All questions in this assignment are related to a circular domain of radius a.

- 1. If Q = 0, and if the boundary condition is $T|_{r=a} = g(\theta)$, then find the steady-state solution $T(r, \theta)$. As a special case, if $g(\theta) = T_0$, where T_0 is a constant, then determine $T(r, \theta)$ from your general solution.
- 2. If $Q(r,\theta) \neq 0$, and the boundary condition is given by $T|_{r=a} = 0$, then set out the mathematical procedure for determining $T(r,\theta)$. As a special case, if $Q = Q_0$, where Q_0 is a constant, find an expression for $kT(r,\theta)/(\rho a^2 Q_0)$ (you need not simplify any infinite sums).
- 3. The remaining problems are radially symmetric (no dependence on θ)
 - (a) If $T|_{r=a} = T_a(t)$, then by using the Laplace transform method, find an expression for T(r,t) in terms of $T_a(t)$. If $T_a(t) = T_0$, where T_0 is a constant, find T(r,t) from your general solution. By taking the limit as $t \to \infty$, determine if this solution reduces to the steady-state solution in Question 1 above.
 - (b) If $-k(\partial T/\partial r)_{r=a} = q_a(t)$, then find an expression for T(r,t) in terms of $q_a(t)$. If $q_a(t) = q_0$, where q_0 is a constant, find T(r,t) from your general solution. Does a steady-state solution exist for this boundary condition?
 - (c) If $T_a(t) = Q = 0$, and the initial temperature is f(r), then determine the evolution of the temperature field T(r, t). Find T(r, t) for the special case where $f(r) = C_1$, where C_1 is a constant.
 - (d) If $f(r) = T_a = 0$, and Q(r,t) is nonzero, then set out a mathematical procedure for finding T(r,t). For the special case when Q(r,t) is a function of time alone, i.e., $Q(r,t) \equiv Q(t)$, find an expression for T(r,t). Further, if $Q(t) = Q_0$, find $kT/(\rho a^2 Q_0)$. By taking the limit as $t \to \infty$, determine if this solution reduces to the steady-state solution in Question 2 above.