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Sets

Lin = Set of all tensors
Lin+ = Set of all tensors T with detT > 0
Sym = Set of all symmetric tensors
Psym = Set of all symmetric, positive definite tensors
Orth = Set of all orthogonal tensors
Orth+ = Set of all rotations (QQT = I and detQ = +1)
Skw = Set of all skew-symmetric tensors

ii
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Chapter 1

Introduction to Tensors

Throughout the text, scalars are denoted by lightface letters, vectors are denoted by bold-
face lower-case letters, while second and higher-order tensors are denoted by boldface capital
letters. As a notational issue, summation over repeated indices is assumed, with the indices
ranging from 1 to 3 (since we are assuming three-dimensional space). Thus, for example,

Tii = T11 + T22 + T33,

u · v = uivi
OR
= ujvj = u1v1 + u2v2 + u3v3.

The repeated indices i and j in the above equation are known as dummy indices since any
letter can be used for the index that is repeated. Dummy indices can be repeated twice and
twice only (i.e., not more than twice). In case, we want to denote summation over an index
repeated three times, we use the summation sign explicitly (see, for example, Eqn. (1.98)).
As another example, let v = Tu denote a matrix T multiplying a vector u to give a vector
v. In terms of indicial notation, we write this equation as

vi = Tijuj
OR
= Tikuk. (1.1)

Thus, by letting i = 1, we get

v1 = T1juj = T11u1 + T12u2 + T13u3.

We get the expressions for the other components of v by successively letting i to be 2 and
then 3. In Eqn. (1.1), i denotes the free index, and j and k denote dummy indices. Note
that the same number of free indices should occur on both sides of the equation. In the
equation

Tij = CijklEkl,

i and j are free indices and k and l are dummy indices. Thus, we have

T11 = C11klEkl = C1111E11 + C1112E12 + C1113E13



1.1. VECTORS IN <3 Introduction to Tensors

+ C1121E21 + C1122E22 + C1123E23

+ C1131E31 + C1132E32 + C1133E33,

T12 = C12klEkl = C1211E11 + C1212E12 + C1213E13

+ C1221E21 + C1222E22 + C1223E23

+ C1231E31 + C1232E32 + C1233E33.

The expressions for T13, T21 etc. can be generated similar to the above.
The representation of T = RS would be

Tij = RikSkj
OR
= SkjRik.

i and j are free indices and k is a dummy index. Although we are allowed to interchange
the order of Rik and Skj while writing the indicial form as shown in the equation (since
they are scalars), we are not allowed to interchange the order while writing the tensorial
form, i.e, we cannot write T = RS as T = SR since the two products RS and SR are
different.

Great care has to be exercised in using indicial notation. In particular, the rule of
dummy indices not getting repeated more than twice should be strictly adhered to, as the
following example shows. If a = Hu and b = Gv, then we can write ai = Hijuj and
bi = Gijvj. But we cannot write

a · b = HijujGijvj, (wrong indicial representation!)

since the index j is repeated more than twice. Thus, although ai = Hijuj and bi = Gijvj
are both correct, one cannot blindly substitute them to generate a · b. The correct way to
write the above equation is

a · b = HijujGikvk
OR
= HijGikujvk

OR
= ujvkHijGik, (correct indicial representation)

where we have now introduced another dummy index k to prevent the dummy index j
from being repeated more than twice. Write out the wrong and the correct expressions
explicitly by carrying out the summation over the dummy indices to convince yourself
about this result.

In what follows, the quantity on the right-hand side of a ‘:=’ symbol defines the quantity
on its left-hand side.

1.1 Vectors in <3

From now on, V denotes the three-dimensional Euclidean space <3. Let {e1, e2, e3} be a
fixed set of orthonormal vectors that constitute the Cartesian basis. We have

ei · ej = δij,

2



Introduction to Tensors 1.1. VECTORS IN <3

where δij, known as the Kronecker delta, is defined by

δij :=

{
0 when i 6= j,

1 when i = j.
(1.2)

The Kronecker delta is also known as the substitution operator, since, from the definition,
we can see that xi = δijxj, τij = τikδkj, and so on. Note that δij = δji, and δii =
δ11 + δ22 + δ33 = 3.

Any vector u can be written as

u = u1e1 + u2e2 + u3e3, (1.3)

or, using the summation convention, as

u = uiei.

The inner product of two vectors is given by

(u,v) = u · v := uivi = u1v1 + u2v2 + u3v3. (1.4)

Using Eqn. (1.3), the components of the vector u can be written as

ui = u · ei. (1.5)

Substituting Eqn. (1.5) into Eqn. (1.3), we have

u = (u · ei)ei. (1.6)

We define the cross product of two base vectors ej and ek by

ej × ek := εijkei, (1.7)

where εijk is given by

ε123 = ε231 = ε312 = 1

ε132 = ε213 = ε321 = −1

εijk = 0 otherwise.

Taking the dot product of both sides of Eqn. (1.7) with em, we get

em · (ej × ek) = εijkδim = εmjk.

Using the index i in place of m, we have

εijk = ei · (ej × ek). (1.8)

3



1.1. VECTORS IN <3 Introduction to Tensors

The cross product of two vectors is assumed to be distributive, i.e.,

(αu)× (βv) = αβ(u× v) ∀α, β ∈ < and u,v ∈ V.

If w denotes the cross product of u and v, then by using this property and Eqn. (1.7), we
have

w = u× v

= (ujej)× (vkek)

= εijkujvkei. (1.9)

It is clear from Eqn. (1.9) that
u× v = −v× u.

Taking v = u, we get u× u = 0.
The scalar triple product of three vectors u, v, w, denoted by [u,v,w], is defined by

[u,v,w] := u · (v×w).

In indicial notation, we have
[u,v,w] = εijkuivjwk. (1.10)

From Eqn. 1.10, it is clear that

[u,v,w] = [v,w,u] = [w,u,v] = − [v,u,w] = − [u,w,v] = − [w,v,u] ∀u,v,w ∈ V.
(1.11)

If any two elements in the scalar triple product are the same, then its value is zero, as
can be seen by interchanging the identical elements, and using the above formula. From
Eqn. (1.10), it is also clear that the scalar triple product is linear in each of its argument
variables, so that, for example,

[αu + βv,x,y] = α [u,x,y] + β [v,x,y] ∀u,v,x,y ∈ V. (1.12)

As can be easily verified, Eqn. (1.10) can be written in determinant form as

[u,v,w] = det

u1 u2 u3

v1 v2 v3

w1 w2 w3

 . (1.13)

Using Eqns. (1.8) and (1.13), the components of the alternate tensor can be written in
determinant form as follows:

εijk = [ei, ej, ek] = det

ei · e1 ei · e2 ei · e3

ej · e1 ej · e2 ej · e3

ek · e1 ek · e2 ek · e3

 = det

δi1 δi2 δi3

δj1 δj2 δj3

δk1 δk2 δk3

 . (1.14)
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Thus, we have

εijkεpqr = det

δi1 δi2 δi3

δj1 δj2 δj3

δk1 δk2 δk3

 det

δp1 δp2 δp3

δq1 δq2 δq3

δr1 δr2 δr3


= det

δi1 δi2 δi3

δj1 δj2 δj3

δk1 δk2 δk3

 det

δp1 δq1 δr1

δp2 δq2 δr2

δp3 δq3 δr3

 (since detT = det(T T ))

= det


δi1 δi2 δi3

δj1 δj2 δj3

δk1 δk2 δk3


δp1 δq1 δr1

δp2 δq2 δr2

δp3 δq3 δr3


 (since (detR)(detS) = det(RS))

= det

δimδmp δimδmq δimδmr

δjmδmp δjmδmq δjmδmr

δkmδmp δkmδmq δkmδmr


= det

δip δiq δir

δjp δjq δjr

δkp δkq δkr

 . (1.15)

From Eqn. (1.15) and the relation δii = 3, we obtain the following identities (the first of
which is known as the ε–δ identity):

εijkεiqr = δjqδkr − δjrδkq, (1.16a)

εijkεijm = 2δkm, (1.16b)

εijkεijk = 6. (1.16c)

Using Eqn. (1.9) and the ε–δ identity, we get

(u× v) · (u× v) = εijkεimnujvkumvn

= (δjmδkn − δjnδkm)ujvkumvn

= (umvnumvn − ujvmumvj)
= (u · u)(v · v)− (u · v)2. (1.17)

The vector triple products u× (v×w) and (u× v)×w, defined as the cross product
of u with v × w, and the cross product of u × v with w, respectively, are different in
general, and are given by

u× (v×w) = (u ·w)v − (u · v)w, (1.18a)
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1.2. SECOND-ORDER TENSORS Introduction to Tensors

(u× v)×w = (u ·w)v − (v ·w)u. (1.18b)

The first relation is proved by noting that

u× (v×w) = εijkuj(v×w)kei

= εijkεkmnujvmwnei

= εkijεkmnujvmwnei

= (δimδjn − δinδjm)ujvmwnei

= (unwnvi − umvmwi)ei
= (u ·w)v − (u · v)w.

The second relation is proved in an analogous manner.

1.2 Second-Order Tensors

A second-order tensor is a linear transformation that maps vectors to vectors. We shall
denote the set of second-order tensors by Lin. If T is a second-order tensor that maps a
vector u to a vector v, then we write it as

v = Tu. (1.19)

T satisfies the property

T (ax + by) = aTx + bTy, ∀x,y ∈ V and a, b ∈ <.

By choosing a = 1, b = −1, and x = y, we get

T (0) = 0.

From the definition of a second-order tensor, it follows that the sum of two second-order
tensors defined by

(R + S)u := Ru + Su ∀u ∈ V,

and the scalar multiple of T by α ∈ <, defined by

(αT )u := α(Tu) ∀u ∈ V,

are both second-order tensors. The two second-order tensors R and S are said to be equal
if

Ru = Su ∀u ∈ V. (1.20)

6
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The above condition is equivalent to the condition

(v,Ru) = (v,Su) ∀u,v ∈ V. (1.21)

To see this, note that if Eqn. (1.20) holds, then clearly Eqn. (1.21) holds. On the other
hand, if Eqn. (1.21) holds, then using the bilinearity property of the inner product, we have

(v, (Ru− Su)) = 0 ∀u,v ∈ V.

Choosing v = Ru− Su, we get |Ru− Su| = 0, which proves Eqn. (1.20).
If we define the function I : V → V by

Iu := u ∀u ∈ V, (1.22)

then it is clear that I ∈ Lin. I is called as the identity tensor.
Choosing u = e1, e2 and e3 in Eqn. (1.19), we get three vectors that can be expressed

as a linear combination of the base vectors ei as

Te1 = α1e1 + α2e2 + α3e3

Te2 = α4e1 + α5e2 + α6e3

Te3 = α7e1 + α8e2 + α9e3,

(1.23)

where αi, i = 1 to 9, are scalar constants. Renaming the αi as Tij, i = 1, 3, j = 1, 3, we get

Tej = Tijei. (1.24)

The elements Tij are called the components of the tensor T with respect to the base vectors
ej; as seen from Eqn. (1.24), Tij is the component of Tej in the ei direction. Taking the
dot product of both sides of Eqn. (1.24) with ek for some particular k, we get

ek · Tej = Tijδik = Tkj,

or, replacing k by i,
Tij = ei · Tej. (1.25)

By choosing v = ei and u = ej in Eqn. (1.21), it is clear that the components of two
equal tensors are equal. From Eqn. (1.25), the components of the identity tensor in any
orthonormal coordinate system ei are

Iij = ei · Iej = ei · ej = δij. (1.26)

Thus, the components of the identity tensor are scalars that are independent of the Carte-
sian basis. Using Eqn. (1.24), we write Eqn. (1.19) in component form (where the compo-
nents are with respect to a particular orthonormal basis {ei}) as

viei = T (ujej) = ujTej = ujTijei,

7



1.2. SECOND-ORDER TENSORS Introduction to Tensors

which, by virtue of the uniqueness of the components of any element of a vector space,
yields

vi = Tijuj. (1.27)

Thus, the components of the vector v are obtained by a matrix multiplication of the
components of T , and the components of u.

The transpose of T , denoted by T T , is defined using the inner product as

(T Tu,v) := (u,Tv) ∀u,v ∈ V. (1.28)

Once again, it follows from the definition that T T is a second-order tensor. The transpose
has the following properties:

(T T )T = T ,

(αT )T = αT T ,

(R + S)T = RT + ST .

If (Tij) represent the components of the tensor T , then the components of T T are

(T T )ij = ei · T Tej

= Tei · ej
= Tji. (1.29)

The tensor T is said to be symmetric if

T T = T ,

and skew-symmetric (or anti-symmetric) if

T T = −T .

Any tensor T can be decomposed uniquely into a symmetric and an skew-symmetric part
as

T = T s + T ss, (1.30)

where

T s =
1

2
(T + T T ),

T ss =
1

2
(T − T T ).

The product of two second-order tensors RS is the composition of the two operations R
and S, with S operating first, and defined by the relation

(RS)u := R(Su) ∀u ∈ V. (1.31)

8
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Since RS is a linear transformation that maps vectors to vectors, we conclude that the
product of two second-order tensors is also a second-order tensor. From the definition of
the identity tensor given by (1.22) it follows that RI = IR = R. If T represents the
product RS, then its components are given by

Tij = ei · (RS)ej

= ei ·R(Sej)

= ei ·R(Skjek)

= ei · SkjRek

= Skj(ei ·Rek)

= SkjRik

= RikSkj, (1.32)

which is consistent with matrix multiplication. Also consistent with the results from matrix
theory, we have (RS)T = STRT , which follows from Eqns. (1.21), (1.28) and (1.31).

1.2.1 The tensor product

We now introduce the concept of a tensor product, which is convenient for working with
tensors of rank higher than two. We first define the dyadic or tensor product of two vectors
a and b by

(a⊗ b)c := (b · c)a ∀c ∈ V. (1.33)

Note that the tensor product a⊗ b cannot be defined except in terms of its operation on a
vector c. We now prove that a⊗b defines a second-order tensor. The above rule obviously
maps a vector into another vector. All that we need to do is to prove that it is a linear
map. For arbitrary scalars c and d, and arbitrary vectors x and y, we have

(a⊗ b)(cx + dy) = [b · (cx + dy)]a

= [cb · x + db · y]a

= c(b · x)a + d(b · y)a

= c[(a⊗ b)x] + d [(a⊗ b)y] ,

which proves that a⊗ b is a linear function. Hence, a⊗ b is a second-order tensor. Any
second-order tensor T can be written as

T = Tijei⊗ ej, (1.34)

9



1.2. SECOND-ORDER TENSORS Introduction to Tensors

where the components of the tensor, Tij are given by Eqn. (1.25). To see this, we consider
the action of T on an arbitrary vector u:

Tu = (Tu)iei = [ei · (Tu)] ei

= {ei · [T (ujej)]} ei
= {uj [ei · (Tej)]} ei
= {(u · ej) [ei · (Tej)]} ei
= [ei · (Tej)] [(u · ej)ei]
= [ei · (Tej)] [(ei⊗ ej)u]

= {[ei · (Tej)] ei⊗ ej}u.

Hence, we conclude that any second-order tensor admits the representation given by Eqn. (1.34),
with the nine components Tij, i = 1, 2, 3, j = 1, 2, 3, given by Eqn. (1.25).

From Eqns. (1.26) and (1.34), it follows that

I = ēi⊗ ēi, (1.35)

where {ē1, ē2, ē3} is any orthonormal coordinate frame. If T is represented as given by
Eqn. (1.34), it follows from Eqn. (1.29) that the transpose of T can be represented as

T T = Tjiei⊗ ej. (1.36)

From Eqns. (1.34) and (1.36), we deduce that a tensor is symmetric (T = T T ) if and only
if Tij = Tji for all possible i and j. We now show how all the properties of a second-order
tensor derived so far can be derived using the dyadic product.

Using Eqn. (1.24), we see that the components of a dyad a⊗ b are given by

(a⊗ b)ij = ei · (a⊗ b)ej

= ei · (b · ej)a
= aibj. (1.37)

Using the above component form, one can easily verify that

(a⊗ b)(c⊗ d) = (b · c)a⊗ d, (1.38)

T (a⊗ b) = (Ta)⊗ b, (1.39)

(a⊗ b)T = a⊗ (T Tb). (1.40)

The components of a vector v obtained by a second-order tensor T operating on a vector
u are obtained by noting that

viei = Tij(ei⊗ ej)u = Tij(u · ej)ei = Tijujei, (1.41)

which in equivalent to Eqn. (1.27).

10
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1.2.2 Cofactor of a tensor

In order to define the concept of a inverse of a tensor in a later section, it is convenient to
first introduce the cofactor tensor, denoted by cof T , and defined by the relation

(cof T )ij =
1

2
εimnεjpqTmpTnq. (1.42)

Equation (1.42) when written out explicitly reads

[cof T ] =

T22T33 − T23T32 T23T31 − T21T33 T21T32 − T22T31
T32T13 − T33T12 T33T11 − T31T13 T31T12 − T32T11
T12T23 − T13T22 T13T21 − T11T23 T11T22 − T12T21

 . (1.43)

It follows from the definition in Eqn. (1.42) that

cof T (u× v) = Tu× Tv ∀u,v ∈ V. (1.44)

By using Eqns. (1.15) and (1.42), we also get the following explicit formula for the cofactor:

(cof T )T =
1

2

[
(trT )2 − tr (T 2)

]
I − (trT )T + T 2. (1.45)

It immediately follows from Eqn. (1.45) that cof T corresponding to a given T is unique.
We also observe that

cof T T = (cof T )T , (1.46)

and that
(cof T )TT = T (cof T )T . (1.47)

Similar to the result for determinants, the cofactor of the product of two tensors is the
product of the cofactors of the tensors, i.e.,

cof (RS) = (cof R)(cof S).

The above result can be proved using Eqn. (1.42).

1.2.3 Principal invariants of a second-order tensor

The principal invariants of a tensor T are defined as

I1 = trT = Tii, (1.48a)

I2 = tr cof T =
1

2

[
(trT )2 − trT 2

]
, (1.48b)

11



1.2. SECOND-ORDER TENSORS Introduction to Tensors

I3 = detT =
1

6
εijkεpqrTpiTqjTrk =

1

6
εijkεpqrTipTjqTkr, (1.48c)

The first and third invariants are referred to as the trace and determinant of T .
The scalars I1, I2 and I3 are called the principal invariants of T . The reason for

calling them invariant is that they do not depend on the basis; i.e., although the individual
components of T change with a change in basis, I1, I2 and I3 remain the same as we show
in Section 1.4. The reason for calling them as the principal invariants is that any other
scalar invariant of T can be expressed in terms of them.

From Eqn. (1.48a), it is clear that the trace is a linear operation, i.e.,

tr (αR + βS) = αtrR + βtrS ∀α, β ∈ < and R,S ∈ Lin.

It also follows that
trT T = trT . (1.49)

By letting T = a⊗ b in Eqn. (1.48a), we obtain

tr (a⊗ b) = a1b1 + a2b2 + a3b3 = aibi = a · b. (1.50)

Using the linearity of the trace operator, and Eqn. (1.34), we get

trT = tr (Tijei⊗ ej) = Tijtr (ei⊗ ej) = Tijei · ej = Tii,

which agrees with Eqn. (1.48a). One can easily prove using indicial notation that

tr (RS) = tr (SR).

Similar to the vector inner product given by Eqn. (1.4), we can define a tensor inner
product of two second-order tensors R and S, denoted by R : S, by

(R,S) = R : S := tr (RTS) = tr (RST ) = tr (SRT ) = tr (STR) = RijSij. (1.51)

We have the following useful property:

R : (ST ) = (STR) : T = (RT T ) : S = (TRT ) : ST , (1.52)

since

R : (ST ) = tr (ST )TR = trT T (STR) = (STR) : T = (RTS) : T T

= trST (RT T ) = (RT T ) : S = (TRT ) : ST .

The second equality in Eqn. (1.48b) follows by taking the trace of either side of Eqn. (1.45).

12
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From Eqn. (1.48c), it can be seen that

det I = 1, (1.53a)

detT = detT T , (1.53b)

det(αT ) = α3 detT , (1.53c)

det(RS) = (detR)(detS) = det(SR), (1.53d)

det(R + S) = detR + cof R : S + R : cof S + detS. (1.53e)

By using Eqns. (1.15), (1.48c) and (1.53b), we also have

εpqr(detT ) = εijkTipTjqTkr = εijkTpiTqjTrk. (1.54)

By choosing (p, q, r) = (1, 2, 3) in the above equation, we get

detT = εijkTi1Tj2Tk3 = εijkT1iT2jT3k.

Using Eqns. (1.42) and (1.54), we get

T (cof T )T = (cof T )TT = (detT )I. (1.55)

We now state the following important theorem without proof:

Theorem 1.2.1. Given a tensor T , there exists a nonzero vector n such that Tn = 0 if
and only if detT = 0.

1.2.4 Inverse of a tensor

The inverse of a second-order tensor T , denoted by T−1, is defined by

T−1T = I, (1.56)

where I is the identity tensor. A characterization of an invertible tensor is the following:

Theorem 1.2.2. A tensor T is invertible if and only if detT 6= 0. The inverse, if it exists,
is unique.

Proof. Assuming T−1 exists, from Eqns. (1.53d) and (1.56), we have (detT )(detT−1) = 1,
and hence detT 6= 0.

Conversely, if detT 6= 0, then from Eqn. (1.55), we see that at least one inverse exists,
and is given by

T−1 =
1

detT
(cof T )T . (1.57)

Let T−11 and T−12 be two inverses that satisfy T−11 T = T−12 T = I, from which it follows that
(T−11 − T−12 )T = 0. Choose T−12 to be given by the expression in Eqn. (1.57) so that, by
virtue of Eqn. (1.55), we also have TT−12 = I. Multiplying both sides of (T−11 −T−12 )T = 0
by T−12 , we get T−11 = T−12 , which establishes the uniqueness of T−1.

13
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Thus, if T is invertible, then from Eqn. (1.55), we get

cof T = (detT )T−T . (1.58)

From Eqns. (1.55) and (1.57), we have

T−1T = TT−1 = I. (1.59)

If T is invertible, we have

Tu = v ⇐⇒ u = T−1v, u,v ∈ V.

By the above property, T−1 clearly maps vectors to vectors. Hence, to prove that T−1 is a
second-order tensor, we just need to prove linearity. Let a, b ∈ V be two arbitrary vectors,
and let u = T−1a and v = T−1b. Since I = T−1T , we have

I(αu + βv) = T−1T (αu + βv)

= T−1[T (αu + βv)]

= T−1[αTu + βTv]

= T−1(αa + βb),

which implies that

T−1(αa + βb) = αT−1a + βT−1b ∀a, b ∈ V and α, β ∈ <.

The inverse of the product of two invertible tensors R and S is

(RS)−1 = S−1R−1, (1.60)

since the inverse is unique, and

S−1R−1RS = S−1IS = S−1S = I.

Similarly, if T is invertible, then T T is invertible since detT T = detT 6= 0. The inverse of
the transpose is given by

(T T )−1 = (T−1)T , (1.61)

since
(T−1)TT T = (TT−1)T = IT = I.

Hence, without fear of ambiguity, we can write

T−T := (T T )−1 = (T−1)T .

From Eqn. (1.61), it follows that if T ∈ Sym, then T−1 ∈ Sym.

14
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1.2.5 Eigenvalues and eigenvectors of tensors

If T is an arbitrary tensor, a vector n is said to be an eigenvector of T if there exists λ
such that

Tn = λn. (1.62)

Writing the above equation as (T −λI)n = 0, we see from Theorem 1.2.1 that a nontrivial
eigenvector n exists if and only if

det(T − λI) = 0.

This is known as the characteristic equation of T . Using Eqn. (1.53e), the characteristic
equation can be written as

λ3 − I1λ2 + I2λ− I3 = 0, (1.63)

where I1, I2 and I3 are the principal invariants given by Eqns. (1.48). Since the principal
invariants are real, Eqn. (1.63) has either one or three real roots. If one of the eigenvalues
is complex, then it follows from Eqn. (1.62) that the corresponding eigenvector is also
complex. By taking the complex conjugate of both sides of Eqn. (1.62), we see that the
complex conjugate of the complex eigenvalue, and the corresponding complex eigenvector
are also eigenvalues and eigenvectors, respectively. Thus, eigenvalues and eigenvectors, if
complex, occur in complex conjugate pairs. If λ1, λ2, λ3 are the roots of the characteristic
equation, then from Eqns. (1.48) and (1.63), it follows that

I1 = trT = T11 + T22 + T33,

= λ1 + λ2 + λ3, (1.64a)

I2 = tr cof T =
1

2

[
(trT )2 − tr (T 2)

]
=

∣∣∣∣∣T11 T12

T21 T22

∣∣∣∣∣+

∣∣∣∣∣T22 T23

T32 T33

∣∣∣∣∣+

∣∣∣∣∣T11 T13

T31 T33

∣∣∣∣∣
= λ1λ2 + λ2λ3 + λ1λ3, (1.64b)

I3 = det(T ) =
1

6

[
(trT )3 − 3(trT )(trT 2) + 2trT 3

]
= εijkTi1Tj2Tk3

= λ1λ2λ3, (1.64c)

where |.| denotes the determinant. The set of eigenvalues {λ1, λ2, λ3} is known as the
spectrum of T . The expression for the determinant in Eqn. (1.64c) is derived in Eqn. (1.66)
below.

If λ is an eigenvalue, and n is the associated eigenvector of T , then λ2 is the eigenvalue
of T 2, and n is the associated eigenvector, since

T 2n = T (Tn) = T (λn) = λTn = λ2n.

15



1.2. SECOND-ORDER TENSORS Introduction to Tensors

In general, λn is an eigenvalue of T n with associated eigenvector n. The eigenvalues of T T

and T are the same since their characteristic equations are the same.

An extremely important result is the following:

Theorem 1.2.3 (Cayley–Hamilton Theorem). A tensor T satisfies an equation having the
same form as its characteristic equation, i.e.,

T 3 − I1T 2 + I2T − I3I = 0 ∀T . (1.65)

Proof. Multiplying Eqn. (1.45) by T , we get

(cof T )TT = I2T − I1T 2 + T 3.

Since by Eqn. (1.55), (cof T )TT = (detT )I = I3I, the result follows.

By taking the trace of both sides of Eqn. (1.65), and using Eqn. (1.48b), we get

detT =
1

6

[
(trT )3 − 3(trT )(trT 2) + 2trT 3

]
. (1.66)

From the above expression and the properties of the trace operator, Eqn. (1.53b) follows.

We have

λi = 0, i = 1, 2, 3 ⇐⇒ IT = 0 ⇐⇒ tr (T ) = tr (T 2) = tr (T 3) = 0. (1.67)

The proof is as follows. If all the invariants are zero, then from the characteristic equation
given by Eqn. (1.63), it follows that all the eigenvalues are zero. If all the eigenvalues
are zero, then from Eqns. (1.64), it follows that all the principal invariants IT are zero.
If tr (T ) = tr (T 2) = tr (T 3) = 0, then again from Eqns. (1.64) it follows that the prin-
cipal invariants are zero. Conversely, if all the principal invariants are zero, then all the
eigenvalues are zero from which it follows that trT j =

∑3
i=1 λ

j
i , j = 1, 2, 3 are zero.

Consider the second-order tensor u⊗ v. By Eqn. (1.42), it follows that

cof (u⊗ v) = 0, (1.68)

so that the second invariant, which is the trace of the above tensor, is zero. Similarly,
on using Eqn. (1.48c), we get the third invariant as zero. The first invariant is given by
u · v. Thus, from the characteristic equation, it follows that the eigenvalues of u⊗ v are
(0, 0,u · v). If u and v are perpendicular, u⊗ v is an example of a nonzero tensor all of
whose eigenvalues are zero.

16



Introduction to Tensors 1.3. SKEW-SYMMETRIC TENSORS

1.3 Skew-Symmetric Tensors

Let W ∈ Skw and let u,v ∈ V . Then

(u,Wv) = (W Tu,v) = −(Wu,v) = −(v,Wu). (1.69)

On setting v = u, we get
(u,Wu) = −(u,Wu),

which implies that
(u,Wu) = 0. (1.70)

Thus, Wu is always orthogonal to u for any arbitrary vector u. By choosing u = ei
and v = ej, we see from the above results that any skew-symmetric tensor W has only
three independent components (in each coordinate frame), which suggests that it might
be replaced by a vector. This observation leads us to the following result (which we state
without proof):

Theorem 1.3.1. Given any skew-symmetric tensor W , there exists a unique vector w,
known as the axial vector or dual vector, corresponding to W such that

Wu = w× u ∀u ∈ V. (1.71)

Conversely, given any vector w, there exists a unique skew-symmetric second-order tensor
W such that Eqn. (1.71) holds.

Note that Wu = 0 if and only if u = αw, α ∈ <. This result justifies the use of the
terminology ‘axial vector’ used for w. Also note that by virtue of the uniqueness of w, the
vector αw, α ∈ <, is a one-dimensional subspace of V .

By choosing u = ej and taking the dot product of both sides with ei, Eqn. (1.71) can
be expressed in component form as

Wij = −εijkwk,

wi = −1

2
εijkWjk.

(1.72)

More explicitly, if w = (w1, w2, w3), then

W =

 0 −w3 w2

w3 0 −w1

−w2 w1 0

 .
From Eqn. (1.72), it follows that W : W = −tr (W 2) = 2w ·w. Since trW = trW T =
−trW and detW = detW T = − detW , we have trW = detW = 0. The second
invariant is given by I2 = [(trW )2 − tr (W 2)]/2 = (W : W )/2 = w · w. Thus, from
the characteristic equation, we get the eigenvalues of W as (0, i |w| ,−i |w|). By virtue of
Eqn. (1.71), the zero eigenvalue obviously corresponds to the eigenvector w/ |w|

17



1.4. ORTHOGONAL TENSORS Introduction to Tensors

1.4 Orthogonal Tensors

A second-order tensor Q is said to be orthogonal if QT = Q−1, or, alternatively by
Eqn. (1.59), if

QTQ = QQT = I, (1.73)

where I is the identity tensor.

Theorem 1.4.1. A tensor Q is orthogonal if and only if it has any of the following prop-
erties of preserving inner products, lengths and distances:

(Qu,Qv) = (u,v) ∀u,v ∈ V, (1.74a)

|Qu| = |u| ∀u ∈ V, (1.74b)

|Qu−Qv| = |u− v| ∀u,v ∈ V. (1.74c)

Proof. Assuming that Q is orthogonal, Eqn. (1.74a) follows since

(Qu,Qv) = (QTQu,v) = (Iu,v) = (u,v) ∀u,v ∈ V.

Conversely, if Eqn. (1.74a) holds, then

0 = (Qu,Qv)− (u,v) = (u,QTQv)− (u,v) = (u, (QTQ− I)v) ∀u,v ∈ V,

which implies that QTQ = I (by Eqn. (1.21)), and hence Q is orthogonal.
By choosing v = u in Eqn. (1.74a), we get Eqn. (1.74b). Conversely, if Eqn. (1.74b)

holds, i.e., if (Qu,Qu) = (u,u) for all u ∈ V , then

((QTQ− I)u,u) = 0 ∀u ∈ V,

which, by virtue of Theorem 1.5.3, leads us to the conclusion that Q ∈ Orth.
By replacing u by (u− v) in Eqn. (1.74b), we obtain Eqn. (1.74c), and, conversely, by

setting v to zero in Eqn. (1.74c), we get Eqn. (1.74b).

As a corollary of the above results, it follows that the ‘angle’ between two vectors u
and v, defined by θ := cos−1(u · v)/(|u| |v|), is also preserved. Thus, physically speaking,
multiplying the position vectors of all points in a domain by Q corresponds to rigid body
rotation of the domain about the origin.

From Eqns. (1.53b), (1.53d) and (1.73), we have detQ = ±1. Orthogonal tensors
with determinant +1 are said to be proper orthogonal or rotations (henceforth, this set is
denoted by Orth+). For Q ∈ Orth+, using Eqn. (1.58), we have

cof Q = (detQ)Q−T = Q, (1.75)

so that by Eqn. (1.44),

Q(u× v) = (Qu)× (Qv) ∀u,v ∈ V. (1.76)

A characterization of a rotation is as follows:
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Theorem 1.4.2. Let {ē1, ē2, ē3} and {e∗1, e∗2, e∗3} be two orthonormal bases. Then

Q = ē1⊗ e∗1 + ē2⊗ e∗2 + ē3⊗ e∗3,

is a proper orthogonal tensor.

Proof. If {ē1, ē2, ē3} and {e∗1, e∗2, e∗3} are two orthonormal bases, then

QQT = [ē1⊗ e∗1 + ē2⊗ e∗2 + ē3⊗ e∗3] [e∗1⊗ ē1 + e∗2⊗ ē2 + e∗3⊗ ē3]

= [ē1⊗ ē1 + ē2⊗ ē2 + ē3⊗ ē3] (by Eqn. (1.38))

= I, (by Eqn. (1.35))

It can be shown that detQ = 1.

If {ei} and {ēi} are two sets of orthonormal basis vectors, then they are related as

ēi = QTei, i = 1, 2, 3, (1.77)

where Q = ek⊗ ēk is a proper orthogonal tensor by virtue of Theorem 1.4.2. The compo-
nents of Q with respect to the {ei} basis are given by Qij = ei · (ek⊗ ēk)ej = δikēk · ej =
ēi ·ej. Thus, if ē and e are two unit vectors, we can always find Q ∈ Orth+ (not necessarily
unique), which rotates ē to e, i.e., e = Qē. Let u and v be two vectors. Since u/ |u| and
v/ |v| are unit vectors, there exists Q ∈ Orth+ such that

v

|v|
= Q

(
u

|u|

)
.

Thus, if u and v have the same magnitude, i.e., if |u| = |v|, then there exists Q ∈ Orth+

such that u = Qv.
We now study the transformation laws for the components of tensors under an orthog-

onal transformation of the basis vectors. Let ei and ēi represent the original and new
orthonormal basis vectors, and let Q be the proper orthogonal tensor in Eqn. (1.77). From
Eqn. (1.6), we have

ēi = (ēi · ej)ej = Qijej, (1.78a)

ei = (ei · ēj)ēj = Qjiēj. (1.78b)

Using Eqn. (1.5) and Eqn. (1.78a), we get the transformation law for the components of a
vector as

v̄i = v · ēi = v · (Qijej) = Qijv · ej = Qijvj. (1.79)

In a similar fashion, using Eqn. (1.25), Eqn. (1.78a), and the fact that a tensor is a linear
transformation, we get the transformation law for the components of a second-order tensor
as

T̄ij = ēi · T ēj = QimQjnTmn. (1.80)
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θ

e1bar

e2bar

e1

e2

Fig. 1.1: Example of a coordinate system obtained from an existing one by a rotation about
the 3-axis.

Conversely, if the components of a matrix transform according to Eqn. (1.80), then they
all generate the same tensor. To see this, let T̄ = T̄ijēi⊗ ēj and T = Tmnem⊗ en. Then

T̄ = T̄ijēi⊗ ēj

= QimQjnTmnēi⊗ ēj

= Tmn(Qimēi)⊗ (Qjnēj)

= Tmnem⊗ en (by Eqn. (1.78b))

= T .

We can write Eqns. (1.79) and (1.80) as

[v̄] = Q[v], (1.81)

[T̄ ] = Q[T ]QT . (1.82)

where [v̄] and [T̄ ] represent the components of the vector v and tensor T , respectively,
with respect to the ēi coordinate system. Using the orthogonality property of Q, we can
write the reverse transformations as

[v] = QT [v̄], (1.83)

[T ] = QT [T̄ ]Q. (1.84)

As an example, the Q matrix for the configuration shown in Fig. 1.1 is

Q =

ē1

ē2

ē3

 =

 cos θ sin θ 0

− sin θ cos θ 0

0 0 1

 .
From Eqn. (1.82), it follows that

det([T̄ ]− λI) = det(Q[T ]QT − λI)
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= det(Q[T ]QT − λQQT )

= (detQ) det([T ]− λI)(detQT )

= det(QQT ) det([T ]− λI)

= det([T ]− λI),

which shows that the characteristic equation, and hence the principal invariants I1, I2 and
I3 of [T̄ ] and [T ] are the same. Thus, although the component matrices [T̄ ] and [T ] are
different, their trace, second invariant and determinant are the same, and hence the term
invariant is used for them.

The only real eigenvalues of Q ∈ Orth can be either +1 or −1, since if λ and n denote
the eigenvalue and eigenvector of Q, i.e., Qn = λn, then

(n,n) = (Qn,Qn) = λ2(n,n),

which implies that (n,n)(λ2 − 1) = 0. If λ and n are real, then (n,n) 6= 0 and λ = ±1,
while if λ is complex, then (n,n) = 0. Let λ̂ and n̂ denote the complex conjugates of λ
and n, respectively. To see that the complex eigenvalues have a magnitude of unity observe
that λλ̂(n̂,n) = (Qn̂,Qn) = (n̂,n), which implies that λλ̂ = 1 since (n̂,n) 6= 0.

If R 6= I is a rotation, then the set of all vectors e such that

Re = e (1.85)

forms a one-dimensional subspace of V called the axis of R. To prove that such a vector
always exists, we first show that +1 is always an eigenvalue of R. Since detR = 1,

det(R− I) = det(R−RRT ) = (detR) det(I −RT ) = det(I −RT )T

= det(I −R) = − det(R− I),

which implies that det(R − I) = 0, or that +1 is an eigenvalue. If e is the eigenvector
corresponding to the eigenvalue +1, then Re = e.

Conversely, given a vector w, there exists a proper orthogonal tensor R, such that
Rw = w. To see this, consider the family of tensors

R(w, α) = I +
1

|w|
sinαW +

1

|w|2
(1− cosα)W 2, (1.86)

where W is the skew-symmetric tensor with w as its axial vector, i.e., Ww = 0. Using
the Cayley–Hamilton theorem, we have W 3 = − |w|2W , from which it follows that W 4 =
− |w|2W 2. Using this result, we get

RTR =

[
I − sinα

|w|
W +

(1− cosα)

|w|2
W 2

] [
I +

sinα

|w|
W +

(1− cosα)

|w|2
W 2

]
= I.
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Since R has now been shown to be orthogonal, detR = ±1. However, since det[R(w, 0)] =
det I = 1, by continuity, we have det[R(w, α)] = 1 for any α. Thus, R is a proper
orthogonal tensor that satisfies Rw = w. It is easily seen that Rw = w. Essentially, R
rotates any vector in the plane perpendicular to w through an angle α.

1.5 Symmetric Tensors

In this section, we examine some properties of symmetric second-order tensors. We first
discuss the properties of the principal values (eigenvalues) and principal directions (eigen-
vectors) of a symmetric second-order tensor.

1.5.1 Principal values and principal directions

We have the following result:

Theorem 1.5.1. Every symmetric tensor S has at least one principal frame, i.e., a right-
handed triplet of orthogonal principal directions, and at most three distinct principal values.
The principal values are always real. For the principal directions three possibilities exist:

• If all the three principal values are distinct, the principal axes are unique (modulo
sign reversal).

• If two eigenvalues are equal, then there is one unique principal direction, and the
remaining two principal directions can be chosen arbitrarily in the plane perpendicular
to the first one, and mutually perpendicular to each other.

• If all three eigenvalues are the same, then every right-handed frame is a principal
frame, and S is of the form S = λI.

The components of the tensor in the principal frame are

S∗ =

λ1 0 0

0 λ2 0

0 0 λ3

 . (1.87)

Proof. We seek λ and n such that

(S − λI)n = 0. (1.88)

22



Introduction to Tensors 1.5. SYMMETRIC TENSORS

But this is nothing but an eigenvalue problem. For a nontrivial solution, we need to satisfy
the condition that

det(S − λI) = 0,

or, by Eqn. (1.63),
λ3 − I1λ2 + I2λ− I3 = 0, (1.89)

where I1, I2 and I3 are the principal invariants of S.
We now show that the principal values given by the three roots of the cubic equation

Eqn. (1.89) are real. Suppose that two roots, and hence the eigenvectors associated with
them, are complex. Denoting the complex conjugates of λ and n by λ̂ and n̂, we have

Sn = λn, (1.90a)

Sn̂ = λ̂n̂, (1.90b)

where Eqn. (1.90b) is obtained by taking the complex conjugate of Eqn. (1.90a) (S being
a real matrix is not affected). Taking the dot product of both sides of Eqn. (1.90a) with
n̂, and of both sides of Eqn. (1.90b) with n, we get

n̂ · Sn = λn · n̂, (1.91)

n · Sn̂ = λ̂n̂ · n. (1.92)

Using the definition of a transpose of a tensor, and subtracting the second relation from
the first, we get

ST n̂ · n− n · Sn̂ = (λ− λ̂)n · n̂. (1.93)

Since S is symmetric, ST = S, and we have

(λ− λ̂)n · n̂ = 0.

Since n · n̂ 6= 0, λ = λ̂, and hence the eigenvalues are real.
The principal directions n1, n2 and n3, corresponding to distinct eigenvalues λ1, λ2

and λ3, are mutually orthogonal and unique (modulo sign reversal). We now prove this.
Taking the dot product of

Sn1 = λ1n1, (1.94)

Sn2 = λ2n2, (1.95)

with n2 and n1, respectively, and subtracting, we get

0 = (λ1 − λ2)n1 · n2,

where we have used the fact that S being symmetric, n2 ·Sn1−n1 ·Sn2 = 0. Thus, since
we assumed that λ1 6= λ2, we get n1 ⊥ n2. Similarly, we have n2 ⊥ n3 and n1 ⊥ n3. If n1
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satisfies Sn1 = λ1n1, then we see that −n1 also satisfies the same equation. This is the only
other choice possible that satisfies Sn1 = λ1n1. To see this, let r1, r2 and r3 be another
set of mutually perpendicular eigenvectors corresponding to the distinct eigenvalues λ1, λ2
and λ3. Then r1 has to be perpendicular to not only r2 and r3, but to n2 and n3 as well.
Similar comments apply to r2 and r3. This is only possible when r1 = ±n1, r2 = ±n2

and r3 = ±n3. Thus, the principal axes are unique modulo sign reversal.
To prove that the components of S in the principal frame are given by Eqn. (1.87),

assume that n1, n2, n3 have been normalized to unit length, and then let e∗1 = n1,
e∗2 = n2 and e∗3 = n3. Using Eqn. (1.25), and taking into account the orthonormality of e∗1
and e∗2, the components S∗11 and S∗12 are given by

S∗11 = e∗1 · Se∗1 = e∗1 · (λ1e∗1) = λ1,

S∗12 = e∗1 · Se∗2 = e∗1 · (λ2e∗2) = 0.

Similarly, on computing the other components, we see that the matrix representation of S
with respect to e∗ is given by Eqn. (1.87).

If there are two repeated roots, say, λ2 = λ3, and the third root λ1 6= λ2, then let e∗1
coincide with n1, so that Se∗1 = λ1e

∗
1. Choose e∗2 and e∗3 such that e∗1-e

∗
3 form a right-

handed orthogonal coordinate system. The components of S with respect to this coordinate
system are

S∗ =

λ1 0 0

0 S∗22 S∗23
0 S∗23 S∗33

 . (1.96)

By Eqn. (1.64), we have

S∗22 + S∗33 = 2λ2,

λ1S
∗
22 + (S∗22S

∗
33 − (S∗23)

2) + λ1S
∗
33 = 2λ1λ2 + λ22,

λ1
[
S∗22S

∗
33 − (S∗23)

2
]

= λ1λ
2
2.

(1.97)

Substituting for λ2 from the first equation into the second, we get

(S∗22 − S∗33)2 = −4(S∗23)
2.

Since the components of S are real, the above equation implies that S∗23 = 0 and λ2 =
S∗22 = S∗33. This shows that Eqn. (1.96) reduces to Eqn. (1.87), and that Se∗2 = S∗12e

∗
1 +

S∗22e
∗
2 + S∗32e

∗
3 = λ2e

∗
2 and Se∗3 = λ2e

∗
3 (thus, e∗2 and e∗3 are eigenvectors corresponding to

the eigenvalue λ2). However, in this case the choice of the principal frame e∗ is not unique,
since any vector lying in the plane of e∗2 and e∗3, given by n∗ = c1e

∗
2 + c2e

∗
3 where c1 and

c2 are arbitrary constants, is also an eigenvector. The choice of e∗1 is unique (modulo sign
reversal), since it has to be perpendicular to e∗2 and e∗3. Though the choice of e∗2 and e∗3 is
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not unique, we can choose e∗2 and e∗3 arbitrarily in the plane perpendicular to e∗1, and such
that e∗2 ⊥ e∗3.

Finally, if λ1 = λ2 = λ3 = λ, then the tensor S is of the form S = λI. To show
this choose e∗1–e

∗
3, and follow a procedure analogous to that in the previous case. We now

get S∗22 = S∗33 = λ and S∗23 = 0, so that [S∗] = λI. Using the transformation law for
second-order tensors, we have

[S] = QT [S∗]Q = λQTQ = λI.

Thus, any arbitrary vector n is a solution of Sn = λn, and hence every right-handed frame
is a principal frame.

As a result of Eqn. (1.87), we can write

S =
3∑
i=1

λie
∗
i ⊗ e∗i = λ1e

∗
1⊗ e∗1 + λ2e

∗
2⊗ e∗2 + λ3e

∗
3⊗ e∗3, (1.98)

which is called as the spectral resolution of S. The spectral resolution of S is unique since

• If all the eigenvalues are distinct, then the eigenvectors are unique, and consequently
the representation given by Eqn. (1.98) is unique.

• If two eigenvalues are repeated, then, by virtue of Eqn. (1.35), Eqn. (1.98) reduces to

S = λ1e
∗
1⊗ e∗1 + λ2e

∗
2⊗ e∗2 + λ2e

∗
3⊗ e∗3

= λ1e
∗
1⊗ e∗1 + λ2(I − e∗1⊗ e∗1), (1.99)

from which the asserted uniqueness follows, since e∗1 is unique.

• If all the eigenvalues are the same then S = λI.

The Cayley–Hamilton theorem (Theorem 1.2.3) applied to S ∈ Sym yields

S3 − I1S2 + I2S − I3I = 0. (1.100)

We have already proved this result for any arbitrary tensor. However, the following simpler
proof can be given for symmetric tensors. Using Eqn. (1.38), the spectral resolutions of S,
S2 and S3 are

S = λ1e
∗
1⊗ e∗1 + λ2e

∗
2⊗ e∗2 + λ3e

∗
3⊗ e∗3,

S2 = λ21e
∗
1⊗ e∗1 + λ22e

∗
2⊗ e∗2 + λ23e

∗
3⊗ e∗3,

S3 = λ31e
∗
1⊗ e∗1 + λ32e

∗
2⊗ e∗2 + λ33e

∗
3⊗ e∗3.

(1.101)

Substituting these expressions into the left-hand side of Eqn. (1.100), we get

LHS = (λ31 − I1λ21 + I2λ1 − I3)(e∗1⊗ e∗1) + (λ32 − I1λ22 + I2λ2 − I3)(e∗2⊗ e∗2)

+ (λ33 − I1λ23 + I2λ3 − I3)(e∗3⊗ e∗3) = 0,

since λ3i − I1λ2i + I2λi − I3 = 0 for i = 1, 2, 3.
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1.5.2 Positive definite tensors and the polar decomposition

A second-order symmetric tensor S is positive definite if

(u,Su) ≥ 0 ∀u ∈ V with (u,Su) = 0 if and only if u = 0.

We denote the set of symmetric, positive definite tensors by Psym. Since by virtue of
Eqn. (1.30), all tensors T can be decomposed into a symmetric part T s, and a skew-
symmetric part T ss, we have

(u,Tu) = (u,T su) + (u,T ssu),

= (u,T su),

because (u,T ssu) = 0 by Eqn. (1.70). Thus, the positive definiteness of a tensor is decided
by the positive definiteness of its symmetric part. In Theorem 1.5.2, we show that a
symmetric tensor is positive definite if and only if its eigenvalues are positive. Although
the eigenvalues of the symmetric part of T should be positive in order for T to be positive
definite, positiveness of the eigenvalues of T itself does not ensure its positive definiteness
as the following counterexample shows. If T =

[
1 −10
0 1

]
, then T is not positive definite

since u · Tu < 0 for u = (1, 1), but the eigenvalues of T are (1, 1). Conversely, if T is
positive definite, then by choosing u to be the real eigenvectors n of T , it follows that its
real eigenvalues λ = (n · Tn) are positive.

Theorem 1.5.2. Let S ∈ Sym. Then the following are equivalent:

1. S is positive definite.

2. The principal values of S are strictly positive.

3. The principal invariants of S are strictly positive.

Proof. We first prove the equivalence of (1) and (2). Suppose S is positive definite. If λ and
n denote the principal values and principal directions, respectively, of S, then Sn = λn,
which implies that λ = (n,Sn) > 0 since n 6= 0.

Conversely, suppose that the principal values of S are greater than 0. Assuming that
e∗1, e

∗
2 and e∗3 denote the principal axes, the representation of S in the principal coordinate

frame is (see Eqn. (1.98))

S = λ1e
∗
1⊗ e∗1 + λ2e

∗
2⊗ e∗2 + λ3e

∗
3⊗ e∗3.

Then

Su = (λ1e
∗
1⊗ e∗1 + λ2e

∗
2⊗ e∗2 + λ3e

∗
3⊗ e∗3)u

= λ1(e
∗
1 · u)e∗1 + λ2(e

∗
2 · u)e∗2 + λ3(e

∗
3 · u)e∗3

= λ1u
∗
1e
∗
1 + λ2u

∗
2e
∗
2 + λ3u

∗
3e
∗
3,
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and

(u,Su) = u · Su = λ1(u
∗
1)

2 + λ2(u
∗
2)

2 + λ3(u
∗
3)

2, (1.102)

which is greater than or equal to zero since λi > 0. Suppose that (u,Su) = 0. Then by
Eqn. (1.102), u∗i = 0, which implies that u = 0. Thus, S is a positive definite tensor.

To prove the equivalence of (2) and (3), note that, by Eqn. (1.64), if all the principal
values are strictly positive, then the principal invariants are also strictly positive. Con-
versely, if all the principal invariants are positive, then I3 = λ1λ2λ3, is positive, so that
all the λi are nonzero in addition to being real. Each λi has to satisfy the characteristic
equation

λ3i − I1λ2i + I2λi − I3 = 0, i = 1, 2, 3.

If λi is negative, then, since I1, I2, I3 are positive, the left-hand side of the above equation
is negative, and hence the above equation cannot be satisfied. We have already mentioned
that λi cannot be zero. Hence, each λi has to be positive.

Theorem 1.5.3. For S ∈ Sym,

(u,Su) = 0 ∀u ∈ V,

if and only if S = 0.

Proof. If S = 0, then obviously, (u,Su) = 0. Conversely, using the fact that S =∑3
i=1 λie

∗
i ⊗ e∗i , we get

0 = (u,Su) =
3∑
i=1

λi(u
∗
i )

2 ∀u.

Choosing u such that u∗1 6= 0, u∗2 = u∗3 = 0, we get λ1 = 0. Similarly, we can show that
λ2 = λ3 = 0, so that S =

∑3
i=1 λie

∗
i ⊗ e∗i = 0.

Theorem 1.5.4. If S ∈ Psym, then there exists a unique H ∈ Psym, such that H2 :=
HH = S. The tensor H is called the positive definite square root of S, and we write
H =

√
S.

Proof. Before we begin the proof, we note that a positive definite, symmetric tensor can
have square roots that are not positive definite. For example, diag[1,−1, 1] is a non-positive
definite square root of I. Here, we are interested only in those square roots that are positive
definite.

Since

S =
3∑
i=1

λie
∗
i ⊗ e∗i ,
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is positive definite, by Theorem 1.5.2, all λi > 0. Define

H :=
3∑
i=1

√
λie
∗
i ⊗ e∗i . (1.103)

Since the {e∗i } are orthonormal, it is easily seen that HH = S. Since the eigenvalues of H
given by

√
λi are all positive, H is positive definite. Thus, we have shown that a positive

definite square root tensor of S given by Eqn. (1.103) exists. We now prove uniqueness.
With λ and n denoting the principal value and principal direction of S, we have

0 = (S − λI)n

= (H2 − λI)n

= (H +
√
λI)(H −

√
λI)n.

Calling (H −
√
λI)n = n̄, we have

(H +
√
λI)n̄ = 0.

This implies that n̄ = 0. For, if not, −
√
λ is a principal value of H , which contradicts the

fact that H is positive definite. Therefore,

(H −
√
λI)n = 0;

i.e., n is also a principal direction of H with associated principal values
√
λ. If H =

√
S,

then it must have the form given by Eqn. (1.103) (since the spectral decomposition is
unique), which establishes its uniqueness.

Now we prove the polar decomposition theorem.

Theorem 1.5.5 (Polar Decomposition Theorem). Let F be an invertible tensor. Then, it
can be factored in a unique fashion as

F = RU = V R,

where R is an orthogonal tensor, and U , V are symmetric and positive definite tensors.
One has

U =
√

F TF

V =
√

FF T .
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Proof. The tensor F TF is obviously symmetric. It is positive definite since

(u,F TFu) = (Fu,Fu) ≥ 0,

with equality if and only if u = 0 (Fu = 0 implies that u = 0, since F is invertible).

Let U =
√
F TF . U is unique, symmetric and positive definite by Theorem 1.5.4. Define

R = FU−1, so that F = RU . The tensor R is orthogonal, because

RTR = (FU−1)T (FU−1)

= U−TF TFU−1

= U−1(F TF )U−1 (since U is symmetric)

= U−1(UU )U−1

= I.

Since detU > 0, we have detU−1 > 0. Hence, detR and detF have the same sign. Usu-
ally, the polar decomposition theorem is applied to the deformation gradient F satisfying
detF > 0. In such a case detR = 1, and R is a rotation.

Next, let V = FUF−1 = FR−1 = RUR−1 = RURT . Thus, V is symmetric since U
is symmetric. V is positive definite since

(u,V u) = (u,RURTu)

= (RTu,URTu)

≥ 0,

with equality if and only if u = 0 (again since RT is invertible). Note that FF T = V V =

V 2, so that V =
√
FF T .

Finally, to prove the uniqueness of the polar decomposition, we note that since U is
unique, R = FU−1 is unique, and hence so is V .

Let (λi, e
∗
i ) denote the eigenvalues/eigenvectors of U . Then, since V Re∗i = RUe∗i =

λi(Re∗i ), the pairs (λi,f
∗
i ), where f i ≡ Re∗i are the eigenvalues/eigenvectors of V . Thus,

F and R can be represented as

F = RU = R

3∑
i=1

λie
∗
i ⊗ e∗i =

3∑
i=1

λi(Re∗i )⊗ e∗i =
3∑
i=1

λif
∗
i ⊗ e∗i , (1.104a)

R = RI = R
3∑
i=1

e∗i ⊗ e∗i =
∑
i

(Re∗i )⊗ e∗i =
3∑
i=1

f ∗i ⊗ e∗i . (1.104b)
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1.6 Singular Value Decomposition (SVD)

Once the polar decomposition is known, the singular value decomposition (SVD) can be
computed for a matrix of dimension n using Eqn. (1.104) as

F =

(
n∑
i=1

f ∗i ⊗ ei

)(
n∑
i=1

λiei⊗ ei

)(
n∑
i=1

ei⊗ e∗i

)
= PΛQT , (1.105)

where {ei} denotes the canonical basis, and

Λ = diag[λ1, . . . , λn], (1.106a)

Q =
n∑
i=1

e∗i ⊗ ei =
[
e∗1 | e∗2 | . . . | e∗n

]
, (1.106b)

P = RQ. (1.106c)

The λi, i = 1, 2, . . . , n, are known as the singular values of F . Note that P and Q are
orthogonal matrices. The singular value decomposition is not unique. For example, one
can replace P and Q by −P and −Q. The procedure for finding the singular value
decomposition of a nonsingular matrix is as follows:

1. Find the eigenvalues/eigenvectors (λ2i , e
∗
i ), i = 1, . . . , n, of F TF . Construct the

square root U =
∑n

i=1 λie
∗
i ⊗ e∗i , and its inverse U−1 =

∑n
i=1

1
λi
e∗i ⊗ e∗i .

2. Find R = FU−1.

3. Construct the factors P , Λ and Q in the SVD as per Eqns. (1.106).

While finding the singular value decomposition, it is important to construct P as RQ
since only then is the constraint f ∗i = Re∗i met. One should not try and construct P
independently of Q using the eigenvectors of FF T directly. This will become clear in the
example below.

To find the singular decomposition of

F =

 0 1 0

−1 0 0

0 0 1

 ,
we first find the eigenvalues/eigenvectors (λ2i , e

∗
i ) of F TF = I. We get the eigenvalues λi

as (1, 1, 1), and choose the corresponding eigenvectors {e∗i } as e1, e2 and e3, where {ei}

30



Introduction to Tensors 1.6. SINGULAR VALUE DECOMPOSITION (SVD)

denotes the canonical basis, so that Q =
[
e1 | e2 | e3

]
= I. Since U =

∑3
i=1 λie

∗
i ⊗

e∗i = I, we get R = FU−1 = F . Lastly, find P = RQ = F . Thus the factors in the
singular value decomposition are P = F , Λ = I and Q = I. The factors P = I, Λ = I
and Q = F T are also a valid choice corresponding to another choice of Q. This again
shows that the SVD is nonunique.

Now we show how erroneous results can be obtained if we try to find P independently of
Q using the eigenvectors of FF T . Assume that we have already chosen Q = I as outlined
above. The eigenvalues of FF T = I are again {1, 1, 1} and if we choose the corresponding
eigenvectors {f ∗i } as {ei}, then we see that we get the wrong result P = I, because we
have not satisfied the constraint f ∗i = Re∗i .

Now we discuss the SVD for a singular matrix, where U is no longer invertible (but
still unique), and R is nonunique. First note that from Eqn. (1.104a), we have

Fe∗i = λif
∗
i . (1.107)

The procedure for finding the SVD for a singular matrix of dimension n is

1. Find the eigenvalues/eigenvectors (λ2i , e
∗
i ), i = 1, . . . , n, of F TF . Let m (where

m < n) be the number of nonzero eigenvalues λi.

2. Find the eigenvectors f ∗i , i = 1, . . . ,m, corresponding to the nonzero eigenvalues
using Eqn. (1.107).

3. Find the eigenvectors (e∗i ,f
∗
i ), i = m+ 1, . . . , n, of F TF and FF T corresponding to

the zero eigenvalues.

4. Construct the factors in the SVD as

Λ = diag[λ1, . . . , λn], (1.108)

Q =
[
e∗1 | e∗2 | . . . | e∗n

]
, (1.109)

P =
[
f ∗1 | f ∗2 | . . . | f ∗n

]
. (1.110)

Obviously, the above procedure will also work if F is nonsingular, in which case m = n,
and Step (3) in the above procedure is to be skipped.

As an example, consider finding the SVD of

F =

 0 1 0

−1 0 0

0 0 0

 ,
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The eigenvalues/eigenvectors of F TF are (1, 1, 0) and e∗1 = e1, e
∗
2 = e2 and e∗3 = e3. The

eigenvectors f ∗i , i = 1, 2, corresponding to the nonzero eigenvalues are computed using
Eqn. (1.107), and are given by

f ∗1 =

 0

−1

0

 , f ∗2 =

1

0

0


The eigenvectors (e∗3,f

∗
3) corresponding to the zero eigenvalue of F TF are (e3, e3). Thus,

the SVD is given by

F =

 0 1 0

−1 0 0

0 0 1


1 0 0

0 1 0

0 0 0


1 0 0

0 1 0

0 0 1

 .
As another example,

1 1 1

1 1 1

1 1 1

 =


1√
3
− 1√

2
1√
6

1√
3

0 − 2√
6

1√
3

1√
2

1√
6


3 0 0

0 0 0

0 0 0




1√
3
− 1√

2
1√
6

1√
3

0 − 2√
6

1√
3

1√
2

1√
6


T

.

Some of the properties of the SVD are

1. The rank of a matrix (number of linearly independent rows or columns) is equal to
the number of non-zero singular values.

2. From Eqn. (1.105), it follows that detF is nonzero if and only if det Λ = Πn
i=1λi is

nonzero. In case detF is nonzero, then F−1 = QΛ−1P T .

3. The condition number λ1/λn (assuming that λ1 ≥ λ2 ≥ . . . ≥ λn) is a measure
of how ill-conditioned the matrix F is. The closer this ratio is to one, the better
the conditioning of the matrix is. The larger this value is, the closer F is to being
singular. For a singular matrix, the condition number is∞. For example, the matrix
diag[10−8, 10−8] is not ill-conditioned (although its eigenvalues and determinant are
small) since its condition number is 1! The SVD can be used to approximate F−1 in
case F is ill-conditioned.

4. Following a procedure similar to the above, the SVD can be found for a non-square
matrix F , with the corresponding Λ also non-square.
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1.7 Differentiation of Tensors

The gradient of a scalar field φ is defined as

∇φ =
∂φ

∂xi
ei.

Similar to the gradient of a scalar field, we define the gradient of a vector field v as

(∇v)ij =
∂vi
∂xj

.

Thus, we have

∇v =
∂vi
∂xj

ei⊗ ej.

The scalar field

∇ · v := tr∇v =
∂vi
∂xj

tr (ei⊗ ej) =
∂vi
∂xj

ei · ej =
∂vi
∂xj

δij =
∂vi
∂xi

, (1.111)

is called the divergence of v.
The gradient of a second-order tensor T is a third-order tensor defined in a way similar

to the gradient of a vector field as

∇T =
∂Tij
∂xk

ei⊗ ej ⊗ ek.

The divergence of a second-order tensor T , denoted as ∇ · T , is defined as

∇ · T =
∂Tij
∂xj

ei.

The curl of a vector v, denoted as ∇× v, is defined by

(∇× v)× u := [∇v − (∇v)T ]u ∀u ∈ V. (1.112)

Thus, ∇ × v is the axial vector corresponding to the skew tensor [∇v − (∇v)T ]. In
component form, we have

∇× v = εijk(∇v)kjei = εijk
∂vk
∂xj

ei.

The curl of a tensor T , denoted by ∇× T , is defined by

∇× T = εirs
∂Tjs
∂xr

ei⊗ ej. (1.113)
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The Laplacian of a scalar function φ(x) is defined by

∇2φ :=∇ · (∇φ). (1.114)

In component form, the Laplacian is given by

∇2φ =
∂2φ

∂xi∂xi
.

If ∇2φ = 0, then φ is said to be harmonic.
The Laplacian of a tensor function T (x), denoted by ∇2T , is defined by

(∇2T )ij =
∂2Tij
∂xk∂xk

.

1.7.1 Examples

Although it is possible to derive tensor identities involving differentiation using the above
definitions of the operators, the proofs can be quite cumbersome, and hence we prefer to
use indicial notation instead. In what follows, u and v are vector fields, and ∇ ≡ ∂

∂xi
ei

(this is to be interpreted as the ‘del’ operator acting on a scalar, vector or tensor-valued
field, e.g., ∇φ = ∂φ

∂xi
ei):

1. Show that
∇×∇φ = 0. (1.115)

2. Show that
1

2
∇(u · u) = (∇u)Tu. (1.116)

3. Show that ∇ · [(∇u)v] = (∇u)T :∇v + v · [∇(∇ · u)].

4. Show that

∇ · (∇u)T =∇(∇ · u), (1.117a)

∇2u :=∇ · (∇u) =∇(∇ · u)−∇× (∇× u). (1.117b)

From Eqns. (1.117a) and (1.117b), it follows that

∇ · [(∇u)− (∇u)T ] = −∇× (∇× u).

From Eqn. (1.117b), it follows that if ∇ ·u = 0 and ∇×u = 0, then ∇2u = 0, i.e.,
u is harmonic.
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5. Show that ∇ · (u× v) = v · (∇× u)− u · (∇× v).

6. Let W ∈ Skw, and let w be its axial vector. Then show that

∇ ·W = −∇×w,

∇×W = (∇ ·w)I −∇w. (1.118)

Solution:

1. Consider the ith component of the left-hand side:

(∇×∇φ)i = εijk
∂2φ

∂xj∂xk

= εikj
∂2φ

∂xk∂xj
(interchanging j and k)

= −εijk
∂2φ

∂xj∂xk
,

which implies that ∇×∇φ = 0.

2.
1

2
∇(u · u) =

1

2

∂(uiui)

∂xj
ej = ui

∂ui
∂xj

ej = (∇u)Tu.

3. We have

∇ · [(∇u)v] = ∇j((∇u)v)j

=
∂

∂xj

(
∂uj
∂xi

vi

)
=
∂vi
∂xj

∂uj
∂xi

+ vi
∂2uj
∂xi∂xj

= (∇u)T :∇v + v ·∇(∇ · u).

4. The first identity is proved as follows:

[∇ · (∇u)T ]i =
∂

∂xj

(
∂uj
∂xi

)
=

∂

∂xi

(
∂uj
∂xj

)
= [∇(∇ · u)]i.
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To prove the second identity, consider the last term

∇× (∇× u) = εijk∇j(∇× u)kei

= εijk∇j(εkmn∇mun)ei

= εijkεmnk
∂2un

∂xj∂xm
ei

= (δimδjn − δinδjm)
∂2un

∂xj∂xm
ei

=

[
∂2uj
∂xi∂xj

− ∂2ui
∂xj∂xj

]
ei

=∇(∇ · u)−∇ · (∇u).

5. We have

∇ · (u× v) =
∂(u× v)i

∂xi

= εijk
∂(ujvk)

∂xi

= εijkvk
∂uj
∂xi

+ εijkuj
∂vk
∂xi

= εkijvk
∂uj
∂xi
− εjikuj

∂vk
∂xi

= v · (∇× u)− u · (∇× v).

6. Using the relation Wij = −εijkwk, we have

(∇ ·W ) = −εijk
∂wk
∂xj

ei

= −∇×w.

(∇×W )ij = εimn
∂Wjn

∂xm

= −εimnεjnr
∂wr
∂xm

= (δijδmr − δirδmj)
∂wr
∂xm

=
∂wr
∂xr

δij −
∂wi
∂xj

,

which is the indicial version of Eqn. (1.118).
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1.8 The Exponential Function

The exponential of a tensor T t (where T is assumed to be independent of t) can be defined
either in terms of its series representation as

eT t := I + T t+
1

2!
(T t)2 + · · · , (1.119)

or in terms of a solution of the initial value problem

Ẋ(t) = TX(t) = X(t)T , t > 0, (1.120)

X(0) = I, (1.121)

for the tensor function X(t), Note that the superposed dot in the above equation denotes
differentiation with respect to t. The existence theorem for linear differential equations
tells us that this problem has exactly one solution X : [0,∞)→ Lin, which we write in the
form

X(t) = eT t.

From Eqn. (1.119), it is immediately evident that

eT
T t = (eT t)T , (1.122)

and that if A ∈ Lin is invertible, then e(A
−1BA) = A−1eBA for all B ∈ Lin.

Theorem 1.8.1. For each t ≥ 0, eT t belongs to Lin+, and

det(eT t) = e(trT )t. (1.123)

Proof. If (λit,ni) is an eigenvalue/eigenvector pair of T t, then from Eqn. (1.119), it follows
that (eλit,ni) is an eigenvalue/eigenvector pair of eT t. Hence, the determinant of eT t, which
is just the product of the eigenvalues, is given by

det(eT t) = Πn
i=1e

λit = e
∑n
i=1 λit = e(trT )t.

Since e(trT )t > 0 for all t, eT t ∈ Lin+.

From Eqn. (1.123), it directly follows that

det(eAeB) = det(eA) det(eB) = etrAetrB = etr (A+B) = det(eA+B).

We have
AB = BA =⇒ eA+B = eAeB = eBeA. (1.124)
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However, the converse of the above statement may not be true. Indeed, if AB 6= BA,
one can have eA+B = eA = eB = eAeB = eBeA, or eAeB = eA+B 6= eBeA or even
eAeB = eBeA 6= eA+B.

As an application of Eqn. (1.124), since T and −T commute, we have eT−T = I =
eT e−T . Thus,

(eT )−1 = e−T . (1.125)

In fact, one can extend this result to get

(eT )n = enT ∀ integer n.

For the exponential of a skew-symmetric tensor, we have the following theorem:

Theorem 1.8.2. Let W (t) ∈ Skw for all t. Then eW (t) is a rotation for each t ≥ 0.

Proof. By Eqn. (1.125),

(eW (t))−1 = e−W (t) = eW
T (t) = (eW (t))T ,

where the last step follows from Eqn. (1.122). Thus, eW (t) is a orthogonal tensor. By
Theorem 1.8.1, det(eW (t)) = etrW (t) = e0 = 1, and hence eW (t) is a rotation.

In the three-dimensional case, by using the Cayley–Hamilton theorem, we get W 3(t) =
− |w(t)|2W (t), where w(t) is the axial vector of W (t). Thus, W 4(t) = − |w(t)|2W 2(t),
W 5(t) = |w(t)|4W (t), and so on. Substituting these terms into the series expansion of the
exponential function, and using the representations of sine and cosine functions, we get1

R(t) = eW (t) = I +
sin(|w(t)|)
|w(t)|

W (t) +
[1− cos(|w(t)|)]
|w(t)|2

W 2(t). (1.126)

Not surprisingly, Eqn. (1.126) has the same form as Eqn. (1.86) with α = |w(t)|.
Equation (1.126) is known as Rodrigues formula.

1Similarly, in the two-dimensional case, if

W (t) =

[
0 γ(t)

−γ(t) 0

]
,

where γ is a parameter which is a function of t, then

R(t) = eW (t) = cos γ(t)I +
sin γ(t)

γ(t)
W (t) =

[
cos γ(t) sin γ(t)

− sin γ(t) cos γ(t)

]
.
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The exponential tensor eT for a symmetric tensor S is given by

eS =
k∑
i=1

eλiP i, (1.127)

with P i = e∗i ⊗ e∗i given by

P i(S) =


∏k

j=1
j 6=i

S−λjI
λi−λj , k > 1

I, k = 1.
(1.128)

1.9 Divergence, Stokes’ and Localization Theorems

We state the divergence, Stokes’, potential and localization theorems that are used quite
frequently in the following development. The divergence theorem relates a volume integral
to a surface integral, while the Stokes’ theorem relates a contour integral to a surface
integral. Let S represent the surface of a volume V , n represent the unit outward normal
to the surface, φ a scalar field, u a vector field, and T a second-order tensor field. Then
we have

Divergence theorem (also known as the Gauss’ theorem)∫
V

∇φ dV =

∫
S

φn dS. (1.129)

Applying Eqn. (1.129) to the components ui of a vector u, we get∫
V

∇ · u dV =

∫
S

u · n dS, (1.130)∫
V

∇× u dV =

∫
S

n× u dS,∫
V

∇u dV =

∫
S

u⊗ n dS.

Similarly, on applying Eqn. (1.129) to ∇ · T , we get the vector equation∫
V

∇ · T dV =

∫
S

Tn dS. (1.131)

Note that the divergence theorem is applicable even for multiply connected domains pro-
vided the surfaces are closed.
Stokes’ theorem
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Let C be a contour, and S be the area of any arbitrary surface enclosed by the contour C.
Then ∮

C

u · dx =

∫
S

(∇× u) · n dS, (1.132)∮
C

u× dx =

∫
S

[
(∇ · u)n− (∇u)Tn

]
dS. (1.133)

Localization theorem

If
∫
V
φ dV = 0 for every V , then φ = 0.
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Chapter 2

Ordinary differential equations

Consider an n-th order linear ordinary differential equation with constant coefficients. Then
by defining new variables, we can convert the n-th order differential equation into a set of
n first order ordinary differential equations which can be written in the form

v′ + Av = f(x), (2.1)

where, A is an n × n (constant) matrix, and v and f are a n × 1 vector. This procedure
is illustrated by the following examples.

1. Consider the n-order differential equation

y(n) + a1y
(n−1) + a2y

(n−2) + . . .+ an−1y
′ + any = f(x),

where the superscript (n) denotes the n’th derivative with respect to x. We can write
this equation as

y

y′

y′′

. . .

y(n−2)

y(n−1)



′

+



0 −1 0 . . . . . . 0

0 0 −1 . . . . . . 0

0 0 0 −1 . . . 0

. . . . . .

0 0 . . . . . . 0 −1

an an−1 . . . . . . a2 a1


n×n



y

y′

y′′

. . .

y(n−2)

y(n−1)


=



0

0

. . .

0

0

f(x)


.

Note that the above equation is in the form given by Eqn. (2.1) with A and f being
the square matrix and the vector on the right hand side, respectively.

For the ‘sprint-mass-dashpot’ governing equation (with t as the independent variable
instead of x)

ẍ+
c

m
ẋ+

k

m
x =

f(t)

m
.
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we have with v1 ≡ x and v2 ≡ ẋ,

v =

[
v1

v2

]
, A =

[
0 −1
k
m

c
m

]
, f =

[
0
f(t)
m

]
.

2. Consider the following system of two second-order differential equations (which can
also be written as a single fourth-order equation in either y1 or y2 by eliminating y2
or y1, respectively):

m1y
′′
1 = −(c1 + c2)y

′
1 + c2y

′
2 − (k1 + k2)y1 + k2y2 + f1(x),

m2y
′′
2 = c2y

′
1 − c2y′2 + k2y1 − k2y2 + f2(x).

By defining v1 = y′1, v2 = y′2, we have v′1 = y′′1 and v′2 = y′′2 , the above set of equations
can be written as

m1v
′
1 = −(c1 + c2)v1 + c2v2 − (k1 + k2)y1 + k2y2 + f1(x),

m2v
′
2 = c2v1 − c2v2 + k2y1 − k2y2 + f2(x).

Therefore {y1, y2, v1, v2} satisfies the following first order system:

y′1 = v1,

y′2 = v2,

v′1 =
1

m1

[−(c1 + c2)v1 + c2v2 − (k1 + k2)y1 + k2y2] +
f1(x)

m1

,

v′2 =
1

m2

[c2v1 − c2v2 + k2y1 − k2y2] +
f2(x)

m2

.

From the above examples we see that if we can solve Eqn. (2.1), then we can solve any set
of linear ordinary equations with constant coefficients.

Conversely, a system of equations of the form given by Eqn. (2.1) can be converted into
n’th order differential equations as follows. Consider the slightly simpler case

y′ = Ay. (2.2)

By differentiating this equation, we get

y′′ = Ay′ = A2y.

By repeatedly differentiating, we get

y(n) = Any, (2.3)
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where the superscript (n) denotes the n’th derivative. It follows that

y(n) − I1y(n−1) + . . .+ (−1)nIny = (An − I1An−1 + . . .+ (−1)nInI)y = 0, (2.4)

where the last step follows from the Cayley-Hamilton theorem. Thus, we see that {y1, y2, . . . yn}
all obey the same differential equation, and hence have the same solution form but with
different constants. Let the initial conditions for Eqn. (2.2) be given as y(0) = y0. Then
the n initial conditions required for solving Eqn. (2.4) are obtained using Eqn. (2.3) as
y(0) = y0, y

′(0) = Ay0, . . . , y(n−1)(0) = An−1y0.

2.1 General solution for Eqn. (2.1)

Multiplying Eqn. (2.1) by eAx, we get

eAxv′ + eAxAv = eAxf(x).

or
d

dx

(
eAxv

)
= eAxf(x).

Let x ∈ [a, b]. Integrating the above equation, we get

eAxv =

∫ x

a

eAξf(ξ) dξ + c,

where c is a constant vector independent of x. Multiplying the above equation by [eAx]−1 =
e−Ax, we get

v(x) =

∫ x

a

e−A(x−ξ)f(ξ) dξ + e−Axc, (2.5a)

=

∫ x−a

0

e−Aξf(x− ξ) dξ + e−Axc, (2.5b)

where the second equation is obtained from the first one by a change of variable.
The constant vector c is found using the boundary conditions in a boundary value

problem or using the initial conditions in an initial value problem (An initial boundary
value problem would involve partial differential equations and is out of scope of the current
chapter). The independent variable is usually denoted by x in the former case, and by t
(for time) in the latter, where t ∈ [0, T ], so that Eqns. (2.5) would be typically written as

v(t) =

∫ t

0

e−A(t−ξ)f(ξ) dξ + e−Atc,
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=

∫ t

0

e−Aξf(t− ξ) dξ + e−Atc. (2.6)

If v(0) = 0, then from the above equation, we see that c = 0, and the solution is given by

v(t) =

∫ t

0

e−A(t−ξ)f(ξ) dξ,

=

∫ t

0

e−Aξf(t− ξ) dξ. (2.7)

As an example, if one considers the beam bending equation

EI
d2w

dx2
= Mb,

then the constant vector c = (c1, c2) (there are two constants since the order of the
differential equation is two), is found using the boundary conditions at the ends of the
beam. For example, if the beam is simply-supported, then the boundary conditions will be
w(0) = w(L) = 0.

On the other hand, if we consider the equation for a spring-mass-damper

mẍ+ cẋ+ kx = f(t),

then the vector c = (c1, c2) would be found using the initial conditions x(0) = x0 and
ẋ(0) = v0.

One case where the exponential matrix can be computed rather easily is if A ∈ Sym.
Then, assuming A to be a constant matrix, and using the spectral decomposition

A =
n∑
i=1

λie
∗
i ⊗ e∗i ,

we get

e−Aξ =
n∑
i=1

e−λiξe∗i ⊗ e∗i .

Substituting into Eqn. (2.5b), we get

v(x) =
n∑
i=1

e∗i

{∫ x−a

0

e−λiξ [f(x− ξ) · e∗i ] dξ + e−λix(c · e∗i )
}
. (2.8)

Similarly, if A possesses n linearly independent eigenvectors (if all the eigenvalues are
distinct then the eigenvectors are linearly independent, although the converse may not be
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true as is evident from the case of a symmetric tensor with repeated eigenvalues), then we
can write

A =
n∑
i=1

λiui⊗ vi,

where (ui,vi), i = 1, 2, . . . , n, are the eigenvectors of A and AT , i.e.,

Aui = λiui,

ATvi = λivi,

and ui and vi are normalized such that ui · vj = δij. From a practical point of view

[
v1 | v2 | . . . | vn

]
=



u1

−−
u2

−−
−−
un



−1

,

with v1, v2, etc. placed along columns, and u1, u2 etc. placed along the rows in the left
and right hand side matrices, so that one can compute the eigenvectors of AT simply by
the above inversion. Thus,

e−Aξ =
n∑
i=1

e−λiξui⊗ vi.

Substituting into Eqn. (2.5b), we get (do not confuse between v and vi)

v(x) =
n∑
i=1

ui

{∫ x−a

0

e−λiξ [f(x− ξ) · vi] dξ + e−λix(c · vi)
}

=
n∑
i=1

ui

{∫ x−a

0

e−λiξ [f(x− ξ) · vi] dξ + e−λixci

}
, (2.9)

where ci := c ·vi are constants (If two eigenvectors vi are complex conjugates, then the cor-
responding constants ci are also complex conjugates), and the constant a in the integration
limit can be taken to be zero if the integrals are well-behaved.

However, instead of finding the solution using Eqn. (2.9), a better way is as follows.
From Eqn. (2.9), we see that the solution to the homogeneous equation is

v(x) =
n∑
i=1

cie
−λixui,
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which can be written in matrix form as

v(x) = Xc,

where

X =
[
e−λ1xu1 | e−λ2xu2 | . . . | e−λnxun

]
, c =


c1

c2

. . .

. . .

cn

 .

To solve the inhomogeneous system, we use the method of variation of parameters, where
we assume the solution to be v(x) = X(x)z(x). Substituting this solution form into
Eqn. (2.1) and using the fact that (X ′ + AX)z = 0, we get

Xz′ = f .

Since the columns of X are linearly independent, it is invertible, so that

z =

∫ x

a

X−1(ξ)f(ξ) dξ + c.

Thus, the complete solution is

v(x) = X

∫ x

a

X−1(ξ)f(ξ) dξ + Xc. (2.10)

As an example, consider the solution of the following set of equations

dx

dt
= 3x+ z + e2t,

dy

dt
= −x+ 4y + z + e2t,

dz

dt
= 4x− 4y + 2z − e2t.

In this case, we have

A =

−3 0 −1

1 −4 −1

−4 4 −2

 , f =

 e2t

e2t

−e2t

 ,
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u1 =

2

1

2

 , u2 =

1

1

0

 , u3 =

−1

−1

1

 ,
λi = {−4,−3,−2}.

X =

2e4t e3t −e2t

e4t e3t −e2t

2e4t 0 e2t

 , X−1 =

 e−4t −e−4t 0

−3e−3t 4e−3t e−3t

−2e−2t 2e−2t e−2t

 .
Substituting into the solution given by Eqn. (2.10), we get

x = e2tt+ 2c1e
4t + c2e

3t − c3e2t,
y = e2tt+ c1e

4t + c2e
3t − c3e2t,

z = −e2tt+ 2c1e
4t + c3e

2t.

As another example, if

A =

[
1 1

−1 2

]
, f =

[
1

1

]
,

u1 =

[
1−i
√
3

2

1

]
, u2 =

[
1+i
√
3

2

1

]
,

λi =

{
3 + i

√
3

2
,
3− i

√
3

2

}
,

X =

 (1−i
√
3)e
−(3+i

√
3)t

2

2
(1+i

√
3)e
−(3−i

√
3)t

2

2

e
−(3+i

√
3)t

2 e
−(3−i

√
3)t

2

 , X−1 =

 i√
3
e

(3+i
√
3)t

2
3−i
√
3

6
e

(3+i
√
3)t

2

− i√
3
e

(3−i
√
3)t

2
3+i
√
3

6
e

(3−i
√
3)t

2

 .
Substituting into the solution given by Eqn. (2.10), we get

v1 =
1

3
+

(1− i
√

3)(3c1 − 1) + (1 + i
√

3)(3c2 − 1)ei
√
3t

6e(3+i
√
3)t/2

,

v2 =
2

3
+

3c1 − 1 + (3c2 − 1)ei
√
3t

3e(3+i
√
3)t/2

,

where c1 and c2 are complex conjugates.
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2.2 Generalization of Eqn. (2.1)

In Eqn. (2.1), the matrix A was assumed to be a constant, i.e., independent of x. Now we
consider a generalization where A is a function of x, so that Eqn. (2.1) becomes

v′ + A(x)v = f(x). (2.11)

Note that the above set of equations is linear but with variable coefficients. In order to
obtain a closed-form solution, we assume that A(x) satisfies the constraint

A(x)

∫ x

a

A(η) dη =

(∫ x

a

A(η) dη

)
A(x). (2.12)

One can show that the above condition is satisfied if and only if

d(e
∫ x
a A(η) dη)

dx
= A(x)e

∫ x
a A(η) dη = e

∫ x
a A(η) dηA(x). (2.13)

Our set of differential equations in place of Eqns. (2.1) is

v′ + A(x)v = f(x), (2.14)

Multiplying by e
∫ x
a A(η) dη, we get

e
∫ x
a A(η) dηv′ + e

∫ x
a A(η) dηA(x)v = e

∫ x
a A(η) dηf(x).

or,

d

dx

(
e
∫ x
a A(η) dηv

)
= e

∫ x
a A(η) dηf(x).

Integrating the above equation, we get

e
∫ x
a A(η) dηv =

∫ x

a

e
∫ ξ
a A(η) dηf(ξ) dξ + c,

where c is a constant vector, again to be determined from the boundary or initial conditions.
Thus, finally we have,

v = e−
∫ x
a A(η) dη

[∫ x

a

e
∫ ξ
a A(η) dηf(ξ) dξ + c

]
. (2.15)
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If the matrices
∫ x
a
A(η) dη and

∫ ξ
a
A(η) dη commute1 then the above equation simplifies to

v(x) =

∫ x

a

e−
∫ x
ξ A(η) dηf(ξ) dξ + e−

∫ x
a A(η) dηc (2.16a)

=

∫ x−a

0

e−
∫ x
x−ξA(η) dηf(x− ξ) dξ + e−

∫ x
a A(η) dηc. (2.16b)

Note that Eqns. (2.16) reduce to Eqns. (2.5) (by redefining the constant c) when A(η) is a
constant matrix. As usual, in initial value problems, we prefer to use the notation t ∈ [0, T ]
for the independent variable, and then Eqns. (2.16) become

v(x) =

∫ t

0

e−
∫ t
ξ A(η) dηf(ξ) dξ + e−

∫ t
a A(η) dηc (2.17a)

=

∫ t−a

0

e−
∫ t
t−ξA(η) dηf(t− ξ) dξ + e−

∫ t
a A(η) dηc. (2.17b)

The main difficulty with the above solution procedure is that in most cases, the matrix
A will not satisfy the constraint given by Eqn. (2.12) (except in the case where A(x) is a
1× 1 matrix as in the following section, in which case the constraint is always met). Due
to this difficulty, we try and solve second and higher-order differential equations (especially
ones with variable coefficients) independently.

2.3 Linear first order ordinary differential equations

For a first order differential equation the matrix A(x) in Eqn. (2.11) is simply a 1 × 1
matrix, i.e., A(x) = [A(x)] so that the constraint given by Eqn. (2.12) is automatically
satisfied, and hence, the derived solutions are also valid. The differential equation given by
Eqn. (2.11) reduces to

v′(x) + A(x)v = f(x),

while the solutions given by Eqns. (2.16) reduce to

v(x) =

∫ x

a

e−
∫ x
ξ A(η) dηf(ξ) dξ + ce−

∫ x
a A(η) dη (2.18a)

1Note that Eqn. (2.12) does not imply that
∫ x
a
A(η) dη and

∫ ξ
a
A(η) dη commute as the following coun-

terexample (with a = 0) shows:

A(η) =

 4η3 5η4 6η5

−6η2 −8η3 −10η4

2η 3η2 4η3

 .
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=

∫ x−a

0

e−
∫ x
x−ξ A(η) dηf(x− ξ) dξ + ce−

∫ x
a A(η) dη, (2.18b)

where c is a constant to be determined. In initial value problems, we prefer to use t as the
independent variable, and in place of Eqns. (2.18), we have

v(t) =

∫ t

0

e−
∫ t
ξ A(η) dηf(ξ) dξ + ce−

∫ t
a A(η) dη (2.19a)

=

∫ t

0

e−
∫ t
t−ξ A(η) dηf(t− ξ) dξ + ce−

∫ t
a A(η) dη. (2.19b)

We now illustrate the application of Eqn. (2.18) (or Eqn. (2.19)) to various examples.

1. In the differential equation
y′ + 2y = x3e−2x,

we see that A(x) = 2 and f(x) = x3e−2x. Thus, from Eqn. (2.18a), we get

y(x) =

∫ x

a

e−2(x−ξ)ξ3e−2ξ dξ + ce−2(x−a)

=
e−2x

4

[
x4 + c0

]
,

where c0 is to be determined from the initial condition.

2. In the differential equation

y′ + (cotx)y = x cscx,

we have A(x) = cot x, and f(x) = x cscx. Thus, from Eqn. (2.18a), we have

y(x) =

∫ x

a

e−
∫ x
ξ cot η dηξ csc ξ dξ + ce−

∫ x
a cot η dη

=
cscx

2

[
x2 + c0

]
,

where c0 is a constant.

3. In the differential equation
y′ − 2xy = 1,

we have A(x) = −2x, and f(x) = 1. Thus, from Eqn. (2.18a), we have

y(x) =

∫ x

a

e
∫ x
ξ 2η dη dξ + ce

∫ x
a 2η dη

= ex
2

[∫ x

0

e−ξ
2

dξ + c0

]
.

If the initial condition is y(0) = y0, we get c0 = y0.
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2.4 Nonlinear first order ordinary differential equa-

tions

We now discuss the solution of nonlinear first order differential equations.

2.4.1 Separable equations

A first order differential equation is separable if it can be written as

h(y)y′ = g(x).

The method of solution is best illustrated by examples.

1. Solve
y′ = x(1 + y2).

Write this as
dy

1 + y2
= x dx.

Integrating, we get

tan−1 y =
x2

2
+ c.

2. Solve
y′ = −x

y
, y(1) = 1.

Write this as
y dy = −x dx,

Integrating, we get
x2 + y2 = c2,

where we have taken the constant of integration to be positive since the LHS is
positive. Thus,

y = ±
√
c2 − x2. (2.20)

Since y(1) = 1, we get c2 = 2, or,

y =
√

2− x2, −
√

2 ≤ x ≤
√

2.

If the initial condition were y(1) = −1, then we take the other root in Eqn. (2.20),
and the solution is

y = −
√

2− x2 −
√

2 ≤ x ≤
√

2.
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3. Solve

y′ =
2x+ 1

5y4 + 1
.

Write this as
(5y4 + 1)dy = (2x+ 1)dx.

Integrating, we get
y5 + y = x2 + x+ c.

Note that it is not possible to explicitly solve for y as a function of x in this case.

4. Solve
y′ = 2xy2, y(0) = y0. (2.21)

Write this as
dy

y2
= 2x dx.

Note that while writing the above, we are implicitly assuming that y 6= 0. Integrating,
we get

−1

y
= x2 + c,

or

y = − 1

x2 + c
. (2.22)

Thus, y = 0 and the above solution are both solutions of Eqn. (2.21).

Imposing the initial condition in Eqn. (2.22), we get

y =
y0

1− y0x2
.

If y0 < 0, then the above solution is valid on x ∈ (−∞,∞). If y0 = 0, then y =
0 is the solution, while if y0 > 0, then the above solution is valid only for x ∈
(−1/

√
y0, 1/

√
y0). This example shows that the range of validity of the solution can

depend on the initial condition.

5. Find all solutions of
y′ =

x

2
(1− y2).

Write this as
2dy

1− y2
= x dx.

Implicitly, we are assuming that y 6= ±1. Writing the above equation as[
1

y − 1
− 1

y + 1

]
dy = −x dx,
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and integrating, we get

log
y − 1

y + 1
= −x

2

2
+ k,

or, alternatively,
y − 1

y + 1
= ce−x

2/2.

Thus, y = 1, y = −1 and the above solution are all solutions of the differential
equation.

2.4.2 Exact nonlinear first order equations

Write the differential equation in the form

M(x, y) dx+N(x, y) dy = 0. (2.23)

Note that F (x, y) = 0 is an implicit solution of the differential equation

Fx(x, y) dx+ Fy(x, y) dy = 0. (2.24)

Eqn. (2.23) is said to be exact if there exists a function F (x, y) such that

Fx(x, y) = M(x, y), (2.25a)

Fy(x, y) = N(x, y). (2.25b)

Since Fxy = Fyx, a necessary condition for an equation to be exact is that (it can be proved
that this condition is sufficient also)

My = Nx. (2.26)

Thus, a procedure for solving an exact equation is as follows:

1. Check that My = Nx. If not, then the following procedure cannot be applied.

2. Integrate Eqn. (2.25a) with respect to x to get

F (x, y) = G(x, y) + φ(y). (2.27)

3. Differentiate Eqn. (2.27) with respect to y, and combine with Eqn. (2.25b) to get

φ′(y) = N(x, y)−Gy(x, y) (2.28)

4. Integrate the above equation with respect to y, taking the constant of integration to
be zero and substitute into Eqn. (2.27) to obtain F (x, y).

53



2.4. NONLINEAR FIRST ORDER ORDINARY DIFFERENTIAL EQUATIONSOrdinary differential equations

Alternatively, using the Leibnitz rule and Eqn. (2.26), one can verify that the solution
for F (x, y) that satisfies Eqns. (2.25) is given by

F (x, y) =

∫ x

x0

M(ξ, y0) dξ +

∫ y

y0

N(x, η) dη (2.29a)

=

∫ x

x0

M(ξ, y) dξ +

∫ y

y0

N(x0, η) dη. (2.29b)

Let us consider a few examples.

1. Solve
exy
[
y tanx+ sec2 x

]
dx+ xexy tanx dy = 0. (2.30)

Note that one should not ‘cancel’ the exy factor, since without this factor, the equation
is not exact! Verify that My = Nx. Thus,

Fx(x, y) = exy
[
y tanx+ sec2 x

]
, (2.31a)

Fy(x, y) = xexy tanx. (2.31b)

It is easier to integrate Eqn. (2.31b). We get

F (x, y) = exy tanx+ φ(x).

Differentiating this with respect to x yields

Fx(x, y) = exy
[
y tanx+ sec2 x

]
+ φ′(x).

Comparing against Eqn. (2.31a), we get φ′(x) = 0 or φ is a constant which can be
taken to be zero. Thus, using Eqn. (2.29a), we get

exy tanx = c, (2.32)

or by redefining the constant c,

y =
1

x
[log cotx+ c] . (2.33)

Alternatively, by directly using either Eqn. (2.29a) or (2.29b), we get F = exy tanx−
ex0y0 tanx0 = 0, so that

exy tanx = ex0y0 tanx0,

which is of the same form as Eqn. (2.32).

If one cancels exy in Eqn. (2.30), then we get

dy

dx
+
y

x
= − sec2 x

x tanx
,

which is a linear first order differential equation whose solution is given by Eqn. (2.18a).
One can verify that one gets the same solution as Eqn. (2.33).
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2. Solve [
exyx3(xy + 4) + 3y

]
dx+

[
x5exy + 3x

]
dy = 0.

Since M = exyx3(xy + 4) + 3y and N = x5exy + 3x, we see that My = Nx, and the
equation is exact. From either of Eqns. (2.29), we get

F = x4exy + 3xy − x40ex0y0 − 3x0y0 = 0,

or, alternatively,
x4exy + 3xy = c.

2.4.3 Making equations exact by using integrating factors

Sometimes, even if an equation is not exact, it can be made exact by multiplying the
governing differential equation by an integrating factor, i.e.,

µ(x, y)M(x, y) dx+ µ(x, y)N(x, y) dy = 0. (2.34)

By replacing M and N by µM and µN in Eqn. (2.26), we get the governing equation for
the integrating factor µ as

∂(µM)

∂y
=
∂(µN)

∂x
,

or, equivalently,
Nµx −Mµy = µ(My −Nx). (2.35)

Since µ appears on both sides of the above equation, it is more convenient to write it as
eg(x,y), so that we get

Ngx −Mgy = My −Nx. (2.36)

Solving the above equation yields the integrating factor to make the governing differential
equation exact, which can then be solved as shown in Section 2.4.2.

The procedure for solving Eqn. (2.36) is as follows:

1. Check if (My −Nx)/N is a function of x alone. If it is, then from Eqn. (2.36), we see
that g = g(x) can be obtained by solving the ordinary differential equation

dg

dx
=
My −Nx

N
.

.

2. Check if (My −Nx)/M is a function of y alone. If it is, then from Eqn. (2.36), we see
that g = g(y) can be obtained by solving the ordinary differential equation

dg

dy
= −My −Nx

M
.

.
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3. If both the above checks fail, then g = g(x, y) is a function of both x and y. By
substituting for M and N in a given problem, and matching the coefficients of some
common terms on both sides of Eqn. (2.36), we obtain equations for gx and gy which
are then integrated to find g; this procedure generally works better than assuming g to
be either P (x)Q(y) or P (x)+Q(y), etc. In some cases such as in the Riccati equation
presented below, it may not be possible to find the integrating factor analytically
except for some special choices of coefficients.

We now present several examples:

1. An equation is said to be homogeneous (not to be confused with equations of the
type y′ + A(x)y = 0 which are also termed homogeneous) if it is of the type

q(y/x) dx− dy = 0. (2.37)

Thus, M = q(y/x) and N = −1. Let u = y/x, i.e., y = ux, so that dy = xdu+ udx.
Substituting into Eqn. (2.37), we get

[q(u)− u] dx− xdu = 0,

which can be written in the form

du

q(u)− u
=
dx

x
.

Thus,

log x =

∫
du

q(u)− u
+ c.

As an example, an equation of the type

(ax+ by + c)dx+ (āx+ b̄y + c̄)dy = 0, (2.38)

is not homogeneous, but can be made homogeneous by a transformation of the type
x = X + ξ and y = Y + η, where (ξ, η) are determined so that the equation becomes
of the type

(aX + bY )dX + (āX + b̄Y )dY = 0. (2.39)

Thus, we find (ξ, η) that are solutions of the equations

aξ + bη = −c, (2.40a)

āξ + b̄η = −c̄. (2.40b)
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Eqn. (2.39) is a homogeneous equation since it can be written as(
a+ b

Y

X

)
dX +

(
ā+ b̄

Y

X

)
dY = 0.

If ā = αa and b̄ = αb, then Eqns. (2.40) cannot be solved for ξ and η. In this case,
we write Eqn. (2.38) as

(ax+ by + c)dx+ (α(ax+ by) + c̄)dy = 0, (2.41)

Let w = ax + by, so that dy = (dw − adx)/b. Substituting into the above equation,
we have

[b(w + c)− a] dx+ (αw + c̄) dw = 0,

which can be solved since it can be written as∫
(αw + c̄)dw

[b(w + c)− a]
= −x+ c.

2. A Bernoulli equation is an equation of the form

y′ + A(x)y = f(x)yr, (2.42)

where r 6= 1. We see that M = A(x)y − f(x)yr, N = 1. Thus, carrying out the first
two checks in the above procedure, we see that g = g(x, y). From Eqn. (2.36), we see
that

gx − [A(x)y − f(x)yr] gy = A(x)− rf(x)yr−1. (2.43)

By matching the coefficient of f(x), we get

yrgy = −ryr−1,

so that g = −r log y+φ(x). Substituting into Eqn. (2.43), we get φ′(x) = (1−r)A(x),
so that φ = (1 − r)

∫ x
a
A(η) dη. Thus, g = (1 − r)

∫ x
a
A(η) dη − r log y, and the

integrating factor is
µ = eg = y−re(1−r)

∫ x
a A(η) dη.

Now following the procedure in Section 2.4.2, we get

y1−r

1− r
=

∫ x

a

e(r−1)
∫ x
ξ A(η) dηf(ξ) dξ + ce(r−1)

∫ x
a A(η) dη. (2.44)

Note that for r = 0, the solution reduces to

y =

∫ x

a

e−
∫ x
ξ A(η) dηf(ξ) dξ + ce−

∫ x
a A(η) dη,

which is the same as the solution in Eqn. (2.18a).
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3. A generalized Riccati equation is of the form[
p(x) + q(x)y + r(x)y2

]
dx− dy = 0. (2.45)

Thus, M = p(x) + q(x)y + r(x)y2 and N = −1. By carrying out the first two checks
in the above procedure, we see that g = g(x, y) in this case. Thus,

gx +
[
p(x) + q(x)y + r(x)y2

]
gy = −q(x)− 2r(x)y. (2.46)

The ‘q(x)y’ term in Eqn. (2.45) can be eliminated by a change of variable as follows.
Let y = ze

∫
q dx, so that y′ = z′e

∫
q dx + qy. Substituting into Eqn. (2.45), we get

z′(x) = p(x)e−
∫
q dx + r(x)z2(x)e

∫
q dx. (2.47)

However, this form yields no particular advantage over that of Eqn. (2.45), and so all
the remaining discussion pertains to Eqn. (2.45).

If y1(x) is one solution to the Riccati equation, then the other solution is given by

y2(x) = y1(x) +
e
∫ x
a q(η)+2r(η)y1(η) dη

c−
∫ x
a
e
∫ ξ
a q(η)+2r(η)y1(η) dηr(ξ) dξ

, (2.48)

where the lower integration limit a can be set to zero if the resulting integrals are
well-behaved. To prove Eqn. (2.48), substitute y2(x) = y1(x) + u(x) into Eqn. (2.45)
to get the governing differential equation for u(x) as

u(x) [q(x) + r(x)(u(x) + 2y1(x))]− u′(x) = 0. (2.49)

But this is just the Bernoulli equation given by Eqn. (2.42) with r = 2, A(x) =
−[q(x) + 2y1(x)r(x)] and f(x) = r(x). Thus, the solution obtained using Eqn. (2.44)
is

u(x) =
e
∫ x
a [q(η)+2r(η)y1(η)] dη

c−
∫ x
a
e
∫ ξ
a [q(η)+2r(η)y1(η)] dηr(ξ) dξ

,

and since y2(x) = y1(x) + u(x), Eqn. (2.48) follows.

Although it was possible to find an integrating factor in the case of the Bernoulli
equation, we see that it may not be possible to find an integrating factor analytically
for arbitrary p(x), q(x) and r(x) in Eqn. (2.45). However, under some assumptions,
one can find an analytical solution. We now consider various such cases.

• Let

q(x) =
p′(x)

2p(x)
− 2
√
p(x),
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r(x) = 1.

It is obvious that y =
√
p(x) is a solution to Eqn. (2.45). The other solution is

obtained using Eqn. (2.48) as

y =
√
p(x) +

√
p(x)

c−
∫ x
0

√
p(ξ) dξ

.

• Let p(x), q(x) and r(x) be such that

p(x) + q(x)y + r(x)y2 = [h(x) + r(x)y][α + y],

where α is a constant. It is obvious that y = −α is a solution to Eqn. (2.45).
The other solution obtained using Eqn. (2.48) is

y = −α +
e
∫ x
a [q(ξ)−2αr(ξ)] dξ

c−
∫ x
a
e
∫ ξ
a [q(η)−2αr(η)] dηr(ξ) dξ

. (2.50)

• Let a(x) be some function, and let

q(x) =
a(x)p(x)

a′(x)
+
p′(x)

p(x)
− a′′(x)

a′(x)
, (2.51a)

r(x) = −1, (2.51b)

in which case y1 = a(x)p(x)/a′(x) is one solution of Eqn. (2.45), as can be
verified by direct substitution. The other solution is obtained from Eqn. (2.48).
Thus, the two solutions of Eqn. (2.45) are

y1(x) =
a(x)p(x)

a′(x)
, (2.52a)

y2(x) =
a(x)p(x)

a′(x)
+

p(x)
a′(x)

e
−

∫ x
a
a(η)p(η)

a′(η) dη∫ x
a

p(ξ)
a′(ξ)

e
−

∫ ξ
a
a(η)p(η)

a′(η) dη
dξ + c

, (2.52b)

where c is a constant.

As examples of the above for various choices of a(x), we have the following:

(a) If the constraint is

q(x) =
x1−βp(x)

αβ
+
p′(x)

p(x)
− αβxβ + β − 1

x
,
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the solutions obtained using Eqns. (2.52) (after renaming the constant) are

y1(x) =
x1−βp(x)

αβ
,

y2(x) =
x1−βp(x)

αβ
+

x1−βp(x)e−αx
β
e−

1
αβ

∫ x
a η

1−βp(η) dη

c+
∫ x
a
ξ1−βp(ξ)e−αξβe−

1
αβ

∫ ξ
a η

1−βp(η) dη dξ
.

(b) If the constraint is

q(x) =
1− α
x

+
xp(x)

α
+
p′(x)

p(x)
,

the solutions are

y1(x) =
xp(x)

α
,

y2(x) =
xp(x)

α
+

x1−αp(x)e−
1
α

∫ x
a ηp(η) dη

c+
∫ x
a
ξ1−αp(ξ)e−

1
α

∫ ξ
a ηp(η) dη dξ

.

(c) If the constraint is

p(x) = q′(x) + αβxβ−1q(x) + αβxβ−2
[
αβxβ + β − 1

]
.

the solutions are

y1(x) = q(x) + αβxβ−1,

y2(x) = q(x) + αβxβ−1 +
e−2αx

β
e−

∫ x
a q(η) dη

c+
∫ x
a
e−2αξβe−

∫ ξ
a q(η) dη dξ

.

(d) If the constraint is

p(x) = − α
x2

[xq(x) + 1− α] ,

the solutions are

y1(x) =
α

x
,

y2(x) =
α

x
+

x−2αe
∫ x
a q(η) dη

c+
∫ x
a
ξ−2αe

∫ ξ
a q(η) dη dξ

.

(e) If the constraint is

p(x) = αβxβ−2
[
αβxβ + β − 1− xq(x)

]
,
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the solutions are

y1(x) = αβxβ−1,

y2(x) = αβxβ−1 +
e−2αx

β
e
∫ x
a q(η) dη

c+
∫ x
a
e−2αξβe

∫ ξ
a q(η) dη dξ

.

(f) If the constraint is

p(x) = q′(x) +
β(1 + β − xq(x))

x2
,

the solutions are

y1(x) = q(x)− β

x
,

y2(x) = q(x)− β

x
+

x2βe−
∫ x
a q(η) dη

c+
∫ x
a
ξ2βe−

∫ ξ
a q(η) dη dξ

.

(g) If the constraint is

p(x) = −α [q2(x) + q′(x)− α]

q2(x)
,

the solutions are

y1(x) =
α

q(x)
,

y2(x) =
α

q(x)
+

e−
∫ x
a

2α−q2(η)
q(η)

dη

c+
∫ x
a
e−

∫ ξ
a

2α−q2(η)
q(η)

dη dξ
.

(h) If the constraint is

p(x) = α
[
(α− 1)q2(x) + q′(x)

]
,

the solutions are

y1(x) = αq(x),

y2(x) = αq(x) +
e−

∫ x
a (2α−1)q(η) dη

c+
∫ x
a
e−

∫ ξ
a (2α−1)q(η) dη dξ

.
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(i) If the constraint is

p(x) =
2q(x)q′(x) + q′′(x)

q(x)
,

the solutions are

y1(x) = q(x) +
q′(x)

q(x)
,

y2(x) = q(x) +
q′(x)

q(x)
+

[q(x)]−2e−
∫ x
a q(η) dη

c+
∫ x
a

[q(ξ)]−2e−
∫ ξ
a q(η) dη dξ

.

(j) If the constraint is

p(x) = −q(x)q′′(x)− 2[q′(x)]2

q2(x)
,

the solutions are

y1(x) = q(x)− q′(x)

q(x)
,

y2(x) = q(x)− q′(x)

q(x)
+

q2(x)e−
∫ x
a q(η) dη

c+
∫ x
a
q2(ξ)e−

∫ ξ
a q(η) dη dξ

.

• If there exist functions φ(x) and g(x) such that

p(x) = φ′(x)− φ2(x)− [g′(x)]2 − φ(x)g′′(x)

g′(x)
, (2.53a)

q(x) = 2φ(x) +
g′′(x)

g′(x)
, (2.53b)

r(x) = −1. (2.53c)

the solutions are given by

y1 = φ(x)− g′(x) tan g(x),

y2 = φ(x) + g′(x) cot g(x).

By replacing g(x) by ig(x), we get another set of solutions in terms of {tanh g(x), coth g(x)}.
Inverting Eqns. (2.53), we have

p(x) = φ′(x)− φ2(x)− [e
∫
(q−2φ) dx]2 − φ(x)[q(x)− 2φ(x)],

3[g′′(x)]2 − 2g′(x)g′′′(x)− 4[g′(x)]4 = [4p(x) + q2(x)][g′(x)]2,
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which in principle can be solved for φ(x) and g(x), given p(x) and q(x) (although
this is much tougher than solving the original problem!).

As an example, if p(x) and q(x) have the forms p(x) = φ′(x)−φ2(x), q(x) = 2φ(x)
(corresponding to g = constant), then one solution is given by y1 = φ(x). The
other solution is found using the method of reduction of order to be 1/(x + c),
where c is a constant. Similarly, if p(x) = −[g′(x)]2 and q(x) = g′′(x)/g′(x)
(corresponding to φ = 0), then the solutions are y1 = −g′(x) tan g(x) and y2 =
g′(x) cot g(x).

As another example, the solutions of the differential equation

y′ = φ′(x)− φ2(x)− α2 + 2φ(x)y − y2

obtained by taking g(x) = αx are

y1 = φ(x)− α tanαx,

y2 = φ(x) + α cotαx.

4. Consider the equation
−y dx+ (x+ x6) dy = 0.

We have M = −y and N = x+ x6. Thus,

(x+ x6)gx + ygy = −2− 6x5. (2.54)

Equating ygy = −2, we get g = −2 log y+φ(x). Substituting into Eqn. (2.54), we get

(1 + x5)φ′(x) = −6x4,

which yields φ(x) = −6 log(1+x5)/5. Thus, g = log[(1+x5)−6/5y−2] so that µ = eg =
(1+x5)−6/5y−2 (Verify that g = log(y4/x6) leading to µ = y4/x6 is also an integrating
factor, which is obtained by writing Eqn. (2.54) as (x+x6)gx+ygy = 4−6(1+x5), and
equating (x+x6)gx to −6(1+x5). Although this integrating factor may look different
from what we have already derived, it is actually the same (modulo a constant) in
light of the final solution given by Eqn. (2.55), although we do not know it at this
stage since this solution is an unknown; this shows that the integrating factor can be
written in different ways while trying to solve a problem). Thus, the exact equation
is

− dx

y(1 + x5)6/5
+

x dy

y2(1 + x5)1/5
= 0,

which leads to
y =

cx

(1 + x5)1/5
. (2.55)
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5. Solve
(3xy + 6y2) dx+ (2x2 + 9xy) dy = 0.

Since M = 3xy + 6y2 and N = 2x2 + 9xy, from Eqn. (2.36) we get

(2x2 + 9xy)gx − 3y(x+ 2y)gy = 3y − x = −3x− 6y + 2x+ 9y. (2.56)

Equating −3y(x+ 2y)gy = −3x− 6y, we get g = log y + φ(x), which on substituting
into Eqn. (2.56) yields φ = log x. Thus, g = log(xy), which leads to µ = xy. Thus,
the final solution is given by

x3y2 + 3x2y3 = c.

2.5 Second order equations

2.5.1 Nonlinear second order equations

A general second order equation is of the form

y′′ = f(x, y, y′).

The equation is said to be linear if f is linear in the arguments y and y′. As is only to be
expected, it is difficult to solve nonlinear second order equations. However, in a few special
cases, it is possible to transform them into first order equations which are easier to solve.

Equations of the form y′′ = f(x, y′)

By substituting v = y′, the differential equation is transformed to the first order equation
v′ = f(x, v). As an example, consider the second order nonlinear equation

y′′ = −2x(y′)2,

with the initial conditions y(0) = 2 and y′(0) = 1. By substituting v = y′, we get

v′ = −2xv2,

which can be written as dv/v2 = −2x dx, so that

−1

v
= −x2 + c1.

Substituting for v, we get
1

y′
= x2 − c1,
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i.e.,

y′ =
1

x2 − c1
.

Using the initial condition y′(0) = 1, we get c1 = −1. Integrating the resulting equation,
we get

y = tan−1 x+ c2.

Using y(0) = 2, we get c2 = 2. Thus, y = tan−1 x+ 2.

As another example, consider the solution of

xy′′ + 4y′ = x2.

Put y′ = v(x), so that the equation becomes v′ + 4v/x = x. This is just a first order
linear equation with variable coefficients whose solution is given by v = y′ = x2/6 + c1x

−4.
Integrating this once again, and redefining the constants, we get y = x3/18 + c1x

−3 + c2.

Equations of the form y′′ = f(y, y′)

In this case, make the substitution v(x) = y′(x) so that v′(x) = f(y, v(x)). If y is an
invertible function of x, then we can write x = x(y), so that v(x) = v(x(y)) =: u(y). Thus,

v′(x) =
dv

dy

dy

dx
= u(y)

du

dy
= f(y, u(y)).

which can be written as
du

dy
=

1

u
f(y, u(y)). (2.57)

As an example, consider the differential equation y′′ = 2yy′ subject to the initial con-
ditions y(0) = 0 and y′(0) = 1. If we write y′ = v(x) = u(y), then the governing equation
obtained using Eqn. (2.57) is

du

dy
=

1

u
(2yu) = 2y.

Thus, u = y2 + c1, or, y′ = y2 + c1. Using the initial conditions, we get c1 = 1. Integrating
y′ = y2 + 1, we get tan−1 y = x + c2, or, y = tan(x + c2). Since y(0) = 0, we get c2 = 0.
Thus, the final solution is y = tanx.

In view of the difficulty in solving nonlinear second order equations, we shall henceforth
restrict ourselves to linear second order equations.
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2.5.2 Linear second order equations

Before we begin this topic, we briefly discuss the linear independence of functions. The set
of functions {y1(x), y2(x), . . . , yn(x)} is said to be linearly independent if the equation

c1y1(x) + c2y2(x) + . . .+ cnyn(x) = 0, (2.58)

implies that c1 = c2 = . . . = cn = 0. Equivalently, the set of functions {y1(x), y2(x), . . . , yn(x)}
is said to be linearly dependent if there exist constants c1, c2, . . ., cn not all zero such that
Eqn. (2.58) holds. Let the Wronskian W (x) be given by

W (x) := det


y1(x) y2(x) . . . yn(x)

y′1(x) y′2(x) . . . y′n(x)

. . . . . . . . . . . .

y
(n−1)
1 (x) y

(n−1)
2 (x) . . . y

(n−1)
n (x)

 .
where the superscript n−1 denotes the n−1’th derivative. We have the following theorem:

Theorem 2.5.1. The set of functions {y1(x), y2(x), . . . , yn(x)} is linearly independent if
and only if W (x) 6= 0.

Proof. We prove the equivalent statement that the set of functions {y1(x), y2(x), . . . , yn(x)}
is linearly dependent if and only if W (x) = 0. By repeatedly differentiating Eqn. (2.58),
we get

c1y1(x) + c2y2(x) + . . .+ cnyn(x) = 0,

c1y
′
1(x) + c2y

′
2(x) + . . .+ cny

′
n(x) = 0,

. . . = 0,

c1y
(n−1)
1 (x) + c2y

(n−1)
2 (x) + . . .+ cny

(n−1)
n (x) = 0,

which can be written in the form
y1(x) y2(x) . . . yn(x)

y′1(x) y′2(x) . . . y′n(x)

. . . . . . . . . . . .

y
(n−1)
1 (x) y

(n−1)
2 (x) . . . y

(n−1)
n (x)



c1

c2

. . .

cn

 = 0. (2.59)

The above matrix equation has a nontrivial solution for {c1, c2, . . . , cn} if and only ifW (x) =
0, which proves the theorem.
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Note that if W (x) is zero at certain points on the domain, but is not the zero function,
the functions are linearly independent. For example, the Wronskian of the functions y1 =
cosx and y2 = sin2 x is W (x) = sinx(1 + cos2 x). Although the Wronskian is zero at
x = nπ, where n is an integer, W (x) is not the zero function, and hence, y1 and y2 are
linearly independent.

A linear second order equation is of the form

a(x)y′′ + b(x)y′ + c(x)y = f(x). (2.60)

Let {y1, y2} denote the solutions of the homogeneous form of the above equation, i.e.,

y′′ + p(x)y′ + q(x)y = 0. (2.61)

The Wronskian of {y1, y2} is given by

W (x) = y1y
′
2 − y′1y2. (2.62)

By Theorem 2.5.1, if W (x) 6= 0, then the set {y1(x), y2(x)} is linearly independent; in such a
case {y1, y2} are called fundamental solutions. Let {y1(x), y2(x)} be fundamental solutions.
Then differentiating Eqn. (2.62), and noting that y1 and y2 are solutions of Eqn. (2.61), we
get

W ′ = y1y
′′
2 − y′′1y2

= −y1(py′2 + qy2) + y2(py
′
1 + qy1)

= −p(y1y′2 − y2y′1)
= −pW.

Solving the above equation, we get

W = W (x0)e
−

∫ x
a p(ξ) dξ, (2.63)

where x0 is any point in the domain [a, b]. Eqn. (2.63) is known as Abel’s formula.
If {y1, y2} are fundamental solutions of Eqn. (2.61), then by the linearity of the governing

differential equation, the most general solution to Eqn. (2.61) can be written as

y(x) = c1y1 + c2y2,

where c1 and c2 are constants.
Given the fundamental solutions {y1, y2}, we can find the differential equation of which

they are solutions by noting that

det

 y y1 y2

y′ y′1 y′2
y′′ y′′1 y′′2

 = 0, (2.64)

since by substituting either y = y1 or y = y2 in the above equation, we see that two columns
become identical leading to a zero determinant.

Now we discuss how to solve constant coefficient homogeneous equations.
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2.5.3 Constant coefficient homogeneous equations

Consider the constant coefficient homogeneous version of Eqn. (2.60):

ay′′ + by′ + cy = 0. (2.65)

To solve this equation, we assume y = erx. Substituting into Eqn. (2.65), we get the
characteristic equation

ar2 + br + c = 0,

whose roots are

r =
1

2a

[
−b±

√
b2 − 4ac

]
.

If

1. b2 − 4ac > 0, the characteristic equation has two distinct real roots.

2. b2 − 4ac = 0, the characteristic equation has a repeated real root.

3. b2 − 4ac < 0, the characteristic equation has complex roots.

We illustrate each of these cases by examples.

The roots r1 and r2 are real and distinct

Solve

y′′ + 6y′ + 5y = 0, y(0) = 3, y′(0) = −1.

The characteristic equation is given by

0 = r2 + 6r + 5 = (r + 1)(r + 5).

The two fundamental solutions (e−x, e−5x) are linearly independent since the Wronskian

det

[
e−x e−5x

−e−x −5e−5x

]
6= 0.

Thus, the general solution is y = c1e
−x + c2e

−5x. Using the initial conditions y(0) = 3 and
y′(0) = −1, we get c1 = 7/2 and c2 = −1/2.
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The roots are repeated, i.e., r1 = r2 = α

Find the general solution of
y′′ − 2αy′ + α2y = 0.

The characteristic polynomial is (r − α)2 = 0, so that one solution is y1 = eαx. Since the
roots r = α is repeated, we have to find the other independent solution separately. We use
the method of reduction of order, where we look for a solution of the form y2 = u(x)y1.
Substituting this form into the differential equation yields u′′(x) = 0, or u(x) = k1x + k2,
so that y2 = (k1x + k2)e

αx. Since the coefficient of k2 is y1 itself, we see that the other
fundamental solution is y2 = xeαx, and the general solution is y(x) = eαx(c1 + c2x).

The roots r1 and r2 are complex-valued

If the roots of the characteristic equation are complex-valued (and hence conjugates of each
other), we use the formula eiθ = cos θ + i sin θ to find the general solution as follows. Let
the differential equation be

y′′ + 4y′ + 13y = 0.

The characteristic equation is
r2 + 4r + 13 = 0,

so that r1 = −2+3i and r2 = −2−3i are the roots. Thus, y1 = e(−2+3i)x and y2 = e(−2−3i)x

are the solutions, which we can write as y1 = e−2x(cos 3x+ i sin 3x) and y2 = e−2x(cos 3x−
i sin 3x). Thus, one can either write the general solution as y(x) = c1e

(−2+3i)x + c2e
(−2−3i)x,

with the constants c1 and c2 complex-valued or as y(x) = e−2x(c1 cos 3x + c2 sin 3x), with
the constants c1 and c2 real-valued. Even if one uses the complex-valued form, on using
the initial conditions, the constants will turn out to be complex-conjugates of each other,
so that the final result is real-valued. For example, if the initial conditions are y(0) = 2
and y′(0) = −3, then we get c1 = 1− i/6 and c2 = 1 + i/6, so that

y(x) = e−2x
(

2 cos 3x+
1

3
sin 3x

)
.

2.5.4 Nonhomogeneous linear equations

Consider Eqn. (2.60), which we now write in the form (by redefining f(x) to be f(x)/a(x))

y′′ + p(x)y′ + q(x)y = f(x). (2.66)

The associated homogeneous equation is

y′′ + p(x)y′ + q(x)y = 0. (2.67)
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Eqn. (2.67) is known as the complementary equation for Eqn. (2.66). Let yp be a particular
solution of Eqn. (2.66), and let {y1, y2} be fundamental solutions of the complementary
equation given by Eqn. (2.67). Then, by the linearity of the governing differential equation,
the general solution to Eqn. (2.66) is the sum of the complementary and the particular
solutions, i.e.,

y = c1y1 + c2y2 + yp. (2.68)

At this stage, we have not discussed how to find yp, or even how to find {y1, y2} if the
coefficients p(x) and q(x) are functions of x (in the previous section, we have seen how to
find {y1, y2} in case p(x) and q(x) are constants); we will do this at a later stage. After
the fundamental solution set {y1, y2} is found, the particular solution yp is found using the
method of variation of parameters as described in Section 2.5.6.

2.5.5 Finding the second complementary solution given the first
complementary solution using the method of reduction of
order

If one complementary solution to Eqn. (2.67), say y1(x), is known, then the other com-
plementary solution can be found using the method of reduction of order, whereby we
assume the second solution to be given by y2 = u(x)y1(x) and substitute into the governing
differential equation given by Eqn. (2.67) to get

u′′

u′
= −p(x)y1(x) + 2y′1(x)

y1(x)
,

which can be easily integrated twice to obtain

y2 = y1(x)

∫ x

a

e−
∫ ξ
a p(η) dη

y21(ξ)
dξ. (2.69)

The lower limit of integration a can be taken to be zero if the integrals are well-behaved.

2.5.6 Finding the particular solution yp using the method of vari-
ation of parameters

Given the fundamental solutions {y1, y2}, we now discuss a systematic procedure for find-
ing the general solution (which essentially means finding the particular solution since the
complementary solution is known, and given by yc = c1y1 + c2y2) to the inhomogeneous
equation

y′′ + p(x)y′ + q(x)y = f(x). (2.70)
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Let the general solution be given by

y = u1y1 + u2y2, (2.71)

where u1 and u2 are both functions of x. By substituting Eqn. (2.71) into Eqn. (2.70), we
obtain one condition on u1 and u2. However, we need two conditions. The second condition
is obtained as follows. Differentiating Eqn. (2.71), we get

y′ = u1y
′
1 + u2y

′
2 + u′1y1 + u′2y2. (2.72)

We require that
u′1y1 + u′2y2 = 0, (2.73)

so that from Eqn. (2.72), we have y′ = u1y
′
1 +u2y

′
2 and y′′ = u′1y

′
1 +u′2y

′
2 +u1y

′′
1 +u2y

′′
2 . Sub-

stituting these expressions into Eqn. (2.70), and noting that y1 and y2 are complementary
solutions, we get

u′1y
′
1 + u′2y

′
2 = f(x). (2.74)

Solving for u′1 and u′2 using Eqns. (2.73) and (2.74), we get

u′1 = − fy2
y1y′2 − y′1y2

, (2.75a)

u′2 =
fy1

y1y′2 − y′1y2
. (2.75b)

Note that since {y1, y2} are linearly independent, the denominator in Eqns. (2.75) (which
is the same as the Wronskian) is nonzero. Thus, the final solution is

u1 = −
∫

fy2 dx

y1y′2 − y′1y2
+ c1, (2.76a)

u2 =

∫
fy1 dx

y1y′2 − y′1y2
+ c2, (2.76b)

where c1 and c2 are constants of integration. By substituting the above expressions into
Eqn. (2.71), we obtain the most general solution to Eqn. (2.70). Note that the part of
the solution associated with the constants c1 and c2 is merely the complementary solution,
while the remaining part is the particular solution yp that we intended to find.

As an example, given that (y1, y2) = (x, x2), find the solution to

x2y′′ − 2xy′ + 2y = x9/2,

which we write as

y′′ − 2

x
y′ +

2

x2
y = x5/2.
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We write the general solution as

y = u1(x)x+ u2(x)x2,

where

u′1x+ u′2x
2 = 0,

u′1 + 2u′2x = x5/2.

Solving for u′1 and u′2, we get

u′1 = −x5/2,
u′2 = x3/2,

which on integrating yield

u1 = −2

7
x7/2 + c1,

u2 =
2

5
x5/2 + c2.

Thus, the general solution is

y = c1x+ c2x
2 − 2

7
x9/2 +

2

5
x9/2 = c1x+ c2x

2 +
4

35
x9/2. (2.77)

As another example, consider finding the general solution to

y′′ − x

x− 1
y′ +

1

x− 1
y = x− 1.

given that y1 = x and y2 = ex.
The general solution is written as

y = u1(x)x+ u2(x)ex,

where u1 and u2 satisfy

u′1x+ u′2e
x = 0,

u′1 + u′2e
x = x− 1.

Solving for u′1 and u′2, we get u′1 = −1 and u′2 = xe−x. Integrating, we get u1 = −x + c1
and u2 = −(1 + x)e−x + c2. Thus, the general solution is

y = (c1 − 1)x+ c2e
x − x2 − 1,

which, by redefining c1 can be rewritten as

y = c1x+ c2e
x − x2 − 1.

The constants c1 and c2 are found as usual by using the initial conditions.
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2.5.7 Second order equations with variable coefficients

We will consider only the homogeneous case here, since once the complementary solution is
found, the particular solution can be found using the method of variation of parameters as
discussed in the previous subsection. First note that a second order equation with variable
coefficients can be converted to a Riccati equation and vice versa, so that known Riccati
solutions can be used to solve the current problem and vice versa. To see this, we write
y = eg(x) so that

y′ = egg′,

y′′ = eg
[
g′′ + (g′)2

]
,

where, as usual, primes denote derivatives with respect to x. Substituting the above rela-
tions into Eqn. (2.81), we get

g′′ + (g′)2 + pg′ + q = 0.

Substituting g′ = u, we get

u′ + u2 + pu+ q = 0,

which is nothing but the Riccati equation given by Eqn. (2.45) with r = −1, and with p
denoted by −q, and q denoted by −p. Conversely, the Riccati equation given by Eqn. (2.45)
with r = −1 can be transformed into a second order equation with variable coefficients using
the substitution y = z′/z.

Now we discuss techniques for solving variable coefficient second order equations. First
consider the solution of the equation

P (x)y′′ +Q(x)y′ +R(x)y = 0. (2.78)

Similar to the case of first order equations, the above equation is said to be exact if

P ′′(x)−Q′(x) +R(x) = 0. (2.79)

If an equation is exact, then Eqn. (2.78) can be written as

[P (x)y′]′ + [(Q(x)− P ′(x))y]′ = 0, (2.80)

which on integrating yields

P (x)y′ + [Q(x)− P ′(x)]y = c1.

The above first order linear differential equation can be solved by standard techniques.
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As an example, consider the solution of the equation

x(x− 2)y′′ + 4(x− 1)y′ + 2y = 0.

Since Eqn. (2.79) is satisfied, the equation is exact. Eqn. (2.80) reduces to

x(x− 2)y′ + 2(x− 1)y = c1,

which on integrating yields x(x− 2)y = c1x+ c2, so that the solution is

y =
c1x+ c2
x(x− 2)

,

In case the equation is not exact, finding an integration factor is, in general, difficult,
and we look for other techniques for solving Eqn. (2.78). By dividing by P (x), we rewrite
Eqn. (2.78) in the form

y′′ + p(x)y′ + q(x)y = 0. (2.81)

In general, finding solutions to Eqn. (2.81) is difficult. Sometimes it is convenient to
transform Eqn. (2.81) into the standard form

z′′(x) + v(x)z = 0, (2.82)

where

log y = log z − 1

2

∫
p(x) dx, (2.83a)

v(x) = q(x)− 1

2
p′(x)− 1

4
p2(x). (2.83b)

The techniques that we describe below can be applied to either Eqn. (2.81) or Eqn. (2.82).
One special case of variable coefficients where the solution can be easily found is when

p(x) = α/x and q(x) = β/x2, where α and β are constants, in which case the equa-
tion is known as the Euler equation. The solution to the homogeneous equation given by
Eqn. (2.81) is found by substituting y = xr to get the characteristic equation as

r2 + (α− 1)r + β = 0.

As in the constant coefficient case, we need to consider three possibilities.

The roots r1 and r2 are real and distinct

In this case y1 = xr1 and y2 = xr2 are fundamental solutions, and the general complementary
solution is yc = c1x

r1 + c2x
r2 .
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The roots are repeated, i.e., r1 = r2

The roots are real and repeated if 4β = (α − 1)2, and are given by r1 = r2 = (1 − α)/2.
In this case, one of the solutions is y1 = xr1 . In order to find the other solution, we
use the method of variation of parameters and write the other solution as y2 = u(x)xr1 .
Substituting into y′′ + (α/x)y′ + (β/x2)y = 0, we get xu′′(x) + u′(x) = 0, whose solution
is u(x) = k1 log x + k2, so that y2 = (k1 log x + k2)x

r. The coefficient of k2 is y1 itself, so
that the other complementary solution is y2 = xr1 log x, and the general complementary
solution for this case is yc = xr1(c1 + c2 log x).

The roots r1 and r2 are complex-valued

In this case, the general solution can be written either as yc = c1x
r1 + c2x

r2 , where c1 and
c2 are complex-valued constants, or, if one wants to deal only with real-valued constants,
as yc = xa[c1 cos(b log x) + c2 sin(b log x)], where we have used xib = eib log x = cos(b log x) +
i sin(b log x).

An alternative way to derive the same result is as follows. If we consider the Euler
equation in the form

ax2y′′ + bxy′ + cy = 0, (2.84)

where a, b and c are constants, and make the transformation ξ = log x, then we see that
Eqn. (2.81) is transformed to a second order equation with constant coefficients; this follows
by noting that

y′ =
1

x

dy

dξ
,

y′′ = − 1

x2
dy

dξ
+

1

x2
d2y

dξ2
.

Now we try and see the conditions under which Eqn. (2.81) can be transformed to
a second order equation with constant coefficients. Since the coefficient of y has to be
constant, then by dividing by q(x), we write Eqn. (2.81) as

1

q(x)
y′′ +

p(x)

q(x)
y′ + y = 0. (2.85)

We look for a transformation ξ = g(x) that will transform Eqn. (2.85) into an equation with
constant coefficients (if such a transformation cannot be found, then Eqn. (2.85) cannot be
transformed into a second order differential equation with constant coefficients, and some
other solution method has to be found). Substituting

y′ =
dy

dξ
g′,
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y′′ =
dy

dξ
g′′ +

d2y

dξ2
(g′)2,

where primes denote derivatives with respect to x, into Eqn. (2.85), we get

(g′)2

q

d2y

dξ2
+
g′′ + pg′

q

dy

dξ
+ y = 0. (2.86)

We require that

(g′)2 = c1q, (2.87a)

g′′ + pg′ = c2q, (2.87b)

where c1 and c2 are constant. From Eqn. (2.87a) we have g′ =
√
c1q, which on substituting

into Eqn. (2.87b) yields √
c1[2p(x)q(x) + q′(x)]

2[q(x)]3/2
= c2.

Thus, if
2p(x)q(x) + q′(x)

[q(x)]3/2
= c, (2.88)

where c is a constant, then Eqn. (2.81) can be transformed into an equation with constant
coefficients. From Eqns. (2.86) and (2.87a), we see that the solution has to be of the form

erξ = erg(x) = e
∫ x
h α
√
q(ξ) dξ, where α is a constant. If we take the solutions to be

y1 = e
∫ x
h α
√
q(ξ) dξ, (2.89a)

y2 = e
∫ x
h

√
q(ξ)/α dξ, (2.89b)

substitute them into Eqn. (2.81) and use Eqn. (2.88), we get

2(1 + α2)

α
= −c. (2.90)

The solution procedure may thus be summarized as follows. Check if the left hand side of
Eqn. (2.88) is a constant. If it is not a constant, then some other solution method has to
be sought. If it is constant, say, c, then solve Eqn. (2.90) for α, and then the solutions are
given by Eqns. (2.89) (with any one of the two roots for α). If c = −4, then α = 1 is a
repeated root, while if c = 4, then α = −1 is a repeated root; in these cases, one has to use
the procedure of reduction of order to find the other solution. For both these cases (i.e.,
|c| = 4), the solutions can be written as

y1 = e−
c
4

∫ x
h

√
q(ξ) dξ,

y2 = e−
c
4

∫ x
h

√
q(ξ) dξ

∫ x

h

e
−

∫ ξ
h

[
p(η)− c

2

√
q(η)

]
dη
dξ.

 (|c| = 4).
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It is sometimes advantageous to work directly with Eqn. (2.81), and sometimes with its
standard form given by Eqn. (2.82) as the following examples show.

1. Solve
4x2y′′ − 4xy′ + (4x2 + 3)y = 0.

Since p(x) = −1/x and q(x) = (4x2 + 3)/(4x2), from Eqn. (2.88) we see that the
left hand side is not a constant. Thus, it is not possible to transform this equation
into one with constant coefficients, and hence it is not evident how to solve this
particular equation. However, if we convert this equation to standard form, we get
from Eqns. (2.82) and (2.83)

z′′(x) + z(x) = 0,

y =
√
xz,

Thus, z1 = cosx, z2 = sinx, and hence y1 =
√
x cosx and y2 =

√
x sinx are the

solutions to the above problem!

As another example, consider finding the solutions to

y′′(x) +
2(x2 − 1)

x3
y′(x) +

x2 + 1

x6
y(x) = 0. (2.91)

On converting the above equation to standard form, we get

z′′(x) = 0,

y(x) =
z

x
e−1/(2x

2),

so that the complementary solutions are

y1 = e−1/(2x
2), (2.92a)

y2 =
1

x
e−1/(2x

2). (2.92b)

The dramatic advantage that working with the standard form can sometimes have is
evident from the above examples.

2. This example, on the other hand, shows that in some other cases working with the
original form is better than transforming it to standard form. Solve

4xy′′ + 2y′ + y = 0.

Since p(x) = 1/(2x) and q(x) = 1/(4x), from Eqn. (2.88) we see that the left hand side
is a constant, while for the standard form it is not. Thus, it is advantageous to work
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with the original form itself in this case. From Eqn. (2.87a), we get ξ = g(x) =
√
x,

while from Eqn. (2.86), we get
d2y

dξ2
+ y = 0,

which leads to the solution

yc = c1 cos ξ + c2 sin ξ

= sin
√
x+ cos

√
x.

3. For the Euler equation given by Eqn. (2.84), we have p(x) = b/(ax) and q(x) =
c/(ax2), from which we see that the left hand side of Eqn. (2.88) is a constant,
so that the equation can be transformed into one with constant coefficients. From
Eqn. (2.87a), we get ξ = g(x) = log x. We have already seen how to solve this
equation.

4. This example shows that in some cases, it may not be possible to transform either
the original or the standard form into an equation with constant coefficients. Solve

(x− 1)y′′ − xy′ + y = 0. (2.93)

Here we have p(x) = −x/(x − 1) and q(x) = 1/(x − 1). The left hand side of
Eqn. (2.88) is not a constant, and hence one has to use some other method as shown
below.

One other method that works quite well is as follows. Let one of the solutions of
Eqn. (2.81) be y1 = xα, where α is a constant. Then substituting this solution into
Eqn. (2.69), we get the two solutions as

y1(x) = xα,

y2(x) = xα
∫ x

a

e−
∫ ξ
a p(η) dη

ξ2α
dξ.

(2.94)

Now if we substitute these solutions into Eqn. (2.64), we get

q(x) =
α

x2
[1− α− xp(x)] . (2.95)

Thus, if q(x) is of the above form, then the solutions given by Eqns. (2.94) are the two
complementary solutions! As an example, consider finding the solution of

(1− x cotx)y′′ − xy′ + y = 0.

The constraint given by Eqn. (2.95) is satisfied with α = 1. Thus, y1 = x and y2(x) = sin x
are the complementary solutions. In an analogous manner,
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• If
q(x) = −αβxβ−2

[
xp(x) + αβxβ + β − 1

]
, (2.96)

then

y1(x) = eαx
β

, (2.97a)

y2(x) = eαx
β

∫ x

a

e−
∫ ξ
a p(η) dη

e2αξβ
dξ. (2.97b)

The coefficients in Eqn. (2.93) satisfy the constraint on q given by Eqn. (2.96) with
α = β = 1, and hence y1 = ex and y2 = x are the complementary solutions. As
another example, consider the differential equation

y′′(x) + xy′(x) + y(x) = 0. (2.98)

The constraint given by Eqn. (2.96) is satisfied with α = −1/2 and β = 2. Thus, the
complementary solutions as given by Eqns. (2.97) are

y1(x) = e−x
2/2, (2.99a)

y2(x) = e−x
2/2

∫ x

0

eξ
2/2 dξ. (2.99b)

As yet another example, consider finding the solutions to Eqn. (2.91), namely,

y′′(x) +
2(x2 − 1)

x3
y′(x) +

x2 + 1

x6
y(x) = 0.

The constraint given by Eqn. (2.96) is satisfied with α = −1/2 and β = −2. Thus,
the solutions obtained using Eqn. (2.97) are the same as those given by Eqns. (2.92).

• If
q(x) = α [α− p(x) cotαx] ,

then

y1(x) = sinαx,

y2(x) = sinαx

∫ x

a

e−
∫ ξ
a p(η) dη

sin2 αξ
dξ.

and if
q(x) = α [α + p(x) tanαx] ,

then

y1(x) = cosαx,

y2(x) = cosαx

∫ x

a

e−
∫ ξ
a p(η) dη

cos2 αξ
dξ.
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• If

q(x) = −2α
[
p(x) csc 2αx+ α sec2 αx

]
,

then

y1(x) = tanαx,

y2(x) = tanαx

∫ x

a

e−
∫ ξ
a p(η) dη

tan2 αξ
dξ.

and if

q(x) = 2α
[
p(x) csc 2αx− α csc2 αx

]
,

then

y1(x) = cotαx,

y2(x) = cotαx

∫ x

a

e−
∫ ξ
a p(η) dη

cot2 αξ
dξ.

• If

q(x) =
1− xp(x)

x2 logαx
,

then

y1(x) = logαx,

y2(x) = logαx

∫ x

a

e−
∫ ξ
a p(η) dη

log2 αξ
dξ.

If there exist functions φ(x) and g(x) such that

p(x) = −
[

2φ′(x)

φ(x)
+
g′′(x)

g′(x)

]
, (2.100a)

q(x) = [g′(x)]2 +
φ′(x)g′′(x)

φ(x)g′(x)
+

(
φ′(x)

φ(x)

)2

−
(
φ′(x)

φ(x)

)′
, (2.100b)

then the complementary solutions to Eqn. (2.81) are given by

y1 = φ(x) cos g(x), (2.101a)

y2 = φ(x) sin g(x). (2.101b)
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By replacing g(x) by ig(x) in all the above equations, we get complementary solutions in
terms of cosh g(x) and sinh g(x). By inverting Eqns. (2.100), we get

q(x) = [g′(x)]2 +
1

4

[
p2(x)−

(
g′′(x)

g′(x)

)2
]

+
1

2

[
p(x) +

g′′(x)

g′(x)

]′
,

φ′(x)

φ(x)
= −1

2

[
p(x) +

g′′(x)

g′(x)

]
,

which in principle can be used to find g(x) and φ(x), given p(x) and q(x) (although, of
course, this is a tougher problem than solving the original differential equation!). If p(x) = 0
and q(x) = α2, where α is a constant, then, as expected, we get g(x) = αx and φ(x) = A,
where A is a constant.

As an example, if p(x) and q(x) are given by Eqns. (2.100) with g(x) = αx, i.e.,

p(x) = −2φ′(x)

φ(x)
,

q(x) = α2 +

(
φ′(x)

φ(x)

)2

−
(
φ′(x)

φ(x)

)′
= α2 +

p2(x)

4
+
p′(x)

2
,

then y1 = φ(x) cosαx and y2 = φ(x) sinαx are the complementary solutions. For the case
α = 0, y1 = φ(x) and y2 = xφ(x) are the complementary solutions. By putting φ = xn, we
see that the general solution of the differential equation

y′′ − 2n

x
+

[
α2 +

n(n+ 1)

x2

]
y = 0,

is
y = xn(c1 sinαx+ c2 cosαx).

For n = −1/2, the above general solution is equivalent to c1J−1/2(x) + c2Y−1/2(x), as
expected.

Yet another method that can be attempted is the following. We write Eqn. (2.81) as

v′ + Av = 0.

where

A =

[
0 −1

q p

]
, v =

[
y

y′

]
.

Similar to the concept of an integrating factor, we write the above equation as

(Pv)′ = 0, (2.102)
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which on expanding can be written as

Pv′ + P ′v = 0,

or, alternatively,
v′ + P−1P ′v = 0.

Thus, we need P−1P = A. After some calculation, we get

P =

[
a(x) −a′(x)[b(x)a′(x)−a(x)b′(x)]

a′(x)b′′(x)−b′(x)a′′(x)

b(x) − b′(x)[b(x)a′(x)−a(x)b′(x)]
a′(x)b′′(x)−b′(x)a′′(x) .

]
=

[
a(x) a′(x)

q(x)

b(x) b′(x)
q(x)

]
,

with

p(x) =
b(x)[a′(x)/q(x)]′ − a(x)[b′(x)/q(x)]′

b(x)[a′(x)/q(x)]− a(x)[b′(x)/q(x)]
, (2.103a)

q(x) =
b′(x)a′′(x)− a′(x)b′′(x)

b(x)a′(x)− a(x)b′(x)
, (2.103b)

p(x)q(x) + q′(x) =
[b(x)a′′(x)− a(x)b′′(x)] [b′(x)a′′(x)− a′(x)b′′(x)]

(b(x)a′(x)− a(x)b′(x))2
. (2.103c)

The solution to Eqn. (2.102) is given by Pv = c, where c is a constant vector, so that
v = P−1c. Thus, we get the complementary solutions as

y1 =
b′(x)

b(x)a′(x)− a(x)b′(x)
, (2.104a)

y2 =
a′(x)

b(x)a′(x)− a(x)b′(x)
. (2.104b)

Given p(x) and q(x), one would ideally like to solve for a(x) and b(x) using Eqns. (2.103),
and then the solution follows from Eqns. (2.104). However, since these are much more
difficult to solve compared to the original problem, we make specific choices for a(x) or
b(x) which imposes constraints on p(x) and q(x). One choice is a(x) = k0/b(x), where k0
is a constant. However, this just leads to the same constraint as in Eqn. (2.88). Hence, we
now try and simplify these equations by eliminating one of the functions, say b(x), to get
a relation totally in terms of a(x) (see Eqn. (2.106) below).

Let D0 := b(x)a′(x)− a(x)b′(x) denote the denominator of q(x). Note that

[a(x)D0/a
′(x)]′

[a(x)D0/a′(x)]
=
a′(x)

a(x)
+
a(x)q(x)

a′(x)
. (2.105)

Integrating the above relation, we get

log

(
a(x)D0

a′(x)

)
= log a(x) +

∫ x

h

a(ξ)q(ξ)

a′(ξ)
dξ,
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which implies that
a(x)D0

a′(x)
= a(x)e

∫ x
h
a(ξ)q(ξ)

a′(ξ) dξ
,

i.e.,

a(x)b′(x)− b(x)a′(x) = −a′(x)e
∫ x
h
a(ξ)q(ξ)

a′(ξ) dξ
.

Dividing by a2(x), we get (
b(x)

a(x)

)′
= − a

′(x)

a2(x)
e
∫ x
h
a(ξ)q(ξ)

a′(ξ) dξ
,

so that finally

b(x) = −a(x)

∫ x

h

a′(ξ)

a2(ξ)
e
∫ ξ
h
a(η)q(η)

a′(η) dη
dξ.

This expression when substituted into the expression for p(x) yields

p(x) =
a(x)q(x)

a′(x)
− q′(x)

q(x)
+
a′′(x)

a′(x)
, (2.106)

and the complementary solutions obtained from Eqns. (2.104) are

y1(x) = e
−

∫ x
h
a(η)q(η)

a′(η) dη
=
a′(x)

q(x)
e−

∫ x
h p(η) dη, (2.107a)

y2(x) = e
−

∫ x
h
a(η)q(η)

a′(η) dη
∫ x

h

q(ξ)e
∫ ξ
h
a(η)q(η)

a′(η) dη

a′(ξ)
dξ =

a′(x)e−
∫ x
h p(η) dη

q(x)

∫ x

h

q2(ξ)e
∫ ξ
h p(η) dη

[a′(ξ)]2
dξ.

(2.107b)

Ideally speaking, one would like to solve for a(x) using Eqn. (2.106). As expected, this is
more difficult than the original problem. Thus, one specifies a(x) which yields a constraint
between p(x) and q(x) given by Eqn. (2.106), and the complementary solutions given by
Eqns. (2.107) subject to this constraint.

For various choice of a(x), we have the following:

• If a(x) = eαx
β
, where α and β are constants, then the constraint is

p(x) =
x1−βq(x)

αβ
− q′(x)

q(x)
+
αβxβ + β − 1

x
,

and the complementary solutions are

y1(x) = e−
∫ x
h
η1−βq(η)

αβ
dη,

y2(x) = e−
∫ x
h
η1−βq(η)

αβ
dη

∫ x

h

ξ1−βe−αξ
β

q(ξ)e
∫ ξ
h
η1−βq(η)

αβ
dη dξ.
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• If a(x) = xα, then the constraint is

p(x) =
xq(x)

α
− q′(x)

q(x)
+
α− 1

x
, (2.108)

and the complementary solutions are

y1(x) = e−
∫ x
h
ηq(η)
α

dη, (2.109a)

y2(x) = e−
∫ x
h
ηq(η)
α

dη

∫ x

h

ξ1−αq(ξ)e
∫ ξ
h
ηq(η)
α

dη dξ. (2.109b)

As an example, consider again Eqn. (2.98), namely,

y′′(x) + xy′(x) + y(x) = 0,

we see that Eqn. (2.108) is satisfied with α = 1. Thus, the complementary solutions
obtained using Eqns. (2.109) are

y1 = e−x
2/2,

y2 = e−x
2/2

∫ x

0

eξ
2/2 dξ,

which agree with the solutions given by Eqns. (2.99).

An another example, consider the differential equation

y′′(x)− (2x− 1)

x
y′(x) +

(x2 − x− 1)

x2
y(x) = 0.

The coefficients p(x) and q(x) do not satisfy the constraint equations given by Eqn. (2.108).
However, if we convert the above equation to the following standard form

z′′(x)− 3

4x2
z(x) = 0, (2.110a)

y =
zex√
x
. (2.110b)

then Eqn. (2.110a) satisfies the constraint given by Eqn. (2.108) with α = −3/2
and α = 1/2. Thus, the complementary solutions obtained using Eqn. (2.109a) are
z1(x) = 1/

√
x and z2(x) = x

√
x, which results in y1(x) = ex/x and y2(x) = xex.

• If a(x) =
∫ x
h
eαξ

β
q(ξ) dξ, the constraint equation is

q(x) = p′(x) + αβxβ−1p(x)− αβxβ−2
[
αβxβ + β − 1

]
.
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and the complementary solutions are

y1(x) = eαx
β

e−
∫ x
h p(η) dη,

y2(x) = eαx
β

e−
∫ x
h p(η) dη

∫ x

h

e−2αξ
β

e
∫ ξ
h p(η) dη dξ.

• If a(x) = e
∫ x
h

q(ξ)
α log ξ

dξ, then y1 is of the form xβ, a case that we have already considered
(see Eqns. (2.94)).

• If a(x) = e
α
∫ x
h
q(ξ)

ξβ
dξ

, then y1 is of the form eγx
δ
, which is again a case that we have

already considered (see Eqns. (2.97)).

• If a(x) =
∫ x
h
q(ξ)
ξβ
dξ, the constraint is

q(x) = p′(x)− β(1 + β + xp(x))

x2
,

and the complementary solutions are

y1(x) =
1

xβ
e−

∫ x
h p(η) dη,

y2(x) =
e−

∫ x
h p(η) dη

xβ

∫ x

h

ξ2βe
∫ ξ
h p(η) dη dξ.

As an example, the complementary solutions of

y′′(x) + (log x)y′(x) +
y(x)

x
= 0,

are

y1(x) =
ex

xx
,

y2(x) =
ex

xx

∫ x

1

ξξ

eξ
dξ,

while those of
y′′(x) + sin xy′(x) + cos xy(x) = 0,

are

y1(x) = ecosx,

y2(x) = ecosx
∫ x

0

e− cos ξ dξ.
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An another example, the complementary solutions of

y′′(x) + cxy′(x) + c(1− β)− β(1 + β)

x2
= 0,

are

y1(x) =
1

xβ
e−cx

2/2,

y2(x) =
1

xβ
e−cx

2/2

∫ x

0

ξ2βecξ
2/2 dξ.

• If a(x) = e
∫ x
h
p(ξ)q(ξ)

α
dξ, the constraint is

q(x) =
α [p2(x)− p′(x)− α]

p2(x)
, (2.111)

and the complementary solutions are

y1(x) = e−α
∫ x
h

1
p(η)

dη, (2.112a)

y2(x) = e−α
∫ x
h

1
p(η)

dη

∫ x

h

e
∫ ξ
h

(2α−p2(η))
p(η)

dη dξ. (2.112b)

• If a(x) = e
∫ x
h

q(ξ)
αp(ξ)

dξ, the constraint is

q(x) = α
[
(1− α)p2(x) + p′(x)

]
, (2.113)

and the complementary solutions are

y1(x) = e−α
∫ x
h p(η) dη, (2.114a)

y2(x) = e−α
∫ x
h p(η) dη

∫ x

h

e
∫ ξ
h (2α−1)p(η) dη dξ. (2.114b)

Note that if the constraint given by Eqn. (2.113) is satisfied for α = 1/2, then v(x) = 0
in the standard form (see Eqn. (2.83b)). As an example, the differential equation given
by Eqn. (2.91) satisfies the constraint given by Eqn. (2.113) with α = 1/2, and thus,
the solution given by Eqns. (2.114) agrees with that given by Eqns. (2.92).

• If a(x) =
∫ x
h
p(ξ)q(ξ) dξ, the constraint is

q(x) =
2p(x)p′(x)− p′′(x)

p(x)
, (2.115)

86



Ordinary differential equations 2.5. SECOND ORDER EQUATIONS

and the complementary solutions are

y1(x) = p(x)e−
∫ x
h p(η) dη, (2.116a)

y2(x) = p(x)e−
∫ x
h p(η) dη

∫ x

h

1

p2(ξ)
e
∫ ξ
h p(η) dη dξ. (2.116b)

• If a(x) =
∫ x
h
q(ξ)
p(ξ)

dξ, the constraint is

q(x) =
p(x)p′′(x)− 2[p′(x)]2

p2(x)
, (2.117)

and the complementary solutions are

y1(x) =
1

p(x)
e−

∫ x
h p(η) dη, (2.118a)

y2(x) =
1

p(x)
e−

∫ x
h p(η) dη

∫ x

h

p2(ξ)e
∫ ξ
h p(η) dη dξ. (2.118b)

2.5.8 Series solutions for second order variable coefficient equa-
tions

We shall just illustrate this method by an example. The Bessel functions of the first and
second kind, denoted by Jn(r) and Yn(r) are two linearly independent solutions of the
differential equation

1

r

d

dr

(
r
du

dr

)
+

(
1− n2

r2

)
u = 0, (2.119)

where n is a nonnegative integer (Actually, one can define Bessel functions for even complex-
valued n, but we shall restrict ourselves to integers) . Thus, the general solution of the
above differential equation can be written as u = c1Jn(r) + c2Yn(r). The Bessel function of
the first kind for a nonnegative integer n is defined in terms of an infinite series as

Jn(x) :=
(x

2

)n ∞∑
k=0

(−1)k

k!(k + n)!

(
x2

4

)k
.

The Bessel function of the second kind Yn(x) can also be expressed as a series, but the
expression is more complicated. The Bessel function Yn(x) is singular at r = 0, so that c2
is set to zero in solutions for domains that include the origin. However, on domains such
as hollow cylinders, both functions need to be included in the general solution.
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From Eqn. (2.63), we get W (x) = W (x0)e
− log x = W (x0)/x. Taking W (1) = 2/π, we

get W (x) = 2/(πx). Thus, if y1 := Jn(x) and y2 := Yn(x), then, by the expression for the
Wronskian, we get

y′2y1 − y2y′1 =
2

πx
.

By multiplying by the integrating factor 1/y21, we get(
y2
y1

)′
=

2

πxy21
,

which finally yields
y2(x)

y1(x)
− y2(a)

y1(a)
=

∫ x

a

2

πξy21(ξ)
dξ,

or
Yn(x)

Jn(x)
− Yn(a)

Jn(a)
=

∫ x

a

2

πξJ2
n(ξ)

dξ.

For arbitrary λm and λn, and with H denoting either Jn(x) or Yn(x), we have∫
rHν(λmr)Hν(λnr) dr =

r [λnHν−1(λnr)Hν(λmr)− λmHν−1(λmr)Hν(λnr)]

λ2m − λ2n
, λm 6= λn,

=
r2

2

[
H2
ν (λnr)−Hν−1(λnr)Hν+1(λnr)

]
, λm = λn.

Thus, if λm, m = 1, 2, . . . ,∞, denote the roots of Jν , and δmn denotes the Kronecker delta,
then the Bessel functions Jν are orthogonal in the following sense:∫ R

0

rJν

(
λm

r

R

)
Jν

(
λn

r

R

)
dr =

R2

2
[Jν+1(λm)]2 δmn. (2.120)

The Legendre equation is given by

d

dξ

[
(1− ξ2)dH

dξ

]
+

[
ν(ν + 1)− m2

1− ξ2

]
H = 0, (2.121)

The solution is given by
H(ξ) = CνP

m
ν (ξ) +DνQ

m
ν (ξ),

where Pm and Qm are the associated Legendre functions of the first and second kind,
respectively. The solutions Pm

ν (ξ) diverges for ξ = −1 unless ν is a non-negative integer,
which we now denote by n. For m = 0, Eqn. (2.121) reduces to

d

dξ

[
(1− ξ2)dH

dξ

]
+ n(n+ 1)H = 0. (2.122)
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One set of solutions of the above equation, known as the Legendre polynomials, is given
by the Rodrigues formula as

Pn(ξ) =
1

2nn!

dn

dξn
(ξ2 − 1)n. (2.123)

Thus, again, we see that the solution is obtained in the form of a series in ξ. For domains
that include the axis in axisymmetric problems, the functions Qn(ξ) can be excluded since
they are singular.

From Eqn. (2.63), we get

W (x) =
W (x0)

x2 − 1
.

Taking W (0) = 1, we get W (x) = 1/(1 − x2), so that with y1(x) := Pn(x) and y2(x) :=
Qn(x), we have

y′2y1 − y2y′1 =
1

1− x2
.

As in the Bessel equation case, this leads to

y2(x)

y1(x)
=

∫
dx

(1− x2)y21(x)
,

or

Qn(x) = Pn(x)

∫
dx

(1− x2)P 2
n(x)

. (2.124)

The associated Legendre polynomials satisfies the following orthogonality relation:∫ 1

−1
P

(m)
k (ξ)P

(m)
l (ξ) dξ =

2

2l + 1

(l +m)!

(l −m)!
δkl,

which for m = 0 reduces to ∫ 1

−1
Pk(ξ)Pl(ξ) dξ =

2

2l + 1
δkl.
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