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rearranging the integrals we get

T 1
inc-rad = P̃i

2π

∞∫

−∞

∞∫

−∞

V ∗
a (λ, µ, z = 0)




∞∫

−∞

∞∫

−∞

ei(λ+kx)x+i(µ+ky)y dx dy


 dλ dµ.

Also
∞∫

−∞

∞∫

−∞

ei(λ+kx)x+i(µ+ky)y dx dy = 4π2 δ(λ+ kx) δ(µ+ ky).

Therefore
T 1

inc-rad = 2π P̃i V
∗

a (−kx,−ky, z = 0) . (K.4)

Next, consider the integral

T 2
inc-rad =

∫∫

Ap

p+(x, y, z = 0)v∗
i (x, y, z = 0) dA, (K.5)

where the normal velocity of the incident plane wave is vi(x, y, z = 0) = − cos θ
ρ0c

P̃ieikxx+ikyy.
Using the inverse double Fourier transform we get

T 2
inc-rad =

b/2∫

−b/2

a/2∫

−a/2

− cos θ
ρ0c

P̃ ∗
i e−ikxx−ikyy

×


 1

2π

∞∫

−∞

∞∫

−∞

P+ (λ, µ, z = 0) e−iλx−iµy dλ dµ


 dx dy.

From Eq. (6.24) we know that

P+(λ, µ, z = 0) = Za(λ, µ)Va (λ, µ, z = 0) .

After rearranging the integrals in T 2
inc-rad and substituting for P+(λ, µ, z = 0)

T 2
inc-rad = −P̃ ∗

i cos θ
2π ρ0c

∞∫

−∞

∞∫

−∞

Za(λ, µ)Va (λ, µ, z = 0)

×




b/2∫

−b/2

a/2∫

−a/2

e−i(λ+kx)x−i(µ+ky)y dx dy


 dλ dµ.
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Also

b/2∫

−b/2

a/2∫

−a/2

e−i(λ+kx)x−i(µ+ky)y dx dy = ab sinc
[

(λ+ kx)a
2

]
sinc

[
(µ+ ky)b

2

]
.

Therefore

T 2
inc-rad = −P̃ ∗

i cos θ ab
2π ρ0c

∞∫

−∞

∞∫

−∞

Za(λ, µ)Va (λ, µ, z = 0)

× sinc
[

(λ+ kx)a
2

]
sinc

[
(µ+ ky)b

2

]
dλ dµ. (K.6)

The above integral can be evaluated numerically.
Now, using Eqs. (K.3) to (K.6), Eq. (K.2) becomes

Winc-rad = 1
2 Re

{
P̃ ∗

i cos θ ab
2π ρ0c

×
∞∫

−∞

∞∫

−∞

Za(λ, µ)Va (λ, µ, z = 0) sinc
[

(λ+ kx)a
2

]
sinc

[
(µ+ ky)b

2

]
dλ dµ

− 2π P̃i V
∗

a (−kx,−ky, z = 0)
}
. (K.7)

And therefore the total power injected into the perforated panel W̃i is obtained as (Wi

is given by Eq. (6.49))

W̃i = |P̃i|2 cos θ ab
2ρ0c

+ 1
2 Re

{
P̃ ∗

i cos θ ab
2π ρ0c

×
∞∫

−∞

∞∫

−∞

Za(λ, µ)Va (λ, µ, z = 0) sinc
[

(λ+ kx)a
2

]
sinc

[
(µ+ ky)b

2

]
dλ dµ

− 2π P̃i V
∗

a (−kx,−ky, z = 0)
}
. (K.8)

Let us consider the case of negative TL for the panel with rp = 2.5 mm and
σp = 5.93%. The panel dimensions and material properties are the same as before.
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Fig. K.1 (a) Comparison between the total injected power normal to the perforated
panel (Eq. (K.8)) and the power carried by the incident plane wave normal to the
panel area (Eq. (6.49)). (b) Comparison of TL evaluated using the total injected power
with that computed using the normal incident power. The panel has a perforation
ratio of σp = 5.93% with hole radius rp = 2.5 mm. A normally incident plane wave is
considered (θ = 00 and ϕ = 00).

For normal incidence of the plane wave (θ = 00 and ϕ = 00), Fig. K.1(a) compares W̃i

(Eq. (K.8)) with Wi (Eq. (6.49)). And Fig. K.1(b) compares the corresponding TLs.
The coupled formulation is used here.

W̃i, as shown in Fig. K.1(a), has a frequency dependent behavior and is much
greater than Wi at lower frequencies. This implies that more power is incident upon
the panel than the power carried by the incident plane wave alone. Thus, at lower
frequencies, evaluating TL using Wi (Eq. (6.49)) alone results in an underestimation
of the actual incident power and causes a negative TL (dotted line in Fig. K.1(b)).
The two terms of Winc-rad (Eq. (K.7)) have opposite signs. And at lower frequencies, a
significant contribution to Winc-rad comes from the in-phase components of the incident
pressure and the radiated velocity (T 1

inc-rad as given in Eq. (K.4)). As the frequency
increases, both the terms reduce in magnitude. And at higher frequencies, they cancel
out each other and W̃i approaches Wi.

The discontinuity in the perforate impedance at the panel-baffle boundary results
in the diffraction of sound waves [71]. The diffraction is significant at lower frequencies
so as to cause an increase in the power drawn towards the perforated panel surface. In
order to visualize this effect, the total sound intensity field (averaged over time) on
the incident side of the perforated panel is plotted in Fig. K.2 for 71.97 Hz, 222.3 Hz
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Fig. K.2 The total sound intensity field on the incident side of the perforated panel (in
the y = 0 plane) at different frequencies: (a) 71.97 Hz, (b) 222.3 Hz and (c) 2811.77 Hz.
The panel has a perforation ratio of σp = 5.93% with hole radius rp = 2.5 mm. A
normally incident plane wave is considered (θ = 00 and ϕ = 00).

and 2811.77 Hz. The sound intensity on the incident side is derived in L. 71.97 Hz
corresponds to W̃i > Wi (see Fig. K.1(a)); 222.3 Hz corresponds to W̃i < Wi and
2811.77 Hz, W̃i ≈ Wi. In the intensity plots, at a given point, the vector length is
proportional to the magnitude of intensity and the arrow heads point in the direction
of power flow. In Fig. K.2, the perforated panel is shown as a thick dashed line. At
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71.97 Hz (Fig. K.2(a)), the sound energy is directed towards the perforated panel
from a wide region around it; not only from above the panel surface (due to the
incident plane wave), but also from the sides (due to the diffraction phenomenon).
On the other hand, at higher frequencies, the power is drawn mostly from the front
of the perforated panel and the power drawn from the sides due to the diffraction
becomes more negligible, as seen in Figs. K.2(b) and K.2(c). Here, the term Winc-rad

(Eq. (K.7)) represents the additional power drawn from the sides due to the diffraction
phenomenon, which becomes negligible at higher frequencies. Note, that at certain
frequencies, the diffraction results in a total injected power which is lower than the
normal incident power, as is evident from the smaller arrows above the perforated
panel in Fig. K.2(b). It is attributed to a larger in-phase component of the radiated
pressure and the incident velocity (T 2

inc-rad as given in Eq. (K.6)) in the expression for
Winc-rad (Eq. (K.7)).



Appendix L

Sound intensity field on the
incident side of the perforated
panel

L.1 Pressure and velocity fields on the incident
side

We know that the total pressure field (in the wavenumber domain) on the incident side
of the panel is (Eq. (6.23))

P2 (λ, µ, z) = Za(λ, µ)Va (λ, µ, z = 0) ei
√

k2−λ2−µ2z + 4πP̃i δ(λ+ kx) δ(µ+ ky) cos kzz,

(L.1)
where Za(λ, µ) = ρ0ck√

k2−λ2−µ2
. Using the Euler equation in the x direction

∂p2(x, y, z)
∂x

= iρ0ω v2x(x, y, z). (L.2)

Taking the double Fourier transform on both the sides

−iλP2(λ, µ, z) = iρ0ck V2x(λ, µ, z).

Therefore
V2x(λ, µ, z) = − λ

ρ0ck
P2(λ, µ, z). (L.3)
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Now, using the Euler equation in the z direction

∂p2(x, y, z)
∂z

= iρ0ω v2z(x, y, z). (L.4)

Taking the double Fourier transform we get

∂P2(λ, µ, z)
∂z

= iρ0ω V2z(λ, µ, z). (L.5)

Substituting for P2(λ, µ, z) from Eq. (L.1)

i
√
k2 − λ2 − µ2 Za(λ, µ)Va (λ, µ, z = 0) ei

√
k2−λ2−µ2z

− kz 4πP̃i δ(λ+ kx) δ(µ+ ky) sin kzz = iρ0ω V2z(λ, µ, z).

Therefore

V2z(λ, µ, z) = Va (λ, µ, z = 0) ei
√

k2−λ2−µ2z + i cos θ
ρ0c

4πP̃i δ(λ+ kx) δ(µ+ ky) sin kzz.

(L.6)

L.2 Total intensity on the incident side

The x component of the total intensity on the incident side is given by

I2x = 1
2 Re {p2(x, y, z) v∗

2x(x, y, z)} . (L.7)

Using the inverse Fourier transform we can write

I2x = 1
8π2 Re








∞∫

−∞

∞∫

−∞

P2(λ, µ, z) e−iλx−iµy dλ dµ




×




∞∫

−∞

∞∫

−∞

V ∗
2x(λ′, µ′, z) eiλ′x+iµ′y dλ′ dµ′





 . (L.8)
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Substituting P2(λ, µ, z) from Eq. (L.1) into the first integral

∞∫

−∞

∞∫

−∞

P2(λ, µ, z) e−iλx−iµy dλ dµ =
∞∫

−∞

∞∫

−∞

P 1
2 (λ, µ, z) e−iλx−iµy dλ dµ

+ 4πP̃i eikxx+ikyy cos kzz, (L.9)

where
P 1

2 (λ, µ, z) = Za(λ, µ)Va (λ, µ, z = 0) ei
√

k2−λ2−µ2z. (L.10)

The integral on the right hand side of Eq. (L.9) can be evaluated numerically.
Substituting V2x(λ, µ, z) from Eq. (L.3) into the second integral of Eq. (L.8)

∞∫

−∞

∞∫

−∞

V ∗
2x(λ′, µ′, z) eiλ′x+iµ′y dλ′ dµ′ =

∞∫

−∞

∞∫

−∞

− λ′

ρ0ck
P 1

2 (λ′, µ′, z) eiλ′x+iµ′y dλ′ dµ′

+ sin θ cosϕ
ρ0c

4πP̃ ∗
i e−ikxx−ikyy cos kzz, (L.11)

where P 1
2 (λ, µ, z) is given by Eq. (L.10). The integral on the right hand side of the

above equation can be evaluated numerically.
Now, using Eqs. (L.9) and (L.11), we can evaluate the total intensity in the x

direction on the incident side (given by Eq. (L.8)).
The z component of the total intensity on the incident side is given by

I2z = 1
2 Re {p2(x, y, z) v∗

2z(x, y, z)} . (L.12)

Using the inverse Fourier transform we can write

I2z = 1
8π2 Re








∞∫

−∞

∞∫

−∞

P2(λ, µ, z) e−iλx−iµy dλ dµ




×




∞∫

−∞

∞∫

−∞

V ∗
2z(λ′, µ′, z) eiλ′x+iµ′y dλ′ dµ′





 . (L.13)
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The first integral on the right hand side is given by Eq. (L.9). Substituting V2z(λ, µ, z)
from Eq. (L.6) into the second integral

∞∫

−∞

∞∫

−∞

V ∗
2z(λ′, µ′, z) eiλ′x+iµ′y dλ′ dµ′ =

∞∫

−∞

∞∫

−∞

V 1∗
2z (λ′, µ′, z) eiλ′x+iµ′y dλ′ dµ′

+ i cos θ
ρ0c

4πP̃ ∗
i e−ikxx−ikyy sin kzz, (L.14)

where
V 1

2z(λ′, µ′, z) = Va(λ′, µ′, z = 0) ei
√

k2−λ′2−µ′2z. (L.15)

The first integral on the right hand side of Eq. (L.14) is evaluated numerically. Using
Eqs. (L.9) and (L.14), we can now find the total intensity in the z direction on the
incident side of the panel (given by Eq. (L.13)).



Appendix M

Line integrals and residues in
I
mp
1 (µ : |µ| < k) (case 1)

M.1 Line integrals of Γ1,Γ2,Γ3 and Γ4

Consider the contour integrals of case 1 as shown in Fig. 7.9.

Γ1 =
0∫

i∞

[
1 − (−1)m eiλa

]
(λ2

1 − λ2)
1/2

(λ2 − k2
m)
(
λ2 − k2

p

) dλ,

Γ2 =
λ1∫

0

[
1 − (−1)m eiλa

]
(λ2

1 − λ2)
1/2

(λ2 − k2
m)
(
λ2 − k2

p

) dλ,

Γ3 =
0∫

λ1

[
1 − (−1)m eiλa

]
(λ2

1 − λ2)
1/2

(λ2 − k2
m)
(
λ2 − k2

p

) dλ,

and Γ4 =
i∞∫

0

[
1 − (−1)m eiλa

]
(λ2

1 − λ2)
1/2

(λ2 − k2
m)
(
λ2 − k2

p

) dλ.

(M.1)

We have from Eq. (7.9)

(
λ2

1 − λ2)1/2 =





|λ1 − λ|
1/2 |λ1 + λ|

1/2 ei (γ+θ)/2 for Re(λ) > 0 and Im(λ) > 0

− |λ1 − λ|
1/2 |λ1 + λ|

1/2 ei (γ+θ)/2 for Re(λ) < 0 and Im(λ) > 0

|λ1 − λ|
1/2 |λ1 + λ|

1/2 ei (γ+θ)/2 for Re(λ) < 0 and Im(λ) < 0

− |λ1 − λ|
1/2 |λ1 + λ|

1/2 ei (γ+θ)/2 for Re(λ) > 0 and Im(λ) < 0
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where γ and θ vary from 0 to 2π.
It can be seen that along the contour Γ1, γ+θ = 2π (Fig. 7.4) and λ = iy. Therefore,

(
λ2

1 − λ2)1/2 =
∣∣λ2

1 − λ2∣∣1/2 ei (γ+θ)/2 = −
∣∣λ2

1 + y2∣∣1/2 .

Thus,

Γ1 = i
∞∫

0

[1 − (−1)m e−ay] |λ2
1 + y2|

1/2

(y2 + k2
m)
(
y2 + k2

p

) dy. (M.2)

Now, along the contour of Γ2, γ = 2π, θ = 0 (Fig. 7.4) and λ = x. Therefore,

(
λ2

1 − λ2)1/2 =
∣∣λ2

1 − λ2∣∣1/2 ei (γ+θ)/2 = −
∣∣λ2

1 − x2∣∣1/2 .

Thus,

Γ2 = −
λ1∫

0

[1 − (−1)m eiax] |λ2
1 − x2|

1/2

(x2 − k2
m)
(
x2 − k2

p

) dx. (M.3)

Along the contour of Γ3, γ = 0, θ = 2π (Fig. 7.4) and λ = x. Therefore,

(
λ2

1 − λ2)1/2 = −
∣∣λ2

1 − λ2∣∣1/2 ei (γ+θ)/2 =
∣∣λ2

1 − x2∣∣1/2 .

Thus,

Γ3 = −
λ1∫

0

[1 − (−1)m eiax] |λ2
1 − x2|

1/2

(x2 − k2
m)
(
x2 − k2

p

) dx. (M.4)

And along the contour of Γ4, γ + θ = 2π (Fig. 7.4) and λ = iy. Therefore,

(
λ2

1 − λ2)1/2 = −
∣∣λ2

1 − λ2∣∣1/2 ei (γ+θ)/2 =
∣∣λ2

1 + y2∣∣1/2 .

Thus,

Γ4 = i
∞∫

0

[1 − (−1)m e−ay] |λ2
1 + y2|

1/2

(y2 + k2
m)
(
y2 + k2

p

) dy. (M.5)

M.2 The small circular contour around λ1

Consider the small circular contour Cϵ connecting Γ2 and Γ3 in Fig. 7.9. Along the
contour

λ = λ1 + ϵ eiϕ,



M.3 Residues at the simple poles when km ̸= kp 283

where ϵ → 0 is a small real quantity and ϕ : π to −π. Along the contour

(
λ2

1 − λ2)1/2 =
∣∣λ2

1 − λ2∣∣1/2 ei (γ+θ)/2 ,

where γ and θ can vary from 0 to 2π. The integral around the contour is

ICϵ = lim
ϵ→0

∫

Cϵ

[
1 − (−1)m eiλa

]
(λ2

1 − λ2)
1/2

(λ2 − k2
m)
(
λ2 − k2

p

)
︸ ︷︷ ︸

f(λ)

dλ. (M.6)

Now evaluating | (λ− λ1) f(λ)| in the limit ϵ → 0,

lim
ϵ→0

| (λ− λ1) f(λ)| = lim
ϵ→0

∣∣∣∣∣∣∣

ϵ eiϕ [1 − (−1)m eiλ1a
] ∣∣∣λ2

1 −
(
λ1 + ϵ eiϕ)2

∣∣∣
1/2

ei (γ+θ)/2

(λ2
1 − k2

m)
(
λ2

1 − k2
p

)

∣∣∣∣∣∣∣

= 0.

Therefore [67]
lim
ϵ→0

∫

Cϵ

f(λ) dλ = 0.

Thus,
ICϵ = 0. (M.7)

M.3 Residues at the simple poles when km ̸= kp

The integrand of case 1 can be obtained from Eq. (7.6) as

f(λ) =
[
1 − (−1)m eiλa

]
(λ2

1 − λ2)
1/2

(λ2 − k2
m)
(
λ2 − k2

p

) .

The poles are at λ = ±km and ± kp, where km = mπ/a and kp = pπ/a. The residue
at km can be obtained as

Res(km) = (λ− km) f(λ)|λ=km
=
[
1 − (−1)2m] (λ2

1 − k2
m)

1/2

2 km

(
k2

m − k2
p

)

which is equal to zero. Thus,
Res(km) = 0. (M.8)
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Similarly, we can also arrive at

Res(−km) = Res(kp) = Res(−kp) = 0. (M.9)

M.4 Residues at the poles when km = kp

When km = kp, the integrand of case 1 is

f(λ) =
[
1 − (−1)m eiλa

]
(λ2

1 − λ2)
1/2

(λ2 − k2
m)2 .

The poles at λ = ±km are of multiplicity two. The residue at λ = km can be obtained
from

Res(km) = d
dλ
[
(λ− km)2 f(λ)

]∣∣∣∣
λ=km

.

We see from Figs. 7.4 and 7.9 that near λ = km, γ = π and θ = 0. Thus, the square
root function

(
λ2

1 − λ2)1/2 =
∣∣λ2

1 − λ2∣∣1/2 ei (γ+θ)/2 = i
∣∣λ2

1 − λ2∣∣1/2 .

Therefore,

Res(km) = d
dλ

[[
1 − (−1)m eiλa

]
i |λ2

1 − λ2|
1/2

(λ+ km)2

]∣∣∣∣∣
λ=km

.

Thus, knowing that km = mπ/a we get

Res(km) = a |λ2
1 − k2

m|
1/2

4 k2
m

. (M.10)

Similarly, the residue at λ = −km can be obtained from

Res(−km) = d
dλ
[
(λ+ km)2 f(λ)

]∣∣∣∣
λ=−km

.

Near λ = −km, γ = 2π and θ = π. Thus, the square root function

(
λ2

1 − λ2)1/2 = −
∣∣λ2

1 − λ2∣∣1/2 ei (γ+θ)/2 = i
∣∣λ2

1 − λ2∣∣1/2 .
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Therefore,

Res(−km) = d
dλ

[[
1 − (−1)m eiλa

]
i |λ2

1 − λ2|
1/2

(λ− km)2

]∣∣∣∣∣
λ=−km

.

And by knowing that km = mπ/a we arrive at

Res(−km) = a |λ2
1 − k2

m|
1/2

4 k2
m

. (M.11)
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Line integrals and residues in
I
mp
1 (µ : |µ| > k) (case 2)

N.1 Line integrals of Γ1 and Γ2

The integrals Γ1 and Γ2, along the contours as shown in Fig. 7.10, are given by

Γ1 =
λ1∫

i∞

[
1 − (−1)m eiλa

]
(λ2

1 − λ2)
1/2

(λ2 − k2
m)
(
λ2 − k2

p

) dλ,

and Γ2 =
i∞∫

λ1

[
1 − (−1)m eiλa

]
(λ2

1 − λ2)
1/2

(λ2 − k2
m)
(
λ2 − k2

p

) dλ,

(N.1)

where λ1 = iλ′
1. We have from Eq. (7.10)

(
λ2

1 − λ2)1/2 =
∣∣λ2

1 − λ2∣∣1/2 ei (γ+θ)/2 ,

where γ and θ vary from −π/2 to 3π/2.
We can see that along Γ1, γ = 3π/2 and θ = π/2 (Fig. 7.8) and λ = iy. Therefore

(
λ2

1 − λ2)1/2 =
∣∣λ2

1 − λ2∣∣1/2 ei (γ+θ)/2 = −
∣∣∣λ′2

1 − y2
∣∣∣

1/2
.

Thus,

Γ1 = i
∞∫

λ
′
1

[1 − (−1)m e−ay]
∣∣λ′2

1 − y2
∣∣1/2

(y2 + k2
m)
(
y2 + k2

p

) dy. (N.2)
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Similarly, along Γ2, γ = −π/2 and θ = π/2 (Fig. 7.8) and λ = iy. Therefore

(
λ2

1 − λ2)1/2 =
∣∣λ2

1 − λ2∣∣1/2 ei (γ+θ)/2 =
∣∣∣λ′2

1 − y2
∣∣∣

1/2
.

Thus,

Γ2 = i
∞∫

λ
′
1

[1 − (−1)m e−ay]
∣∣λ′2

1 − y2
∣∣1/2

(y2 + k2
m)
(
y2 + k2

p

) dy. (N.3)

N.2 The small circular contour around λ1

Consider the small circular contour Cϵ connecting Γ1 and Γ2 in Fig. 7.10. Along the
contour

λ = λ1 + ϵ eiϕ,

where ϵ → 0 is a small real quantity and ϕ : π/2 to −3π/2. Also, along the contour

(
λ2

1 − λ2)1/2 =
∣∣λ2

1 − λ2∣∣1/2 ei (γ+θ)/2 ,

where γ and θ can vary from −π/2 to 3π/2.
The integral around the contour is

ICϵ = lim
ϵ→0

∫

Cϵ

[
1 − (−1)m eiλa

]
(λ2

1 − λ2)
1/2

(λ2 − k2
m)
(
λ2 − k2

p

)
︸ ︷︷ ︸

f(λ)

dλ. (N.4)

Now evaluating |(λ− λ1) f(λ)| in the limit ϵ → 0,

lim
ϵ→0

|(λ− λ1) f(λ)| = lim
ϵ→0

∣∣∣∣∣∣∣

ϵ eiϕ [1 − (−1)m eiλ1a
] ∣∣∣λ2

1 −
(
λ1 + ϵ eiϕ)2

∣∣∣
1/2

ei (γ+θ)/2

(λ2
1 − k2

m)
(
λ2

1 − k2
p

)

∣∣∣∣∣∣∣

= 0.

Therefore [67]
lim
ϵ→0

∫

Cϵ

f(λ) dλ = 0.

Thus,
ICϵ = 0. (N.5)
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N.3 Residues at the simple poles when km ̸= kp

The integrand of case 2 is (from Eq. (7.6))

f(λ) =
[
1 − (−1)m eiλa

]
(λ2

1 − λ2)
1/2

(λ2 − k2
m)
(
λ2 − k2

p

) .

The poles are at λ = ±km and ± kp, where km = mπ/a and kp = pπ/a. Now, the
residue at km is given by

Res(km) = (λ− km) f(λ)|λ=km
=
[
1 − (−1)2m] (λ2

1 − k2
m)

1/2

2 km

(
k2

m − k2
p

)

which is equal to zero. Thus,
Res(km) = 0. (N.6)

Similarly, we find that

Res(−km) = Res(kp) = Res(−kp) = 0. (N.7)

N.4 Residues at the poles when km = kp

When km = kp the integrand of case 2 is

f(λ) =
[
1 − (−1)m eiλa

]
(λ2

1 − λ2)
1/2

(λ2 − k2
m)2 .

The poles at λ = ±km are of multiplicity two. Fig. N.1 illustrates λ1 − λ and λ1 + λ

near these poles. It can be seen that along the real axis γ + θ = π. Therefore, the
value of the square root function (as given by Eq. (7.10)) along the real axis is

(
λ2

1 − λ2)1/2 =
∣∣λ2

1 − λ2∣∣1/2 ei (γ+θ)/2 = i
∣∣λ2

1 − λ2∣∣1/2 .

Now, the residue at λ = km can be obtained from (see Fig. N.1a)

Res(km) = d
dλ
[
(λ− km)2 f(λ)

]∣∣∣∣
λ=km

.
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Fig. N.1 Illustrations of λ1 − λ and λ1 + λ near the poles λ = ±km in the complex λ
plane (case 2).

Substituting for f(λ) with the appropriate square root term we obtain

Res(km) = d
dλ

[[
1 − (−1)m eiλa

]
i |λ2

1 − λ2|
1/2

(λ+ km)2

]∣∣∣∣∣
λ=km

.

Thus, knowing that km = mπ/a we get

Res(km) = a |λ2
1 − k2

m|
1/2

4 k2
m

. (N.8)

Similarly, the residue at λ = −km can be obtained from (see Fig. N.1b)

Res(−km) = d
dλ
[
(λ+ km)2 f(λ)

]∣∣∣∣
λ=−km

= d
dλ

[[
1 − (−1)m eiλa

]
i |λ2

1 − λ2|
1/2

(λ− km)2

]∣∣∣∣∣
λ=−km

.

And by knowing that km = mπ/a we arrive at

Res(−km) = a |λ2
1 − k2

m|
1/2

4 k2
m

. (N.9)



Appendix O

Detailed derivation of Imnpq in
closed form for various modal
interactions

O.1 Y edge - Y edge

In this case km, kp > k and kn, kq < k.

O.1.1 km ̸= kp and kn = kq

Eq. (7.13) is rewritten here

Imp
1 (µ : |µ| < k) = 2

λ1∫

0

[1 − (−1)m cos ax] |λ2
1 − x2|

1/2

(x2 − k2
m)
(
x2 − k2

p

) dx

︸ ︷︷ ︸
T1(µ)

− 2 i




λ1∫

0

(−1)m sin ax |λ2
1 − x2|

1/2

(x2 − k2
m)
(
x2 − k2

p

) dx

︸ ︷︷ ︸
T2(µ)

+
∞∫

0

[1 − (−1)m e−ay] |λ2
1 + y2|

1/2

(y2 + k2
m)
(
y2 + k2

p

) dy

︸ ︷︷ ︸
T3(µ)



.

This can be used to evaluate Imp
1 (kn : kn < k), by substituting µ = kn. In the following,

closed form expressions are obtained for each of the integrals appearing in the above
equation when µ = kn.
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Integral T1(µ : µ = kn)

Consider first the integral

λ1∫

0

[1 − (−1)m cos ax] |λ2
1 − x2|

1/2

(x2 − k2
m)
(
x2 − k2

p

) dx.

The integrand can be written as

[1 − (−1)m cos ax] |λ2
1 − x2|

1/2

(x2 − k2
m)
(
x2 − k2

p

) = (−1)m+1
√
λ2

1 − x2 cos ax
(x2 − k2

m)
(
x2 − k2

p

) +
√
λ2

1 − x2

(x2 − k2
m)
(
x2 − k2

p

) .

(O.1)
Since km, kp > λ1, the following approximation is used in the first term [34] (see
Appendix Q) (

x2 − k2
m

) (
x2 − k2

p

)
≈
(
k2

m − λ2
1
) (
k2

p − λ2
1
)
. (O.2)

Now integrating

λ1∫

0

(−1)m+1
√
λ2

1 − x2 cos ax
(x2 − k2

m)
(
x2 − k2

p

) dx ≈ − πλ1(−1)mJ1 (aλ1)
2a (λ2

1 − k2
m)
(
λ2

1 − k2
p

) ,

where J1(∗) represents the Bessel function of the first kind and first order. Integrating
the second term in Eq. (O.1) without any approximations yields

λ1∫

0

√
λ2

1 − x2

(x2 − k2
m)
(
x2 − k2

p

) dx =
π
(
kp

√
k2

m − λ2
1 − km

√
k2

p − λ2
1

)

2k3
mkp − 2kmk3

p

.

Therefore

λ1∫

0

[1 − (−1)m cos ax] |λ2
1 − x2|

1/2

(x2 − k2
m)
(
x2 − k2

p

) dx ≈ − πλ1(−1)mJ1 (aλ1)
2a (λ2

1 − k2
m)
(
λ2

1 − k2
p

)

+
π
(
kp

√
k2

m − λ2
1 − km

√
k2

p − λ2
1

)

2k3
mkp − 2kmk3

p

. (O.3)
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Integral T2(µ : µ = kn)

Consider the integral
λ1∫

0

(−1)m sin ax |λ2
1 − x2|

1/2

(x2 − k2
m)
(
x2 − k2

p

) dx.

Using the approximation Eq. (O.2) and integrating we get

λ1∫

0

(−1)m sin ax |λ2
1 − x2|

1/2

(x2 − k2
m)
(
x2 − k2

p

) dx ≈ πλ1(−1)mH1 (aλ1)
2a (λ2

1 − k2
m)
(
λ2

1 − k2
p

) , (O.4)

where H1 (∗) is the Struve function of the first order.

Integral T3(µ : µ = kn)

Consider the integral

∞∫

0

[1 − (−1)m e−ay] |λ2
1 + y2|

1/2

(y2 + k2
m)
(
y2 + k2

p

) dy.

For µ = kn and λ2
1 = k2 − k2

n, the integral can be written as

∞∫

0

[1 − (−1)m e−ay] |λ2
1 + y2|

1/2

(y2 + k2
m)
(
y2 + k2

p

) dy =
∞∫

0

√
k2 − k2

n + y2

(k2
m + y2)

(
k2

p + y2
) dy

︸ ︷︷ ︸
T 1

3 (kn)

+
∞∫

0

(−1)m+1e−ay
√
k2 − k2

n + y2

(k2
m + y2)

(
k2

p + y2
) dy

︸ ︷︷ ︸
T 2

3 (kn)

. (O.5)

Here, the integration domain can be divided into two parts:
∫∞

0 =
∫ k

0 +
∫∞

k
.

Integral T 1
3 (kn)

Consider the integration from 0 to k of T 1
3 (kn). Since y < k and km, kp > k, the
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following approximation holds (see Appendix Q)

k∫

0

√
k2 − k2

n + y2

(k2
m + y2)

(
k2

p + y2
) dy ≈

k∫

0

√
k2 − k2

n + y2

k2
mk

2
p

dy.

Integrating and simplifying we get

k∫

0

√
k2 − k2

n + y2

(k2
m + y2)

(
k2

p + y2
) dy ≈

2k
√

2k2 − k2
n + (k2 − k2

n) log
((√

2k2−k2
n+k

)
2

k2−k2
n

)

4k2
mk

2
p

. (O.6)

Now, for the integration from k to ∞, y ≫ k2 − k2
n. Therefore, we may approximate√

k2 − k2
n + y2 ≈ y. Hence (see Appendix Q),

∞∫

k

√
k2 − k2

n + y2

(k2
m + y2)

(
k2

p + y2
) dy ≈

∞∫

k

y

(k2
m + y2)

(
k2

p + y2
) dy.

Thus,
∞∫

k

√
k2 − k2

n + y2

(k2
m + y2)

(
k2

p + y2
) dy ≈

log
(

k2+k2
p

k2+k2
m

)

2
(
k2

p − k2
m

) . (O.7)

Therefore using Eqs. (O.6) and (O.7) we obtain

∞∫

0

√
k2 − k2

n + y2

(k2
m + y2)

(
k2

p + y2
) dy ≈

log
(

k2+k2
p

k2+k2
m

)

2
(
k2

p − k2
m

)

+
2k
√

2k2 − k2
n + (k2 − k2

n) log
((√

2k2−k2
n+k

)
2

k2−k2
n

)

4k2
mk

2
p

.

(O.8)

Integral T 2
3 (kn)

Consider the following first order approximation for the exponential function

e−ay ≈

{
1 − ay when ay < 1
0 when ay ≥ 1.

(O.9)
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If ak ≥ π, e−ay ≈ 0, ∀ y ≥ k (see Appendix Q). Therefore

∞∫

k

(−1)m+1e−ay
√
k2 − k2

n + y2

(k2
m + y2)

(
k2

p + y2
) dy ≈ 0.

The integration from 0 to k can be expressed as
∫ k

0 =
∫ 1/a

0 +
∫ k

1/a
. When y > 1/a, i.e.,

ay > 1, we have the approximation e−ay ≈ 0. Hence, one can neglect the integration
from 1/a to k. Thus, by noting that 1/a < k and km, kp > k the integral can be
approximated as

∞∫

0

(−1)m+1e−ay
√
k2 − k2

n + y2

(k2
m + y2)

(
k2

p + y2
) dy ≈

1/a∫

0

(−1)m+1(1 − ay)
√
k2 − k2

n + y2

k2
mk

2
p

dy.

Integrating we obtain

∞∫

0

(−1)m+1e−ay
√
k2 − k2

n + y2

(k2
m + y2)

(
k2

p + y2
) dy ≈ (−1)m+1

12ak2
mk

2
p

{
2
√

1
a2 + k2 − k2

n −
(
k2 − k2

n

)

×


−4a2

√
k2 − k2

n + 4a2

√
1
a2 + k2 − k2

n − 3a log




(√
1
a2 + k2 − k2

n + 1
a

)
2

k2 − k2
n










.

(O.10)

Thus, combining Eqs. (O.8) and (O.10) we get

∞∫

0

[1 − (−1)m e−ay] |λ2
1 + y2|

1/2

(y2 + k2
m)
(
y2 + k2

p

) dy ≈
log
(

k2+k2
p

k2+k2
m

)

2
(
k2

p − k2
m

) +
2k
√

2k2 − k2
n

4k2
mk

2
p

+
(k2 − k2

n) log
((√

2k2−k2
n+k

)
2

k2−k2
n

)

4k2
mk

2
p

+ (−1)m+1

12ak2
mk

2
p

{
2
√

1
a2 + k2 − k2

n −
(
k2 − k2

n

)

×


−4a2

√
k2 − k2

n + 4a2

√
1
a2 + k2 − k2

n − 3a log




(√
1
a2 + k2 − k2

n + 1
a

)
2

k2 − k2
n










.

(O.11)
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Integral Imnpq

We can now evaluate Imnpq from Eq. (7.18). Using Eqs. (7.13), (O.3), (O.4) and (O.11)
we obtain

Imnpq ≈ πb

2k2
n

Imp
1 (kn : kn < k) = Imnpq

R + i Imnpq
χ , (O.12)

where the real part of Imnpq is given by

Imnpq
R = π2b

2k2
n



kp

√
k2

m − λ2
1 − km

√
k2

p − λ2
1

k3
mkp − kmk3

p

− λ1(−1)mJ1 (aλ1)
a (λ2

1 − k2
m)
(
λ2

1 − k2
p

)


 δnq

and the imaginary part of Imnpq is given by

Imnpq
χ = −πb

k2
n

(A+B + C) δnq

with

A = πλ1(−1)mH1 (aλ1)
2a (λ2

1 − k2
m)
(
λ2

1 − k2
p

) ,

B =
2k
√

2k2 − k2
n + (k2 − k2

n) log
((√

2k2−k2
n+k

)
2

k2−k2
n

)

4k2
mk

2
p

+
log
(

k2+k2
p

k2+k2
m

)

2
(
k2

p − k2
m

)

and C = (−1)m+1

12ak2
mk

2
p

{
2
√

1
a2 + k2 − k2

n −
(
k2 − k2

n

)

×


−4a2

√
k2 − k2

n + 4a2

√
1
a2 + k2 − k2

n − 3a log




(√
1
a2 + k2 − k2

n + 1
a

)
2

k2 − k2
n










.
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O.1.2 km = kp and kn = kq

When km = kp, Imp
1 (µ : |µ| < k) can be obtained from Eq. (7.20)

Imp
1 (µ : |µ| < k) = 2

λ1∫

0

[1 − (−1)m cos ax] |λ2
1 − x2|

1/2

(x2 − k2
m)2 dx

︸ ︷︷ ︸
T1(µ)

− 2 i




−πa |λ2
1 − k2

m|
1/2

4 k2
m

+
λ1∫

0

(−1)m sin ax |λ2
1 − x2|

1/2

(x2 − k2
m)2 dx

︸ ︷︷ ︸
T2(µ)

+
∞∫

0

[1 − (−1)m e−ay] |λ2
1 + y2|

1/2

(y2 + k2
m)2 dy

︸ ︷︷ ︸
T3(µ)



.

Imp
1 (kn : kn < k) for km = kp can be evaluated from the above equation by substituting
µ = kn. A similar derivation as presented in the km ̸= kp and kn = kq case is followed
for each of the integrals on the right hand side.

Integral T1(µ : µ = kn)

While evaluating the integral

λ1∫

0

[1 − (−1)m cos ax] |λ2
1 − x2|

1/2

(x2 − k2
m)2 dx

we get the following results

λ1∫

0

(−1)m+1
√
λ2

1 − x2 cos ax
(x2 − k2

m)2 dx ≈ −πλ1(−1)mJ1 (aλ1)
2a (k2

m − λ2
1) 2

and
λ1∫

0

√
λ2

1 − x2

(x2 − k2
m)2 dx = πλ2

1

4k3
m

√
k2

m − λ2
1
.
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Therefore

λ1∫

0

[1 − (−1)m cos ax] |λ2
1 − x2|

1/2

(x2 − k2
m)2 dx ≈ −πλ1(−1)mJ1 (aλ1)

2a (k2
m − λ2

1) 2 + πλ2
1

4k3
m

√
k2

m − λ2
1
.

(O.13)

Integral T2(µ : µ = kn)

Similarly, we can also arrive at

λ1∫

0

(−1)m sin ax |λ2
1 − x2|

1/2

(x2 − k2
m)2 dx ≈ πλ1(−1)mH1 (aλ1)

2a (λ2
1 − k2

m)2 . (O.14)

Integral T3(µ : µ = kn)

We can derive that

∫ ∞

0

√
k2 − k2

n + y2

(k2
m + y2)2 dy ≈ 1

2 (k2 + k2
m) +

2k
√

2k2 − k2
n + (k2 − k2

n) log
((√

2k2−k2
n+k

)
2

k2−k2
n

)

4k4
m

and

∫ ∞

0

(−1)m+1e−ay
√
k2 − k2

n + y2

(k2
m + y2)2 dy ≈ (−1)m+1

12ak4
m

{
2
√

1
a2 + k2 − k2

n −
(
k2 − k2

n

)

×


−4a2

√
k2 − k2

n + 4a2

√
1
a2 + k2 − k2

n − 3a log




(√
1
a2 + k2 − k2

n + 1
a

)
2

k2 − k2
n










.
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Thus,

∞∫

0

[1 − (−1)m e−ay] |λ2
1 + y2|

1/2

(y2 + k2
m)2 dy ≈

2k
√

2k2 − k2
n + (k2 − k2

n) log
((√

2k2−k2
n+k

)
2

k2−k2
n

)

4k4
m

+ 1
2 (k2 + k2

m) + (−1)m+1

12ak4
m

{
2
√

1
a2 + k2 − k2

n −
(
k2 − k2

n

)

×


−4a2

√
k2 − k2

n + 4a2

√
1
a2 + k2 − k2

n − 3a log




(√
1
a2 + k2 − k2

n + 1
a

)
2

k2 − k2
n










.

(O.15)

Integral Imnpq

Now, Imnpq (Eq. (7.21)) can be obtained using Eqs. (7.20), (O.13), (O.14) and (O.15)
as

Imnpq ≈ πb

2k2
n

Imp
1 (kn : kn < k) = Imnpq

R + i Imnpq
χ , (O.16)

where the real part of Imnpq is given by

Imnpq
R = π2b

2k2
n

[
λ2

1

2k3
m

√
k2

m − λ2
1

− λ1(−1)mJ1 (aλ1)
a (k2

m − λ2
1) 2

]
δmp δnq

and the imaginary part of Imnpq is given by

Imnpq
χ =

[
−πb

k2
n

(A+B + C) +D

]
δmp δnq

with

A = πλ1(−1)mH1 (aλ1)
2a (λ2

1 − k2
m)2 ,

B =
2k
√

2k2 − k2
n + (k2 − k2

n) log
((√

2k2−k2
n+k

)
2

k2−k2
n

)

4k4
m

+ 1
2 (k2 + k2

m) ,
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C = (−1)m+1

12ak4
m

{
2
√

1
a2 + k2 − k2

n −
(
k2 − k2

n

)

×


−4a2

√
k2 − k2

n + 4a2

√
1
a2 + k2 − k2

n − 3a log




(√
1
a2 + k2 − k2

n + 1
a

)
2

k2 − k2
n











and D = π2ab
√
k2

m − λ2
1

4k2
mk

2
n

.
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O.2 Acoustically fast (AF) - Y edge

In this case, km, kn, kq < k, kp > k and k2
m +k2

n < k2. We have the equation (Eq. (7.25))

Imp
1 (µ : |µ| <

√
k2 − k2

m) = 2 Pkm

λ1∫

0

[1 − (−1)m cos ax] |λ2
1 − x2|

1/2

(x2 − k2
m)
(
x2 − k2

p

) dx

︸ ︷︷ ︸
T1(µ)

− 2 i




Pkm

λ1∫

0

(−1)m sin ax |λ2
1 − x2|

1/2

(x2 − k2
m)
(
x2 − k2

p

) dx

︸ ︷︷ ︸
T2(µ)

+
∞∫

0

[1 − (−1)m e−ay] |λ2
1 + y2|

1/2

(y2 + k2
m)
(
y2 + k2

p

) dy

︸ ︷︷ ︸
T3(µ)



.

The above equation is used to evaluate Imp
1 (kn : kn <

√
k2 − k2

m). The closed form
expressions for each of the above integrals are obtained next.

Integral T1(µ : µ = kn)

We have the integral

Pkm

λ1∫

0

[1 − (−1)m cos ax] |λ2
1 − x2|

1/2

(x2 − k2
m)
(
x2 − k2

p

) dx = Pkm

λ1∫

0

|λ2
1 − x2|

1/2

(x2 − k2
m)
(
x2 − k2

p

) dx

+ Pkm

λ1∫

0

− (−1)m cos ax |λ2
1 − x2|

1/2

(x2 − k2
m)
(
x2 − k2

p

) dx.

The first integral on the right hand side is evaluated exactly. While evaluating the
second integral on the right hand side, we use the approximation [34] (see Appendix Q)

(
x2 − k2

m

) (
x2 − k2

p

)
≈
(
λ2

1 − k2
m

) (
λ2

1 − k2
p

)
.
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Thus we obtain

Pkm

λ1∫

0

[1 − (−1)m cos ax] |λ2
1 − x2|

1/2

(x2 − k2
m)
(
x2 − k2

p

) dx ≈ − πλ1(−1)mJ1 (aλ1)
2a (λ2

1 − k2
m)
(
λ2

1 − k2
p

)

−
π
(
km

√
k2

p − λ2
1 − ikp

√
λ2

1 − k2
m

)

2k3
mkp − 2kmk3

p

. (O.17)

Integral T2(µ : µ = kn)

Following the similar derivation as that of T1(µ : µ = kn) we get

Pkm

λ1∫

0

(−1)m sin ax |λ2
1 − x2|

1/2

(x2 − k2
m)
(
x2 − k2

p

) dx ≈ πλ1(−1)mH1 (aλ1)
2a (λ2

1 − k2
m)
(
λ2

1 − k2
p

) . (O.18)

Integral T3(µ : µ = kn)

Next, consider the integral

∞∫

0

[1 − (−1)m e−ay] |λ2
1 + y2|

1/2

(y2 + k2
m)
(
y2 + k2

p

) dy.

For µ = kn, λ2
1 = k2 − k2

n. The integral can be written as

∞∫

0

[1 − (−1)m e−ay] |λ2
1 + y2|

1/2

(y2 + k2
m)
(
y2 + k2

p

) dy =
∞∫

0

√
k2 − k2

n + y2

(k2
m + y2)

(
k2

p + y2
) dy

︸ ︷︷ ︸
T 1

3 (kn)

+
∞∫

0

(−1)m+1e−ay
√
k2 − k2

n + y2

(k2
m + y2)

(
k2

p + y2
) dy

︸ ︷︷ ︸
T 2

3 (kn)

. (O.19)

And the integration domain can be divided into two parts:
∫∞

0 =
∫ k

0 +
∫∞

k
.

Integral T 1
3 (kn)

Since y < k and kp > k for a Y edge mode, the following approximation holds (see
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Appendix Q)
k∫

0

√
k2 − k2

n + y2

(k2
m + y2)

(
k2

p + y2
) dy ≈

k∫

0

√
k2 − k2

n + y2

(k2
m + y2) k2

p

dy.

Integrating and simplifying we get

k∫

0

√
k2 − k2

n + y2

(k2
m + y2)

(
k2

p + y2
) dy ≈

Akm + 2(π +B)
√
k2 − k2

m − k2
n

4kmk2
p

, (O.20)

where

A = 2 tanh−1




4kk2
m

(√
2k2 − k2

n + k
)

4k2
m

[
k
(√

2k2 − k2
n + 2k

)
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n
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+
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k
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2
√

2k2 − k2
n + 3k

)
− k2

n
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

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

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2
√
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n + 3k
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(
2
√
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)
k2

n

(k2 − k2
n) (k2 + 4k2

m − k2
n)

+
k3
(

12
√

2k2 − k2
n + 17k

)
+ k4

n

(k2 − k2
n) (k2 + 4k2

m − k2
n)




and

B = −i log
(
k4 − 2ikkm

√
(k2

n − 2k2) (−k2 + k2
m + k2

n) − 3k2k2
m − k2k2

n + k2
mk

2
n

(k2 + k2
m) (k2 − k2

n)

)
.

(O.21)
Now for the integration from k to ∞, y >> k2 −k2

n. Therefore, we may approximate√
k2 − k2

n + y2 ≈ y. Hence (see Appendix Q),

∞∫

k

√
k2 − k2

n + y2

(k2
m + y2)

(
k2

p + y2
) dy ≈

∞∫

k

y

(k2
m + y2)

(
k2

p + y2
) dy.

Thus,
∞∫

k

√
k2 − k2

n + y2

(k2
m + y2)

(
k2

p + y2
) dy ≈

log
(

k2+k2
p

k2+k2
m

)

2
(
k2

p − k2
m

) . (O.22)
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Therefore, using Eqs. (O.20) and (O.22) we obtain

∞∫

0

√
k2 − k2

n + y2

(k2
m + y2)

(
k2

p + y2
) dy ≈

Akm + 2(π +B)
√
k2 − k2

m − k2
n

4kmk2
p

+
log
(

k2+k2
p

k2+k2
m

)

2
(
k2

p − k2
m

) ,

(O.23)
where A and B are given by Eqs. (O.2) and (O.21), respectively.

Integral T 2
3 (kn)

Using the first order approximation for the exponential function defined in Eq. (O.9)
and assuming that ak ≥ π we get e−ay ≈ 0, ∀ y ≥ k (see Appendix Q). Therefore,

∞∫

k

(−1)m+1e−ay
√
k2 − k2

n + y2

(k2
m + y2)

(
k2

p + y2
) dy ≈ 0.

The integration from 0 to k can be expressed as
∫ k

0 =
∫ 1/a

0 +
∫ k

1/a
. When y > 1/a, i.e.,

ay > 1, It is assumed that e−ay ≈ 0. Hence, one can neglect the integration from 1/a
to k. Thus, by noting that 1/a < k and kp > k the integral can be approximated as

∞∫

0

(−1)m+1e−ay
√
k2 − k2

n + y2

(k2
m + y2)

(
k2

p + y2
) dy ≈

1/a∫

0

(−1)m+1(1 − ay)
√
k2 − k2

n + y2

(k2
m + y2) k2

p

dy.

Integrating we obtain

∞∫

0

(−1)m+1e−ay
√
k2 − k2

n + y2

(k2
m + y2)

(
k2

p + y2
) dy ≈ (−1)m C

2kmk2
p

+
(−1)m

(
D − aE

√
k2 − k2

m − k2
n

)

2k2
p

,

(O.24)
where

C = km log


 k2 − k2

n(√
1
a2 + k2 − k2

n + 1
a

)
2


− 2π

√
k2 − k2

m − k2
n

+ i
√
k2 − k2

m − k2
n log

(
2ikm

√
(a2k2 − a2k2

n + 1) (k2 − k2
m − k2

n)
(k2 − k2

n) (a2k2
m + 1)

+k
2
m (a2k2 − a2k2

n + 2) − k2 + k2
n

(k2 − k2
n) (a2k2

m + 1)

)
, (O.25)
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D = 2
(√

a2k2 − a2k2
n + 1 − a

√
k2 − k2

n

)
(O.26)

and

E = 2 log
(

km√
(k2 − k2

n) (k2 − k2
m − k2

n) + k2 − k2
n

)

+log




(k2 − k2
n)
[
a2 (2k2 − k2

m − 2k2
n) + 2a

√
(a2k2 − a2k2

n + 1) (k2 − k2
m − k2

n) + 1
]

a2k2
m + 1


 .

(O.27)

Thus, by combining Eqs. (O.23) and (O.24) we get

∞∫

0

[1 − (−1)m e−ay] |λ2
1 + y2|

1/2

(y2 + k2
m)
(
y2 + k2

p

) dy ≈
Akm + 2(π +B)

√
k2 − k2

m − k2
n

4kmk2
p

+
log
(

k2+k2
p

k2+k2
m

)

2
(
k2

p − k2
m

)

+ (−1)m C

2kmk2
p

+
(−1)m

(
D − aE

√
k2 − k2

m − k2
n

)

2k2
p

, (O.28)

where A,B,C,D and E are given by Eqs. (O.2), (O.21), (O.25), (O.26) and (O.27),
respectively.

Integral Imnpq

Now, we can find the closed form approximation for Imnpq (Eq. (7.28)). Using
Eqs. (7.25), (O.17), (O.18) and (O.28) we obtain

Imnpq ≈ πb

2k2
n

Imp
1 (kn : kn <

√
k2 − k2

m) = (A+B + C) δnq, (O.29)

where

A = −πb

k2
n


 πλ1(−1)mJ1 (aλ1)

2a (λ2
1 − k2

m)
(
λ2

1 − k2
p

) +
π
(
km

√
k2

p − λ2
1 − ikp

√
λ2

1 − k2
m

)

2k3
mkp − 2kmk3

p


 ,

B = iπ2bλ1(−1)m+1H1 (aλ1)
2ak2

n (λ2
1 − k2

m)
(
λ2

1 − k2
p

)
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and

C = − iπb
k2

n


C1 km + 2(π + C2)

√
k2 − k2

m − k2
n

4kmk2
p

+
log
(

k2+k2
p

k2+k2
m

)

2
(
k2

p − k2
m

)

+(−1)m C3

2kmk2
p

+
(−1)m

(
C4 − aC5

√
k2 − k2

m − k2
n

)

2k2
p




with

C1 = 2 tanh−1




4kk2
m

(√
2k2 − k2

n + k
)

4k2
m

[
k
(√

2k2 − k2
n + 2k

)
− k2

n

]
+
[
k
(

2
√

2k2 − k2
n + 3k

)
− k2

n

]
(k2 − k2

n)




+ log




−4k2
m

[
k2

n − k
(

2
√

2k2 − k2
n + 3k

)]
− 2k

(
2
√

2k2 − k2
n + 5k

)
k2

n

(k2 − k2
n) (k2 + 4k2

m − k2
n)

+
k3
(

12
√

2k2 − k2
n + 17k

)
+ k4

n

(k2 − k2
n) (k2 + 4k2

m − k2
n)


 ,

C2 = −i log
(
k4 − 2ikkm

√
(k2

n − 2k2) (−k2 + k2
m + k2

n) − 3k2k2
m − k2k2

n + k2
mk

2
n

(k2 + k2
m) (k2 − k2

n)

)
,

C3 = km log


 k2 − k2

n(√
1
a2 + k2 − k2

n + 1
a

)
2


− 2π

√
k2 − k2

m − k2
n

+ i
√
k2 − k2

m − k2
n log

(
2ikm

√
(a2k2 − a2k2

n + 1) (k2 − k2
m − k2

n)
(k2 − k2

n) (a2k2
m + 1)

+k
2
m (a2k2 − a2k2

n + 2) − k2 + k2
n

(k2 − k2
n) (a2k2

m + 1)

)
,

C4 = 2
(√

a2k2 − a2k2
n + 1 − a

√
k2 − k2

n

)
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and

C5 = 2 log
(

km√
(k2 − k2

n) (k2 − k2
m − k2

n) + k2 − k2
n

)

+ log




(k2 − k2
n)
[
a2 (2k2 − k2

m − 2k2
n) + 2a

√
(a2k2 − a2k2

n + 1) (k2 − k2
m − k2

n) + 1
]

a2k2
m + 1


 .

It is assumed that Imnpq ≈ 0 for all the cases when n ̸= q.
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O.3 Y edge - corner

In this case km, kp, kq > k and kn < k. The general expression for the integral Imnpq is
given by Eq. (7.16) as

Imnpq = 2
k∫

0

[1 − (−1)n cosµb]
(µ2 − k2

n)
(
µ2 − k2

q

) Imp
1 (µ : |µ| < k) dµ

︸ ︷︷ ︸
Imnpq

1

+ 2
∞∫

k

[1 − (−1)n cosµb]
(µ2 − k2

n)
(
µ2 − k2

q

) Imp
1 (µ : |µ| > k) dµ

︸ ︷︷ ︸
Imnpq

2

, (O.30)

where Imp
1 (µ : |µ| < k) and Imp

1 (µ : |µ| > k) represent the integral given in Eq. (7.6)
evaluated when |µ| < k and |µ| > k, respectively. The above integral is computed for
two cases (collectively exhaustive): (a) km ̸= kp and (b) km = kp.

O.3.1 km ̸= kp

Integral Imnpq
1

Consider the first term on the right hand side of the above equation

Imnpq
1 = 2

k∫

0

[1 − (−1)n cosµb]
(µ2 − k2

n)
(
µ2 − k2

q

) Imp
1 (µ : |µ| < k) dµ, (O.31)

where Imp
1 (µ : |µ| < k) can be evaluated using Eq. (7.13),

Imp
1 (µ : |µ| < k) = 2

λ1∫

0

[1 − (−1)m cos ax] |λ2
1 − x2|

1/2

(x2 − k2
m)
(
x2 − k2

p

) dx

− 2 i




λ1∫

0

(−1)m sin ax |λ2
1 − x2|

1/2

(x2 − k2
m)
(
x2 − k2

p

) dx+
∞∫

0

[1 − (−1)m e−ay] |λ2
1 + y2|

1/2

(y2 + k2
m)
(
y2 + k2

p

) dy


 .

In the above equation, the contributions from the oscillatory cos ax and sin ax terms
are neglected (see Appendix Q). Also, the contribution from the third integral on the
right hand side is neglected due to the exponentially decaying function and the large
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values of km and kp [34]. Therefore

Imp
1 (µ : |µ| < k) ≈ 2

λ1∫

0

√
λ2

1 − x2

(x2 − k2
m)
(
x2 − k2

p

) dx.

Since x < λ1 (=
√
k2 − µ2) and km, kp > k, the following approximation holds

Imp
1 (µ : |µ| < k) ≈ 2

λ1∫

0

√
λ2

1 − x2

k2
mk

2
p

dx.

Thus we obtain
Imp

1 (µ : |µ| < k) ≈ πλ2
1

2k2
mk

2
p

. (O.32)

Substituting this into Eq. (O.31) and approximating µ2 − k2
q ≈ −k2

q (since kq > k and
µ varies from 0 to k) we get

Imnpq
1 ≈ −2

k∫

0

π (k2 − µ2)
2k2

mk
2
pk

2
q (µ2 − k2

n) dµ.

In order to arrive at the above approximation, the contribution from the cosµb term is
assumed to be negligible. Integrating we obtain

Imnpq
1 ≈

π
[
k2
(

log
(

kn+k
k−kn

)
− iπ

)
+ 2kkn + k2

n

(
log
(

k−kn

kn+k

)
+ iπ

)]

2k2
mknk2

pk
2
q

. (O.33)

Integral Imnpq
2

Now, consider the second term on the right hand side of the Eq. (O.30)

Imnpq
2 = 2

∞∫

k

[1 − (−1)n cosµb]
(µ2 − k2

n)
(
µ2 − k2

q

) Imp
1 (µ : |µ| > k) dµ, (O.34)

where Imp
1 (µ : |µ| > k) can be obtained using Eq. (7.15),

Imp
1 (µ : |µ| > k) = −2 i

∞∫

λ
′
1

[1 − (−1)m e−ay]
∣∣λ′2

1 − y2
∣∣1/2

(y2 + k2
m)
(
y2 + k2

p

) dy.
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Owing to the large values of km, kp and µ (µ varies from k to ∞), the contribution
from the integral Imp

1 (µ : |µ| > k) is neglected. Hence,

Imnpq
2 ≈ 0. (O.35)

Integral Imnpq

Using Eqs. (O.30), (O.33) and (O.35),

Imnpq = Imnpq
1 + Imnpq

2 ≈
π
[
k2
(

log
(

kn+k
k−kn

)
− iπ

)
+ 2kkn + k2

n

(
log
(

k−kn

kn+k

)
+ iπ

)]

2k2
mknk2

pk
2
q

.

(O.36)

O.3.2 km = kp

Integral Imp
1 (µ : |µ| < k)

The poles of the integrand in Imp
1 (µ) (Eq. (7.6)) are at λ = ±km and are of multiplicity

two. The residues at the poles for |µ| < k (case 1) and |µ| > k (case 2) are evaluated
in the Appendices M and N, respectively. For the case 1, they are

Res(−km) = Res(km) = a |λ2
1 − k2

m|
1/2

4 k2
m

,

where λ1 = (k2 − µ2)
1/2 . Thus, for case 1, the contour integration around the branch

cut as shown in Fig. 7.9 (note that for this case km = kp in the figure) results in

P [Imp
1 (µ)] = Imp

1 (µ : |µ| < k) = πi [Res(km) + Res(−km)] − (Γ1 + Γ2 + Γ3 + Γ4).

Substituting for the residues and the Γi’s from Eq. (7.11) we obtain

Imp
1 (µ : |µ| < k) = 2

λ1∫

0

[1 − (−1)m cos ax] |λ2
1 − x2|

1/2

(x2 − k2
m)2 dx

− 2 i


−πa |λ2

1 − k2
m|

1/2

4 k2
m

+
λ1∫

0

(−1)m sin ax |λ2
1 − x2|

1/2

(x2 − k2
m)2 dx

+
∞∫

0

[1 − (−1)m e−ay] |λ2
1 + y2|

1/2

(y2 + k2
m)2 dy


 .

(O.37)
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Integral Imnpq
1

Let us now consider the first term on the right hand side of Eq. (O.30),

Imnpq
1 = 2

k∫

0

[1 − (−1)n cosµb]
(µ2 − k2

n)
(
µ2 − k2

q

) Imp
1 (µ : |µ| < k) dµ, (O.38)

where Imp
1 (µ : |µ| < k) is given by Eq. (O.37) above. The contributions from the terms

of Imp
1 (µ : |µ| < k), except the residue term, can be obtained by substituting km = kp

in Eq. (O.33). Thus,

Imnpq
1 NR ≈

π
[
k2
(

log
(

kn+k
k−kn

)
− iπ

)
+ 2kkn + k2

n

(
log
(

k−kn

kn+k

)
+ iπ

)]

2k4
mknk2

q

. (O.39)

Now, the contribution from the residue term can be evaluated from

Imnpq
1 R = 2

k∫

0

[1 − (−1)n cosµb]
(µ2 − k2

n)
(
µ2 − k2

q

) iπa
√
k2

m − λ2
1

2k2
m

dµ.

Knowing that λ2
1 = k2 − µ2 and approximating µ2 − k2

q ≈ −k2
q (since kq > k and µ

varies from 0 to k) and
√
k2

m + µ2 − k2 ≈ km (since km > k and µ varies from 0 to k)
we get

Imnpq
1 R ≈

k∫

0

iπa

kmk2
q (µ2 − k2

n) dµ.

As the contribution from the cosµb oscillatory term is negligible, it is neglected while
arriving at the above approximation. Integrating the above equation we obtain

Imnpq
1 R ≈

πa
(
π + 2i tanh−1 (kn

k

))

2kmknk2
q

. (O.40)

Therefore, using Eqs. (O.38)-(O.40),

Imnpq
1 ≈

πa
(
π + 2i tanh−1 (kn

k

))

2kmknk2
q

+
π
[
k2
(

log
(

kn+k
k−kn

)
− iπ

)
+ 2kkn + k2

n

(
log
(

k−kn

kn+k

)
+ iπ

)]

2k4
mknk2

q

. (O.41)
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Integral Imp
1 (µ : |µ| > k)

Now, for the case 2 (|µ| > k), the residues at the poles are (see Appendix N)

Res(−km) = Res(km) = a |λ2
1 − k2

m|
1/2

4 k2
m

,

where λ1 = iλ′
1 = i (µ2 − k2)

1/2 . Thus, the contour integration around the branch cut
as shown in Fig. 7.10 (note that for this case km = kp in the figure) results in

P [Imp
1 (µ)] = Imp

1 (µ : |µ| > k) = πi [Res(km) + Res(−km)] − (Γ1 + Γ2).

Substituting for the residues and the Γi’s from Eq. (7.14) we obtain

Imp
1 (µ : |µ| > k) = −2 i


−πa |λ2

1 − k2
m|

1/2

4 k2
m

+
∞∫

λ
′
1

[1 − (−1)m e−ay]
∣∣λ′2

1 − y2
∣∣1/2

(y2 + k2
m)2 dy


 .

(O.42)

Integral Imnpq
2

Consider the second term on the right hand side of the Eq. (O.30)

Imnpq
2 = 2

∞∫

k

[1 − (−1)n cosµb]
(µ2 − k2

n)
(
µ2 − k2

q

) Imp
1 (µ : |µ| > k) dµ, (O.43)

where Imp
1 (µ : |µ| > k) is given by Eq. (O.42). But, the contribution from the integral

Imp
1 (µ : |µ| > k) is negligible owing to the large value of km and µ (µ varies from k to

∞). Hence,
Imnpq

2 ≈ 0. (O.44)

Integral Imnpq

Using Eqs. (O.30), (O.41) and (O.44),

Imnpq = Imnpq
1 + Imnpq

2 ≈
πa
(
π + 2i tanh−1 (kn

k

))

2kmknk2
q

+
π
[
k2
(

log
(

kn+k
k−kn

)
− iπ

)
+ 2kkn + k2

n

(
log
(

k−kn

kn+k

)
+ iπ

)]

2k4
mknk2

q

. (O.45)
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Summarizing, for the Y edge - corner mode interaction

Imnpq ≈ Aδmp +B, (O.46)

where
A =

πa
(
π + 2i tanh−1 (kn

k

))

2kmknk2
q

and

B =
π
[
k2
(

log
(

kn+k
k−kn

)
− iπ

)
+ 2kkn + k2

n

(
log
(

k−kn

kn+k

)
+ iπ

)]

2k2
mknk2

pk
2
q

.
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O.4 Acoustically fast - acoustically fast (AF - AF)

In this case, km, kn, kp, kq < k, k2
m + k2

n < k2 and k2
p + k2

q < k2. For the case kn = kq

(and km < kp), Imnpq is given by Eq. (7.43).

Imnpq = πb

2k2
n

Imp
1

(
kn : kn <

√
k2 − k2

p

)
,

where Imp
1
(
kn : kn <

√
k2 − k2

p

)
can be obtained from Eq. (7.40)

Imp
1

(
µ : |µ| <

√
k2 − k2

p

)
= 2 Pkm,kp

λ1∫

0

[1 − (−1)m cos ax] |λ2
1 − x2|

1/2

(x2 − k2
m)
(
x2 − k2

p

) dx

− 2 i


Pkm,kp

λ1∫

0

(−1)m sin ax |λ2
1 − x2|

1/2

(x2 − k2
m)
(
x2 − k2

p

) dx+
∞∫

0

[1 − (−1)m e−ay] |λ2
1 + y2|

1/2

(y2 + k2
m)
(
y2 + k2

p

) dy




by substituting µ = kn.
In the above equation, the contributions from the oscillatory cos ax and sin ax

terms are neglected. Hence,

Imp
1

(
kn : kn <

√
k2 − k2

p

)
≈ 2 Pkm,kp

λ1∫

0

|λ2
1 − x2|

1/2

(x2 − k2
m)
(
x2 − k2

p

) dx

︸ ︷︷ ︸
T1(kn)

− 2 i
∞∫

0

[1 − (−1)m e−ay] |λ2
1 + y2|

1/2

(y2 + k2
m)
(
y2 + k2

p

) dy

︸ ︷︷ ︸
T2(kn)

, (O.47)

where λ2
1 = k2 − k2

n.

Integral T1(kn)

We can find that

Pkm,kp

λ1∫

0

|λ2
1 − x2|

1/2

(x2 − k2
m)
(
x2 − k2

p

) dx =
iπ
(
kp

√
λ2

1 − k2
m − km

√
λ2

1 − k2
p

)

2k3
mkp − 2kmk3

p

. (O.48)
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Integral T2(kn)

The integral can be written as

∞∫

0

[1 − (−1)m e−ay] |λ2
1 + y2|

1/2

(y2 + k2
m)
(
y2 + k2

p

) dy =
∞∫

0

√
λ2

1 + y2

(k2
m + y2)

(
k2

p + y2
) dy

︸ ︷︷ ︸
T 1

2 (kn)

+
∞∫

0

(−1)m+1e−ay
√
λ2

1 + y2

(k2
m + y2)

(
k2

p + y2
) dy

︸ ︷︷ ︸
T 2

2 (kn)

. (O.49)

Integral T 1
2 (kn)

We can use the approximation

∞∫

0

√
λ2

1 + y2

(k2
m + y2)

(
k2

p + y2
) dy ≈

λ1∫

0

λ1

(k2
m + y2)

(
k2

p + y2
) dy +

∞∫

λ1

y

(k2
m + y2)

(
k2

p + y2
) dy.

Integrating, we get

∞∫

0

√
λ2

1 + y2

(k2
m + y2)

(
k2

p + y2
) dy ≈

λ1

(
km tan−1

(
λ1
kp

)
− kp tan−1

(
λ1
km

))

k3
mkp − kmk3

p

+
log
(

k2
m+λ2

1
k2

p+λ2
1

)

2k2
m − 2k2

p

.

(O.50)

Integral T 2
2 (kn)

Using the first order approximation for the exponential function defined in Eq. (O.9)
and assuming that ak ≥ π we get e−ay ≈ 0, ∀ y ≥ k. Therefore,

∞∫

k

(−1)m+1e−ay
√
λ2

1 + y2

(k2
m + y2)

(
k2

p + y2
) dy ≈ 0.
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Thus, we can approximate

∞∫

0

(−1)m+1e−ay
√
λ2

1 + y2

(k2
m + y2)

(
k2

p + y2
) dy ≈

λ1∫

0

(−1)m+1 (1 − ay)λ1

(k2
m + y2)

(
k2

p + y2
) dy

+
k∫

λ1

(−1)m+1 (1 − ay) y
(k2

m + y2)
(
k2

p + y2
) dy.

We can find that

λ1∫

0

(−1)m+1 (1 − ay)λ1

(k2
m + y2)

(
k2

p + y2
) dy =

λ1(−1)mkm

(
akp log

(
k2

m(k2
p+λ2

1)
k2

p(k2
m+λ2

1)

)
− 2 tan−1

(
λ1
kp

))

2kmkp

(
k2

m − k2
p

)

+
2λ1(−1)mkp tan−1

(
λ1
km

)

2kmkp

(
k2

m − k2
p

) (O.51)

and

k∫

λ1

(−1)m+1 (1 − ay) y
(k2

m + y2)
(
k2

p + y2
) dy = (−1)m

2
(
k2

m − k2
p

)
[
2akm

(
tan−1

(
k

km

)
− tan−1

(
λ1

km

))

+2akp

(
tan−1

(
λ1

kp

)
− tan−1

(
k

kp

))
+ log

(
(k2 + k2

m)
(
k2

p + λ2
1
)

(
k2 + k2

p

)
(k2

m + λ2
1)

)]
. (O.52)

Integral Imnpq

Now we can find the closed form approximation for Imnpq (Eq. (7.43)). Using
Eqs. (O.47)-(O.52) we get

Imnpq ≈ (A+B + C +D) δnq, (O.53)

where

A =
iπ2b

(
kp

√
λ2

1 − k2
m − km

√
λ2

1 − k2
p

)

2k2
n

(
k3

mkp − kmk3
p

) ,

B = − iπb
k2

n




log
(

k2
m+λ2

1
k2

p+λ2
1

)

2k2
m − 2k2

p

+
λ1

(
km tan−1

(
λ1
kp

)
− kp tan−1

(
λ1
km

))

k3
mkp − kmk3

p


 ,
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C = iπbλ1(−1)m+1

2kmk2
nkp

(
k2

m − k2
p

)
[
km

(
akp log

(
k2

m

(
k2

p + λ2
1
)

k2
p (k2

m + λ2
1)

)
− 2 tan−1

(
λ1

kp

))

+2kp tan−1
(
λ1

km

)]

and

D = iπb(−1)m+1

2k2
n

(
k2

m − k2
p

)
[
2akm

(
tan−1

(
k

km

)
− tan−1

(
λ1

km

))

+2akp

(
tan−1

(
λ1

kp

)
− tan−1

(
k

kp

))
+ log

(
(k2 + k2

m)
(
k2

p + λ2
1
)

(
k2 + k2

p

)
(k2

m + λ2
1)

)]
.
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O.5 XY edge - XY edge

In this case, km, kn, kp, kq < k, k2
m + k2

n > k2 and k2
p + k2

q > k2. The coupling coefficient
for the case kn = kq and km ̸= kp is given by Eq. (7.50).

Imnpq = πb

2k2
n

Imp
1 (kn : kn < k) ,

where Imp
1 (kn : kn < k) can be obtained from Eq. (7.48)

Imp
1 (µ : |µ| < k) = 2

λ1∫

0

[1 − (−1)m cos ax] |λ2
1 − x2|

1/2

(x2 − k2
m)
(
x2 − k2

p

) dx

︸ ︷︷ ︸
T1(µ)

− 2 i




λ1∫

0

(−1)m sin ax |λ2
1 − x2|

1/2

(x2 − k2
m)
(
x2 − k2

p

) dx

︸ ︷︷ ︸
T2(µ)

+
∞∫

0

[1 − (−1)m e−ay] |λ2
1 + y2|

1/2

(y2 + k2
m)
(
y2 + k2

p

) dy

︸ ︷︷ ︸
T3(µ)



,

by substituting µ = kn. Here, a similar procedure as detailed in O.1 is followed.

Integral T1(µ : µ = kn)

Consider the first integral on the right hand side of the above equation

λ1∫

0

[1 − (−1)m cos ax] |λ2
1 − x2|

1/2

(x2 − k2
m)
(
x2 − k2

p

) dx =
λ1∫

0

(−1)m+1
√
λ2

1 − x2 cos ax
(x2 − k2

m)
(
x2 − k2

p

) dx

+
λ1∫

0

√
λ2

1 − x2

(x2 − k2
m)
(
x2 − k2

p

) dx. (O.54)

Since km, kp > λ1(=
√
k2 − k2

n), the following approximation [34] is used in the first
integral on the right hand side

(
x2 − k2

m

) (
x2 − k2

p

)
≈ k2

mk
2
p. (O.55)
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Thus,
λ1∫

0

(−1)m+1
√
λ2

1 − x2 cos ax
(x2 − k2

m)
(
x2 − k2

p

) dx ≈ −πλ1(−1)mJ1 (aλ1)
2ak2

mk
2
p

,

where J1(∗) represents Bessel function of the first kind and first order. The second
integral on the right hand side of Eq. (O.54) yields (without any approximations)

λ1∫

0

√
λ2

1 − x2

(x2 − k2
m)
(
x2 − k2

p

) dx =
π
(
kp

√
k2

m − λ2
1 − km

√
k2

p − λ2
1

)

2k3
mkp − 2kmk3

p

.

Therefore

λ1∫

0

[1 − (−1)m cos ax] |λ2
1 − x2|

1/2

(x2 − k2
m)
(
x2 − k2

p

) dx ≈ −πλ1(−1)mJ1 (aλ1)
2ak2

mk
2
p

+
π
(
kp

√
k2

m − λ2
1 − km

√
k2

p − λ2
1

)

2k3
mkp − 2kmk3

p

. (O.56)

Integral T2(µ : µ = kn)

Now, consider the second integral on the right hand side of Eq. (7.48). Using the
approximation Eq. (O.55) we get

λ1∫

0

(−1)m sin ax |λ2
1 − x2|

1/2

(x2 − k2
m)
(
x2 − k2

p

) dx ≈ πλ1(−1)mH1 (aλ1)
2ak2

mk
2
p

, (O.57)

where H1 (∗) is the Struve function of first order.

Integral T3(µ : µ = kn)

For µ = kn and λ2
1 = k2 − k2

n, the third integral on the right hand side of Eq. (7.48)
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can be written as

∞∫

0

[1 − (−1)m e−ay] |λ2
1 + y2|

1/2

(y2 + k2
m)
(
y2 + k2

p

) dy =
∞∫

0

√
k2 − k2

n + y2

(k2
m + y2)

(
k2

p + y2
) dy

︸ ︷︷ ︸
T 1

3 (kn)

+
∞∫

0

(−1)m+1e−ay
√
k2 − k2

n + y2

(k2
m + y2)

(
k2

p + y2
) dy

︸ ︷︷ ︸
T 2

3 (kn)

. (O.58)

Here, the integration domain can be divided into two parts:
∫∞

0 =
∫ k

0 +
∫∞

k
.

Integral T 1
3 (kn)

Consider the integration from 0 to k of T 1
3 (kn). Since y < k and km, kp ≈ k for the

two-edge modes, the following approximation holds

k∫

0

√
k2 − k2

n + y2

(k2
m + y2)

(
k2

p + y2
) dy ≈

k∫

0

√
k2 − k2

n + y2

k2
mk

2
p

dy.

Integrating and simplifying we get

k∫

0

√
k2 − k2

n + y2

(k2
m + y2)

(
k2

p + y2
) dy ≈

2k
√

2k2 − k2
n + (k2 − k2

n) log
((√

2k2−k2
n+k

)
2

k2−k2
n

)

4k2
mk

2
p

. (O.59)

Now for the integration from k to ∞, y ≫ k2 − k2
n. Therefore, we can approximate√

k2 − k2
n + y2 ≈ y. Hence,

∞∫

k

√
k2 − k2

n + y2

(k2
m + y2)

(
k2

p + y2
) dy ≈

∞∫

k

y

(k2
m + y2)

(
k2

p + y2
) dy.

Thus,
∞∫

k

√
k2 − k2

n + y2

(k2
m + y2)

(
k2

p + y2
) dy ≈

log
(

k2+k2
p

k2+k2
m

)

2
(
k2

p − k2
m

) . (O.60)
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Therefore using Eqs. (O.59) and (O.60) we obtain

∞∫

0

√
k2 − k2

n + y2

(k2
m + y2)

(
k2

p + y2
) dy ≈

log
(

k2+k2
p

k2+k2
m

)

2
(
k2

p − k2
m

)

+
2k
√

2k2 − k2
n + (k2 − k2

n) log
((√

2k2−k2
n+k

)
2

k2−k2
n

)

4k2
mk

2
p

. (O.61)

Integral T 2
3 (kn)

Consider the first order approximation for the exponential function (Eq. (O.9))

e−ay ≈

{
1 − ay when ay < 1
0 when ay ≥ 1.

If ak ≥ π, e−ay ≈ 0, ∀ y ≥ k. Therefore

∞∫

k

(−1)m+1e−ay
√
k2 − k2

n + y2

(k2
m + y2)

(
k2

p + y2
) dy ≈ 0.

The integration from 0 to k can be expressed as
∫ k

0 =
∫ 1/a

0 +
∫ k

1/a
. When y > 1/a, i.e.,

ay > 1, we have the approximation e−ay ≈ 0. Hence, one can neglect the integration
from 1/a to k. Thus, by noting that 1/a < k and km, kp ≈ k the integral can be
approximated as

∞∫

0

(−1)m+1e−ay
√
k2 − k2

n + y2

(k2
m + y2)

(
k2

p + y2
) dy ≈

1/a∫

0

(−1)m+1(1 − ay)
√
k2 − k2

n + y2

k2
mk

2
p

dy.

Integrating we obtain

∞∫

0

(−1)m+1e−ay
√
k2 − k2

n + y2

(k2
m + y2)

(
k2

p + y2
) dy ≈ (−1)m+1

12ak2
mk

2
p

{
2
√

1
a2 + k2 − k2

n −
(
k2 − k2

n

)

×


−4a2

√
k2 − k2

n + 4a2

√
1
a2 + k2 − k2

n − 3a log




(√
1
a2 + k2 − k2

n + 1
a

)
2

k2 − k2
n










.

(O.62)
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Thus, combining Eqs. (O.61) and (O.62) we get

∞∫

0

[1 − (−1)m e−ay] |λ2
1 + y2|

1/2

(y2 + k2
m)
(
y2 + k2

p

) dy ≈
log
(

k2+k2
p

k2+k2
m

)

2
(
k2

p − k2
m

) +
2k
√

2k2 − k2
n

4k2
mk

2
p

+
(k2 − k2

n) log
((√

2k2−k2
n+k

)
2

k2−k2
n

)

4k2
mk

2
p

+ (−1)m+1

12ak2
mk

2
p

{
2
√

1
a2 + k2 − k2

n −
(
k2 − k2

n

)

×


−4a2

√
k2 − k2

n + 4a2

√
1
a2 + k2 − k2

n − 3a log




(√
1
a2 + k2 − k2

n + 1
a

)
2

k2 − k2
n










.

(O.63)

Integral Imnpq

We can now evaluate Imnpq from Eq. (7.50). Using Eqs. (7.48), (O.56), (O.57) and
(O.63) we obtain

Imnpq ≈ πb

2k2
n

Imp
1 (kn : kn < k) = Imnpq

R + i Imnpq
χ , (O.64)

where the real part of Imnpq is given by

Imnpq
R = π2b

2k2
n



kp

√
k2

m − λ2
1 − km

√
k2

p − λ2
1

k3
mkp − kmk3

p

− λ1(−1)mJ1 (aλ1)
ak2

mk
2
p


 δnq

and the imaginary part of Imnpq is given by

Imnpq
χ = −πb

k2
n

(A+B + C) δnq

with
A = πλ1(−1)mH1 (aλ1)

2ak2
mk

2
p

,

B =
2k
√

2k2 − k2
n + (k2 − k2

n) log
((√

2k2−k2
n+k

)
2

k2−k2
n

)

4k2
mk

2
p

+
log
(

k2+k2
p

k2+k2
m

)

2
(
k2

p − k2
m

)



O.5 XY edge - XY edge 323

and

C = (−1)m+1

12ak2
mk

2
p

{
2
√

1
a2 + k2 − k2

n −
(
k2 − k2

n

)

×


−4a2

√
k2 − k2

n + 4a2

√
1
a2 + k2 − k2

n − 3a log




(√
1
a2 + k2 − k2

n + 1
a

)
2

k2 − k2
n










.
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O.6 Corner - corner

In this case km, kn, kp, kq > k.

O.6.1 km ̸= kp and kn = kq

Consider Eq. (7.15):

Imp
1 (µ : |µ| > k) = −2 i

∞∫

λ
′
1

[1 − (−1)m e−ay]
∣∣λ′ 2

1 − y2
∣∣1/2

(y2 + k2
m)
(
y2 + k2

p

) dy,

where λ′ 2
1 = µ2 − k2. Imp

1 (kn : kn > k) can be obtained from the above expression
after substituting µ = kn. By neglecting the exponential term (which is small for large
values of µ) and by changing the lower limit of integration to k we get [33, 34]

Imp
1 (kn : kn > k) ≈ −2 i

∞∫

k

∣∣λ′ 2
1 − y2

∣∣1/2

(y2 + k2
m)
(
y2 + k2

p

) dy,

where λ′ 2
1 = k2

n − k2. Using the approximation
∣∣λ′ 2

1 − y2
∣∣1/2 ≈ y (for y : k → ∞) we get

Imp
1 (kn : kn > k) ≈ −2 i

∞∫

k

y

(y2 + k2
m)
(
y2 + k2

p

) dy.

Or

Imp
1 (kn : kn > k) ≈ −

i log
(

k2+k2
m

k2+k2
p

)

k2
m − k2

p

. (O.65)

O.6.2 km = kp and kn = kq

Consider Eq. (7.61):

Imp
1 (µ : |µ| > k) = −2i


−πa |λ2

1 − k2
m|

1/2

4 k2
m

+
∞∫

λ
′
1

[1 − (−1)m e−ay]
∣∣λ′ 2

1 − y2
∣∣1/2

(y2 + k2
m)2 dy


δmp,
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where λ1 = iλ′
1 = i (µ2 − k2)

1/2 . For µ = kn, the integral on the right hand side is
approximated in the same fashion as before. And thus,

Imp
1 (kn : kn > k) ≈ −2 i


−πa |λ2

1 − k2
m|

1/2

4 k2
m

+
∞∫

k

y

(y2 + k2
m)2 dy


 δmp.

Or

Imp
1 (kn : kn > k) ≈ i

[
πa |k2

m + k2
n − k2|

1/2

2 k2
m

− 1
(k2 + k2

m)

]
δmp. (O.66)





Appendix P

About the Kraichnan’s assumption

We have the integral (from Eq. (7.4))

Imnpq = 4
∞∫

0

∞∫

0

[1 − (−1)m cosλa] [1 − (−1)n cosµb] (k2 − λ2 − µ2)
1/2

(λ2 − k2
m)
(
λ2 − k2

p

)
(µ2 − k2

n)
(
µ2 − k2

q

) dλ dµ. (P.1)

Note that the limits are now from 0 to ∞. The function

Inq(µ) = [1 − (−1)n cosµb]
(µ2 − k2

n)
(
µ2 − k2

q

) (P.2)

has a behavior as shown in Fig. P.1. It can be found that [33]

∞∫

0

Inq(µ) dµ =





πb
4k2

n
if kn = kq

0 if kn ̸= kq.
(P.3)

Kraichnan used this behavior of the function Inq(µ) to approximate it using a Dirac
delta function. He used the following approximation [75]

[1 − (−1)n cosµb]
(µ2 − k2

n)
(
µ2 − k2

q

)
∣∣∣∣∣
n=q

= πb

4k2
n

δ(µ− kn). (P.4)

In this thesis, the above approximation is referred to as the Kraichnan’s approxima-
tion. The integration (Eq. (P.1)) is lot more easier if we make this approximation in the
outer integral (either over the λ domain or over the µ domain). Here, the Kraichnan’s
approximation is used in the integration over the µ domain. The modal interaction
cases and hence the modal wavenumbers km, kn, kp and kq are selected in such a way
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Fig. P.1 Plots of the function Inq(µ) when kn = kq and kn ̸= kq [33].

that we can make this approximation in the outer integral (µ domain), whenever the
requirement arises. Before making the Kraichnan’s assumption it has to be ensured
that the modal wavenumbers kn and kq lie within the integral domain.

Using the above described behavior of Inq(µ), one can assume that Imnpq ≈ 0 when
kn ̸= kq for the Y edge - Y edge interaction. For the Y edge - Y edge interaction the
integral Imnpq is given by Eq. (7.16):

Imnpq = 2
k∫

0

[1 − (−1)n cosµb]
(µ2 − k2

n)
(
µ2 − k2

q

) Imp
1 (µ : |µ| < k) dµ

+ 2
∞∫

k

[1 − (−1)n cosµb]
(µ2 − k2

n)
(
µ2 − k2

q

) Imp
1 (µ : |µ| > k) dµ.

Here, km, kp > k and kn, kq < k. When kn = kq, we can use the Kraichnan’s
approximation to reduce the integral to

Imnpq = πb

2k2
n

Imp
1 (kn : kn < k).

Here, by the Kraichnan’s approximation and since kn < k, only the contribution from
the first integral on the right hand side of Eq. (7.16) is included. Since kn < k, the
value of the function [1−(−1)n cos µb]

(µ2−k2
n)2 can be assumed to be negligible for µ > k. This is

true even when kn ̸= kq, since kn, kq < k. It follows that when kn ̸= kq we can still
approximate the integral Imnpq including only the contribution from the first term on
the right hand side of Eq. (7.16), i.e.,

Imnpq = 2
k∫

0

[1 − (−1)n cosµb]
(µ2 − k2

n)
(
µ2 − k2

q

) Imp
1 (µ : |µ| < k) dµ.
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Since kn, kq < k we can find that

k∫

0

[1 − (−1)n cosµb]
(µ2 − k2

n)
(
µ2 − k2

q

) dµ ≈ 0

The integral Imp
1 (µ : |µ| < k) is largely defined by the values of km and kp (km, kp > k).

Hence, we can assume that Imp
1 does not vary much in the domain µ : 0 → k. Therefore,

when kn ̸= kq, we can approximate

Imnpq ≈ 0.

Note that to obtain the above approximation no direct substitution of the Kraichnan’s
assumption is made. The above approximation is obtained by making use of the cues
which led to the Kraichnan’s assumption.





Appendix Q

About the approximations used to
obtain I

mp
1 (µ)

While deriving Imnpq for different interactions, only the contributions from the dominant
terms are considered. Approximations have been made in each case depending upon
the range in which the panel modal wavenumbers km, kn, kp and kp lie. In this section,
some of these assumptions are discussed in detail.

Q.1 Y edge - Y edge

Approximation 1

The following approximation has been used in the Y edge - Y edge interaction case
(using Eq. (O.2)):

λ1∫

0

(−1)m+1
√
λ2

1 − x2 cos ax
(x2 − k2

m)
(
x2 − k2

p

)
︸ ︷︷ ︸

t1(x)

dx ≈
λ1∫

0

(−1)m+1
√
λ2

1 − x2 cos ax
(k2

m − λ2
1)
(
k2

p − λ2
1
)

︸ ︷︷ ︸
tapprox
1 (x)

dx.

In the above equation λ1 =
√
k2 − k2

n. The functions t1(x) and tapprox
1 (x) for x varying

from 0 to λ1 are plotted in Fig. Q.1. For plotting, it is assumed that a = 0.455 m,
b = 0.546 m, m = 10, n = 3, p = 14, q = 3 and air as the acoustic medium
(c = 343 m/s). The functions are plotted at 1200 Hz. It can be observed that both the
terms t1(x) and tapprox

1 (x) have similar magnitudes in the range 0 to λ1.
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Fig. Q.1 Plots of the functions t1(x) and tapprox
1 (x) (Y edge - Y edge case).

Approximation 2

Consider the approximation

k∫

0

√
k2 − k2

n + y2

(k2
m + y2)

(
k2

p + y2
)

︸ ︷︷ ︸
t2(y)

dy ≈
k∫

0

√
k2 − k2

n + y2

k2
mk

2
p︸ ︷︷ ︸

tapprox
2 (y)

dy,

which has been used while evaluating T 1
3 (kn).

The functions t2(y) and tapprox
2 (y) for y varying from 0 to k are plotted in Fig. Q.2.

The parameter values used are the same as that for the Approximation 1, above. It
can be observed that the above approximation is satisfactory.
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Fig. Q.2 Plots of the functions t2(y) and tapprox
2 (y) (Y edge - Y edge case).
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Approximation 3

Consider the following approximation which has been used while evaluating T 1
3 (kn):

∞∫

k

√
k2 − k2

n + y2

(k2
m + y2)

(
k2

p + y2
)

︸ ︷︷ ︸
t3(y)

dy ≈
∞∫

k

y

(k2
m + y2)

(
k2

p + y2
)

︸ ︷︷ ︸
tapprox
3 (y)

dy.

The functions t3(y) and tapprox
3 (y) for y varying from k to ∞ are plotted in Fig. Q.3.

The parameter values used are the same as that for the Approximation 1. As seen
from the figure, the above approximation holds good for the selected parameter range.
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Fig. Q.3 Plots of the functions t3(y) and tapprox
3 (y) (Y edge - Y edge case).

Approximation 4

The following first order approximation (Eq. (O.9)) has been used while evaluating
T 2

3 (kn):

e−ay ≈

{
1 − ay when ay < 1
0 when ay ≥ 1.

This approximation has led to

∞∫

k

(−1)m+1e−ay
√
k2 − k2

n + y2

(k2
m + y2)

(
k2

p + y2
) dy ≈ 0

with the assumption that ak > π. This assumption does not allow a mode with m = 1
to be a Y edge mode (for m = 1 to become a Y edge mode km = π/a > k or ak < π).
However, the frequencies at which a mode with m = 1 would qualify to be a Y edge
mode (decided by ak < π), the radiation is dominated by the corner modes. In such
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situations, the contribution from those Y edge modes with m = 1 can be neglected.
This assumption (ak > π) can be used for all the interactions involving edge, two-edge
and acoustically fast modes; but, not for the corner - corner modal interaction.

Q.2 AF - Y edge

Approximation 1

In the AF - Y edge interaction case, the integral T1(µ : µ = kn) is given by

T1(µ : µ = kn) = Pkm

λ1∫

0

|λ2
1 − x2|

1/2

(x2 − k2
m)
(
x2 − k2

p

)
︸ ︷︷ ︸

t1(x)

dx

+ Pkm

λ1∫

0

− (−1)m cos ax |λ2
1 − x2|

1/2

(x2 − k2
m)
(
x2 − k2

p

)
︸ ︷︷ ︸

t2(x)

dx.

In the above equation λ1 =
√
k2 − k2

n. The functions t1(x) and t2(x) for x varying
from 0 to λ1 are plotted in Fig. Q.4. For plotting, it is assumed that a = 0.455 m,
b = 0.546 m, m = 10, n = 2, p = 12, q = 2 and c = 343 m/s. The functions are plotted
at 6000 Hz. As shown in the figure, there exists a singularity at x = km for both t1(x)
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Fig. Q.4 Plots of the functions t1(x) and t2(x) (AF - Y edge case).

and t2(x). Nevertheless, the dominant contribution towards T1(µ : µ = kn) is from
t1(x). The term t1(x) is integrated without making any approximations. However,
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while integrating t2(x), the following approximation is used:

Pkm

λ1∫

0

− (−1)m cos ax |λ2
1 − x2|

1/2

(x2 − k2
m)
(
x2 − k2

p

)
︸ ︷︷ ︸

t2(x)

dx ≈ Pkm

λ1∫

0

− (−1)m cos ax |λ2
1 − x2|

1/2

(λ2
1 − k2

m)
(
λ2

1 − k2
p

)
︸ ︷︷ ︸

tapprox
2 (x)

dx.

The functions t2(x) and tapprox
2 (x) are plotted in Fig. Q.5. It is clear from the figure
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Fig. Q.5 Plots of the functions t2(x) and tapprox
2 (x) (AF - Y edge case).

that tapprox
2 (x) underestimates t2(x) near the singularity. However, as the contribution

from the term t2(x) itself is small as compared that from t1(x), this approximation
can still be used.

Approximation 2

Consider the approximation

k∫

0

√
k2 − k2

n + y2

(k2
m + y2)

(
k2

p + y2
)

︸ ︷︷ ︸
t3(y)

dy ≈
k∫

0

√
k2 − k2

n + y2

(k2
m + y2) k2

p︸ ︷︷ ︸
tapprox
3 (y)

dy,

which has been used while evaluating T 1
3 (kn).

The functions t3(y) and tapprox
3 (y) for y varying from 0 to k are plotted in Fig. Q.6.

The parameter values used are the same as that for the Approximation 1, above. As
shown in the figure, the above approximation is satisfactory in the range (0, k).
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Fig. Q.6 Plots of the functions t3(y) and tapprox
3 (y) (AF - Y edge case).

Approximation 3

Consider the following approximation which has been used while evaluating T 1
3 (kn):

∞∫

k

√
k2 − k2

n + y2

(k2
m + y2)

(
k2

p + y2
)

︸ ︷︷ ︸
t4(y)

dy ≈
∞∫

k

y

(k2
m + y2)

(
k2

p + y2
)

︸ ︷︷ ︸
tapprox
4 (y)

dy.

The functions t4(y) and tapprox
4 (y) for y varying from k to ∞ are plotted in Fig. Q.7.

The parameter values chosen are the same as that for the Approximation 1. As is
shown in the figure, tapprox

4 is a good approximation for t4(x).
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Fig. Q.7 Plots of the functions t4(y) and tapprox
4 (y) (AF - Y edge case).

Q.3 Y edge - corner

While evaluating Imp
1 (µ : |µ| < k), it has been assumed that the contributions from the

oscillatory cos ax and sin ax terms are negligible. The contribution from the exponential
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term of Imp
1 (µ : |µ| < k) has also been neglected. Rewriting Eq. (7.13)

Imp
1 (µ : |µ| < k)

= 2
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
.

We know that for the Y edge - corner interaction, km, kp, kq > k and kn < k. In the
above equation λ1 =

√
k2 − k2

n. The behavior of each integrand for a typical Y edge -
corner interaction is plotted in Fig. Q.8. For plotting, it is assumed that a = 0.455 m,
b = 0.546 m, m = 4, n = 2, p = 6, q = 10 and c = 343 m/s. The function variations
are recorded at 1450 Hz.
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Fig. Q.8 Comparative plots of the functions t1(x), t2(x), t3(x) and t4(y) when
km, kp, kq > k and kn < k.

It is observed that the terms t2(x) and t3(x) have magnitudes of the same order
of t1(x). However, due to the oscillatory nature of these terms their contribution to
the integral Imp

1 is negligible as compared to that from t1(x). It is also observed that
due to the exponential function and the large values of km and kp, t4(y) decays rapidly.
Hence, one can neglect the contribution from t4(y) term towards Imp

1 (µ). Thus, the
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integral Imp(µ : |µ| < k) can be approximated as

Imp
1 (µ : |µ| < k) ≈ 2

λ1∫

0

|λ2
1 − x2|

1/2

(x2 − k2
m)
(
x2 − k2

p

) dx.
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