## Indian Institute of Science ME 303: Midsemester Test

Date: 25/2/2023.
Duration: 9.30 a.m. -11.00 a.m.
Maximum Marks: 100

1. The relation between the stream function $\psi$, which is a harmonic function, and the velocity components $\left(u_{r}, u_{\theta}\right)$ in a polar coordinate system is given by

$$
\begin{aligned}
& u_{r}=\frac{1}{r} \frac{\partial \psi}{\partial \theta}, \\
& u_{\theta}=-\frac{\partial \psi}{\partial r} .
\end{aligned}
$$

For a certain type of two-dimensional flow around a circular cylinder of radius $R$, it is given that the far-field velocity as $r \rightarrow \infty$ is $U \boldsymbol{e}_{x}$, where $\boldsymbol{e}_{x}$ is the $x$-direction basis vector in the Cartesian system. In addition, it is also given that for every circular contour of radius $r$,

$$
\int_{0}^{2 \pi} u_{\theta}(2 \pi r) d \theta=\Gamma \quad \forall r,
$$

where $\Gamma$ is a constant. The boundary condition at the surface of the cylinder is $\left.\psi\right|_{r=R}=0$. Starting from the most general separable form for $\psi$, deduce the actual expression for $\psi$ for the given problem. The constants in the (infinite series) solution should be systematically deduced, and no 'guesswork' is allowed. (Hint: The function $\psi$ is not a physical variable, and it is just a mathematical function introduced for convenience.)
2. A sphere of radius $a$ is subjected to a constant heat input $Q=Q_{0}$, and a constant normal heat flux $\boldsymbol{q} \cdot \boldsymbol{n}$ at the surface. For axisymmetric problems, the volume and surface elements are given by $d V=2 \pi r^{2} d r d \xi$ and $d S=2 \pi a^{2} d \xi$, respectively, with associated limits of integration for $\xi$ being $[-1,1]$.
(a) Find the constant normal flux $\boldsymbol{q} \cdot \boldsymbol{n}$ that must be imposed at the surface of the sphere in order that a steady-state solution exists.
(b) Provide an explanation for why superposition of the solutions for a normal flux $\boldsymbol{q} \cdot \boldsymbol{n}$ with $Q=0$, and a nonzero $Q$ with $\boldsymbol{q} \cdot \boldsymbol{n}=0$ on the surface, cannot be used to obtain the solution to this problem (Hint: what are the constraints on $\boldsymbol{q} \cdot \boldsymbol{n}$ when $Q=0$ ).
(c) After making suitable assumptions (which you should state clearly), find the solution for the temperature field (modulo a constant) without using superposition (Hint: governing equation).

