All questions in this assignment are related to a circular domain of radius $a$.

1. If $Q=0$, and if the boundary condition is $\left.T\right|_{r=a}=g(\theta)$, then find the steady-state solution $T(r, \theta)$. As a special case, if $g(\theta)=T_{0}$, where $T_{0}$ is a constant, then determine $T(r, \theta)$ from your general solution.
2. If $Q(r, \theta) \neq 0$, and the boundary condition is given by $\left.T\right|_{r=a}=0$, then set out the mathematical procedure for determining $T(r, \theta)$. As a special case, if $Q=Q_{0}$, where $Q_{0}$ is a constant, find an expression for $k T(r, \theta) /\left(\rho a^{2} Q_{0}\right)$ (you need not simplify any infinite sums).
3. The remaining problems are radially symmetric (no dependence on $\theta$ )
(a) If $\left.T\right|_{r=a}=T_{a}(t)$, then by using the Laplace transform method, find an expression for $T(r, t)$ in terms of $T_{a}(t)$. If $T_{a}(t)=T_{0}$, where $T_{0}$ is a constant, find $T(r, t)$ from your general solution. By taking the limit as $t \rightarrow \infty$, determine if this solution reduces to the steady-state solution in Question 1 above.
(b) If $-k(\partial T / \partial r)_{r=a}=q_{a}(t)$, then find an expression for $T(r, t)$ in terms of $q_{a}(t)$. If $q_{a}(t)=q_{0}$, where $q_{0}$ is a constant, find $T(r, t)$ from your general solution. Does a steady-state solution exist for this boundary condition?
(c) If $T_{a}(t)=Q=0$, and the initial temperature is $f(r)$, then determine the evolution of the temperature field $T(r, t)$. Find $T(r, t)$ for the special case where $f(r)=C_{1}$, where $C_{1}$ is a constant.
(d) If $f(r)=T_{a}=0$, and $Q(r, t)$ is nonzero, then set out a mathematical procedure for finding $T(r, t)$. For the special case when $Q(r, t)$ is a function of time alone, i.e., $Q(r, t) \equiv Q(t)$, find an expression for $T(r, t)$. Further, if $Q(t)=Q_{0}$, find $k T /\left(\rho a^{2} Q_{0}\right)$. By taking the limit as $t \rightarrow \infty$, determine if this solution reduces to the steady-state solution in Question 2 above.
