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Chapter 1

Preliminaries

We first discuss special functions that arise in the solutions of problems on cylindrical
and spherical domains such as Bessel functions, spherical Bessel functions etc. Although
these functions can be defined for complex-valued orders and arguments, we shall restrict
ourselves to non-negative integer orders and real arguments.

1.1 Bessel and modified Bessel functions

Let A be a real constant. The Bessel functions of the first and second kind, denoted by
Jr(Ar) and Yi(Ar) are two linearly independent solutions of the differential equation

1d du k2
Z - A = 1.1
rdr (rdr)+< rz)u 0, (L.1)

where k is a nonnegative integer (As mentioned above, one can define Bessel functions for
even complex-valued k, but we shall restrict ourselves to nonnegative integers) . Thus, the
general solution of the above differential equation can be written as u = ¢y Ji(Ar)+ca Yy (Ar).
The Bessel function of the first kind for a nonnegative integer k is defined in terms of an

infinite series as l
T\ > (—1)1 r?
Tilr) = (5) ; N+ k)! (Z '

The Bessel function of the second kind Y (r) can also be expressed as a series, but the
expression is more complicated. The Bessel functions Yj(r) are singular at » = 0, so that
co is set to zero in solutions for domains that include the origin. However, on domains
such as the annular space between two circles, both functions need to be included in the
general solution. We also have Jy(0) = 1 and Ji(0) = 0 for £ > 1, and lim, o Jx(r) =
lim, , Yi(r) = 0, £ > 0. The plots of the first few Bessel functions Ji(r) and Yi(r) are
shown in Figs. 1.1.
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Fig. 1.1: Bessel functions of the first and second kind.

With Hg(r) denoting either Ji(r) or Yi(r), the Bessel functions satisfy the following

recurrence relation:

He r(r) + Hyor(r) = M (12)

Derivative and integral relations involving Bessel functions are
dii [r"Hi(Br)] = Br*Hy_1(8r), (1.3a)
dii [r " Hy,(Br)] = —Br " Hyy1 (Br), (1.3b)
L[k ()] = o4 (B H s (51) — H (6] (1.30)
/ r*Hyp 1 (Br) dr = %rkﬂk(ﬁr), (1.3d)
/ rFHyo (Br) dr = —%T_ka(ﬁr). (1.3¢)

In particular, we have

< [Ho(Br)] = ~BH(5r), (1.42)
Dy (80) = (), (1.4D)
/H1 Br) dr = _BHO(BT) (1.4c)
/ rHo(Br) dr — %THI(BT). (1.4d)
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For arbitrary p, ¢, and with Hy denoting either Ji(r) or Y(r), we have

/THk(p'f’)Hk(qT) dr = ]92%(12 Hk(PT)M - Hk(q”dﬂfiifm
_ rlqHe_1(qr)Hi(pr) — pHy—1(pr) Hi(qr))
. . P’ — q2H . (1.5)
_r [pHp41(pr) k<(]]92):qg k+1(qr) k(ﬁ"’)]’ p#q,
_ r’[HRgr) - Hl;—l(qr)Hk-i—l(qT)]’ —

Thus, if \,,, m = 1,2,...,00, denote the roots of Jy(x) = 0, and §,,, denotes the Kro-
necker delta, then from Eqns. (1.2) and (1.5), it follows that the Bessel functions Ji(-) are
orthogonal in the following sense:

/OR,,, A (A—g) Ji (%) dr = R; [Tt An)]? G = R; o1 ()] Sy (1.6)

If A\, m=1,2,..., 00, denote the roots of J,(x) = 0, then from Eqns. (1.1) and (1.5),
we get the orthogonality relation (with no sum on n)

R Ao\ 2 AT
) — k2 ) dr=0 1.7
[H|G) - n () ar=o (172
R AT AT R2(\2 — k%) J2 (M) 0mn

The modified Bessel functions of the first and second kind I,,(Ar) and K,(Ar) are the

solutions of the equation
1d [ du 5  n?
iy il - =0. 1.
rdr (Tdr) <)\ +r2)u 0 (1.8)

Similar to Y, (r), the functions K, (r) are unbounded at the origin. We also have Iy(0) = 1,
I,(0) = 0 for n > 1, lim, o0 I,,(7) = o0, and lim,_,, K,(r) = 0, n > 0. The plots of the
first few modified Bessel functions are shown in Fig. 1.2.

The modified Bessel functions satisfy the following recurrence relations:

Lo (r) = L (r) = 2”[77("’), (1.92)
Kor(r) — Ko (r) = 2Pnlr). (1.9b)
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Fig. 1.2: Modified Bessel functions of the first and second kind.

Derivative relations involving modified Bessel functions are

d

dr
4
dr
d
dr
4
dr
d
dr
d

dr

In particular, we have

[P L(Br)] = B L1 (Br),

[ Lu(Br)] = Br " L (Br),

— [P K (Br)] = =Br" K, (),

[ K (Br)] = =Br " Ko (Br),

— [P L (Br)] = "R (8L (Br) — L(Br)]

[ K (51)] = 12 B (5) + K ()]

[Lo(Br)) = BL(Br),

[rL(B7)] = Brio(Br),

| [Ko(r)) = 8K (50,

- [P (Br)] = —BrKo(Br),
1

/Il(ﬁr) dr = BIO(BT),

r

r

BESPSEN

o &

(1.10a)
(1.10b)
(1.10c)
(1.10d)
(1.10e)

(1.10f)

(1.11a)
(1.11b)
(1.11c)
(1.11d)

(1.11e)
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/m(ﬁfr) dr = Léﬁ”, (1.11f)
[ o) ar = ~5 Kol (L11g)
/TKO(BT) dr = —7TK16(BT). (1.11h)

1.2 Spherical Bessel and modified spherical Bessel func-
tions

The spherical Bessel functions of the first and second kind, denoted by jx(Ar) and yx(Ar)
are two linearly independent solutions of the differential equation

1d [ ydu 5  k(k+1)
S—— — - = 0. 1.12
r2dr <T dr) + (A r2 u=0 ( )

Thus, the general solution of the above differential equation can be written as u = ¢y, (Ar)+
CoYn(Ar). Similar to the Bessel functions Yj(r), the spherical Bessel functions y(r) are
singular at r = 0, so that ¢y is set to zero in solutions for domains that include the origin.
However, on domains such as the annular space between two spheres, both functions need
to be included in the general solution. We also have jy(0) = 1 and j,(0) = 0 for & > 1, and
im0 Jn(7) = lim, 00 Y (r) = 0, n > 0.

The first few spherical Bessel functions are

jolkr) = sinkgf'r)’ o) = _cosk(f'r’)’
, sin(kr)  cos(kr) cos(kr)  sin(kr)
Jrlkr) = (kr)2  kr p(kr) == (kr)2  kr

, | 3 1] . 3 cos(kr) |1 3 3sin(kr)
Jo(kr) = [(k:r)?’ — H} sin(kr) — W, yo(kr) = [H — (kr)i”} cos(kr) — W,

and their plots are shown in Fig. 1.3.
The spherical Bessel functions are related to the Bessel functions by the relations

(1) =\ 3y 1) = (CUP BV 0,

™ ™

(1) = 2V y () = (1 [T (0),

With h = j,y, the spherical Bessel functions satisfy the following recurrence relation:

2n +1
r

hn—l(r) + hn+1(r) =

(7). (1.13)
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Fig. 1.3: Spherical Bessel functions of the first and second kind.

Derivative and integral relations involving spherical Bessel functions are

& (8] = BrH (6, (1.14a)
(8] = ~Br b (), (1.14D)
& tha(B0)] = 12 [Brha s (Br) — 2ha(57)] (1.14c)
/7«"+1hn_1(5r) dr = %r"“hn(ﬁr), (1.14d)
/ " hr (Br) dr = —%r‘"hn(ﬁr). (1.14e)
In particular, we have
()] = —Bm(81), (1.154)
= [P(Br)] = 5r2ho(3r), (1.15b)
/hl(m) dr = —%ho(m), (1.15¢)
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For arbitrary p, ¢, and with hy, denoting either ji.(r) or yx(r), we have

2
5 r dhy(qr) dhy(pr)
/ r*hi(pr)hy(qr) dr = P hu(pr) === — ha(qr)—2 ==

1 [qhg—1(qr)hi(pr) — pha—1(pr)hi(qr)]

P = (1.16)
_ r? [phiga (pr)hi(gr) — qhisa (gr) b (pr)]

p2 _ q2
_ r [hi(gr) — hk21(q7“)hk+1(qr)]7 p=gq.

If A\, m = 1,2,...,00, denote the roots of jp(x) = 0, the orthogonality property that
follows from Eqns. (1.13) and (1.16) is given by

R AT AnT R3 [jia(Am)]? 6 R3 [jr_1(Mm)]? 0
T‘2j < m ) . ( n ) d _ + m mn _ m mn’ )
/0 s\ )R\ ) O 5 5 (no sum on n)
(1.17)

If Aoy, n=1,2,..., 00, denote the roots of j;(z) = 0, then from Eqns. (1.12) and (1.16), we
get the orthogonality relation (with no sum on n)

R A 2 AT
ML I NI . [ 22— = 1.1
/0 <R> k:(k+)jk<R)d'r’ 0, (1.18a)
B (A . (Aar R0, [N — k(K + D]jE(An)
/0 i <T) Jk (7) dr = 22 : (1.18Db)

The modified spherical Bessel functions of the first and second kind i, (Ar) and k&, (\r)
are two linearly independent solutions of the differential equation

1 d [ ,du 5, nn+1)
e 7\ N T = 1.1
r2dr (T dr) (A + r2 u=0, (1.19)

where n is a nonnegative integer. Similar to K, (r), the functions k,(r) are unbounded
at the origin. We also have iz(0) = 1, i,(0) = 0 for n > 1, lim, , i,(r) = oo, and
lim, , kn(r) = 0, n > 0. The plots of the first few modified spherical Bessel functions are
shown in Fig. 1.4.

The modified spherical Bessel functions satisfy the following recurrence relations:

i1 (1) — iyt (1) = 2": Lin(r), (1.20a)
Bt (1) — b (1) = 220 (), (1.20b)
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Fig. 1.4: Modified spherical Bessel functions of the first and second kind.

Derivative relations involving modified spherical Bessel functions are

dii [P, (Br)] = Brt i, (Br), (1.21a)

& ia(r)] = Br i (6r), (1.21b)

d% [k, (Br)] = —Br" k1 (Br), (1.21c)

% [r "k (B7)] = —Br " kns1(Br). (1.21d)
In particular, we have

L lio(r)] = Bia(6r) (1.2

dii [r%11(Br)] = Breio(Br), (1.22b)

L o(5r)] =~k (7). (1.220)

dii [7?k1(Br)] = —Brike(Br), (1.22d)

/ i1(Br) dr = %%(m), (1.220)

/7“22'0(67“) dr = %r%l(ﬁr), (1.22f)

ki (Br) dr = —%ko(ﬁr), (1.22g)
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1.3 Legendre functions

The Legendre equation is given by

d an

dé [(1 — &%) i

The solution is given by

m2

]+le+D—

H(€) = o BI(€) + Q" (€),

where Pk(m) and Q,gm) are the associated Legendre functions of the first and second kind,
respectively. The solutions Pém) (&) diverge for £ = —1 unless k is a non-negative integer.
Since, in this work, we treat only spherical domains (and not, for example, conical domains,
where the axis £ = —1 may not be a part of the domain), we henceforth assume the ‘.’ in
P,gm) (€) to be a non-negative integer. One can also show that m can assume only discrete
values in the range [—n,n|. For m = 0, Eqn. (1.23) reduces to

d dH
€& [(1 - fQ)d—é

One set of solutions of the above equation, known as the Legendre polynomials, is given
by the Rodrigues formula as

]+Mk+UH:O. (1.24)

L d s
PUE) = gy (€ — (129

Thus, again, we see that the solution is obtained in the form of a series in £. For domains
that include the axis in axisymmetric problems, the functions Qx(§) can be excluded since
they are singular.

The first few Legendre polynomials and functions of the second kind are

RO =1, Qule) = y1ox (1 ).

PO =¢ Q) = §ioe (1¢) -1

P) = 536~ 1), Qi) = g (115) - %,

Py(€) = 5(56° — 36), Qu(e) = o (115) 4 15
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Fig. 1.5: Legendre polynomials and functions of the second kind.

4 2 B 3

Note that @, (&) is singular at & = £1 for all values of n. We also have

0 >1
P (1) :{ e m,n € N,

1 m=0,
0 > 1

P (1) = {( oy = , mneN
_ m = ,

The plots of the first few Legendre polynomials and functions of the second kind are shown
in Fig. 1.5.

With H = P,(Q, the associated Legendre functions satisfy the following recurrence
relation:

(n—m+ 1) H(E) = (2n+ D)EH(€) — (n+m)H")(6), (1.26)

which for m = 0 reduces to

The associated Legendre polynomials of the first kind satisfy the following orthogonality

relation: . 2 s
(m) (m) _ +m):0k
| @R ds = G

which for m = 0 reduces to (with no sum on [)

| Rop©de = o (129
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! 2, n=0,
/_1Pn<§)d§:{0, n > 1.

The derivative of the associated Legendre functions is given by

We also have

dpi™ (¢ . m
(1= )T — (1 mep () + (m - = DENO)
which when combined with Eqn. (1.27) yields for m = 0,
dP,(§)

(1-¢%)

dg

1.4 Fourier and Hankel transforms

For all the relations in this section, n is an arbitrary real number.

Fourier sine transform

If f(z) is a function defined on the domain [0, c0), and if

/OOO A(N) sin(Ax) dA = f(x),

then o foo
MMZ;A F(€) sin A¢ d,

Fourier cosine transform

If f(x) is a function defined on the domain [0, c0), and if

/000 A(N) cos(Az) dX = f(z),

then
AN =2 [ 1@ cosrcde

Fourier transform

If f(x) is a function defined on the domain (—oo, 00), and if

/OOO [A(N) cos(Ax) + B(\) sin(Ax)] dX = f(z),

=n[P,1(§) = EP.(O] = (n+ 1) [EPu(§) — Pusa(§)]

11

(1.29)

(1.30)

(1.31)

(1.32)

(1.33)

(1.34)

(1.35)

(1.36)
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then

AN =~ [ reosrcg

o (1.37)
BV == [ s(esinacs
Hankel transform
If f(r) is a function defined on [0, 00), and if
/OO AN) Ty (Ar) dX = f(r), (1.38)
0
then -
AN = / 7 f (1) (AT) dr. (1.39)
0
Spherical Hankel transform
If -
/o AN)Jn(Ar) dX = f(r), (1.40)
then .
A(N) = 7/0 P2 f (7)n (AF) dF. (1.41)

1.5 Fourier, Fourier—Bessel and Legendre series

This section is partly based on [1]. We shall consider separable solutions to typical elliptic
(e.g., steady-state heat conduction equation), parabolic (e.g., transient heat conduction
equation) and hyperbolic (e.g., acoustic wave equation) partial differential equations.

1.5.1 Separable solutions to V7T = (

Consider the Laplace equation V27T = 0. The functions T'(x,y) that satisfy the Laplace
equation are said to be harmonic. These functions are generally represented in the form
of an infinite series or an integral. Imposing the boundary condition on the infinite series
solution on a given surface often results in a Fourier, Fourier—Bessel or Legendre series.

Consider the equation

o?T  O*T
=+ =

ox?  Oy?
Suppose that this governing equation is to be solved subject to appropriate Dirichlet or
Neumann boundary conditions on the edges of a rectangular domain [—L, L] x [0, H]. By

VviT 0. (1.42)
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the standard separation of variables method, we write 7" = X (x)Y (y) which on substituting
into Eqn. (1.42) yields
X// Y//
LA ) St} (1.43)
X(z)  Y(y)

where k is a constant. By superposing the solutions obtained for the infinite separation
constants k, we get the general solution as

T = co+ c1x + coy + c3xy

+ Z{An sin(ky,x) sinh(ky,y) + B, sin(ke,x) cosh(ks,y)
n=1

+ Cly co8(ksnx) sinh(ksny) + Dy cos (ki) cosh(kany) (1.44)

+ E, sinh(ks,z) sin(ks,y) + F, sinh(ke,z) cos(ke,y)
+ G, cosh(kz,x) sin(kz,y) + H,, cosh(ks,x) cos(kgny)}.

The nonseries terms in Eqn. (1.44) correspond to k = 0 in Eqn. (1.43), and are linearly
independent of the series terms which correspond to a nonzero k£ value. We shall see that
these nonseries terms play a key role in what follows.

With 2, = a2, + 32, a general three-dimensional separable solution to the Laplace
equation is

T =co+ crx + coy + c3z2 + cqxy + c5yz + cer2 + crayz

+ Z Z A cos(amx) cos(Bry) cosh(Vmnz),

m=1 n=1

(1.45)

and similar terms in sin(.), sinh(.) etc. which need to be added to the above solution.
If we want represent an odd function f(x) on [—L, L] using sin(nmz/L), then standard
Fourier theory would suggest writing it as

S, sinn—zx = f(2), (1.46)
n=1
with
=1 Lf()in@d (1.47)
=1/, xr)s 7 T. )

However, from Eqn. (1.44) evaluated at constant y, we see that we should write it as

Cox + Z Cp sin n_zx = f(z), (1.48)

n=1
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with
f(z) = f(z) — Coz, (1.49)
1 [ . nmx
C, = I/, f(z) sdex

As an example, if f(z) = (z/L)7, then by the classical representation given by Eqn. (1.46),

we have
o _ 2(—1)" [(nm)S — 42(nm)* + 840(nw)? — 5040]' (1.50)

(nm)?

By the proposed representation given by Eqn. (1.48), we have

1
Co = —,
: 1.51)
(o _ =1 [(mm)* = 20(nm) +120) (L.
Thus, the classical and proposed representations of (z/L)" are
= 2(=1)"" [(nm)® — 42(nm)* + 840(nm)? — 5040] sin(nrxz/L)
( ) - Z : (1.52a)
(nm)?
n=1
x — 20(nm)? + 120] sin(nwz /L)
I T . 1.52b
( ) L Z (nm)7 (1.52b)

Fig. 1.6 clearly shows the rapid convergence of the proposed representation as compared to
the classical one besides, of course, removing the error at the endpoints. Now consider the
representation of an even function f(x) over [—L, L] by cos[(2n — 1)7z/(2L)]. By standard

Fourier theory, we have
o

ZCncosw = f(x),

with

1 [t (2n — 1)z
C, = Z/Lf(x)cosde.

Instead, we propose

C’0+ZCncos(7 = f(x), (1.53)
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Fig. 1.6: Plots of the representations in Eqns. (1.52) for different number of terms N in the
Fourier series.
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with
CO = f(L)7

f(z) = f(z) = f(L),

1t (2n — 1)z
C, = E/_Lf(x)cosde.

In the classical framework, the Cj term is present when the even function is being approx-
imated by cos(nmx/L), but not when it is being approximated by cos[(2n — 1)7mx/(2L)].

As an example, if f(x) = (z/L)%, then by the classical representation, and with 3, :=
(2n — 1)7, we have

A(—1)"F1 (88 — 12084 4 576082 — 46080)

= 7
By the proposed one, we have
CO = 17
480(—1)" (B2 — 4832 + 384)
C, = 7 .

Thus, the two representations (classical and proposed) are

6 A=) (BE — 1208, + 576037 — 46080) cos[B,z/(2L)]
(%) ~ nzl 7 COS1Pn® , (1.54a)
(96 1 Zl 480(—1)" (B — 485%; 384) cos[Bnw/(2L)] . (154D)

Once again, Fig. 1.7 clearly shows the rapid convergence of the proposed representation as
compared to the classical one besides, of course, removing the error at the endpoints.

Now consider the representation of an odd function f(x) defined on [—L, L] by sin[(2n —
1)wa/(2L)]. Since we use the derivative of f(x) evaluated at x = L, we need to exercise
care here. For example, the function

fla)=ay/1 - (%)2 (1.55)

is bounded on [—L, L], but its derivative is not bounded at = L. We do not consider such
functions, and restrict ourselves to continuously differentiable functions, i.e., f(z) € CL.
Thus, we now propose
- 2n — 1
Clx+ZCn sin% = f(z), (1.56)

n=1
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Fig. 1.7: Plots of the representations in Eqns. (1.54) for different number of terms N in the

Fourier series.
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with

Cl - f/(L)v
f@) = f(z) - Cuz,

(1.57)
C,= /f sin —————— n—l) T de.

As an example, the classical and proposed approximations for (z/L)" with 3, := (2n—1)7
are

Xz

T = 56(—1)" (B8 — 12082 + 57602 — 46080) sin[B,x/(2L)]
(7) ~X 5

) (1.58a)
T\ TT = 6720(—=1)" (B2 — 4832 + 384) sin[B,z/(2L)]
(7)) ~T+X o

L

(1.58b)

While representing an even function on [—L, L] with cos(nmz/L), the conventional rep-
resentation given by

nmx
Co+ g C,, cos — 7 = f(2), (1.59)
with

—i/Lﬂx)dw
/ f(z cos@daz

already has the constant term Cy, and so in this case, no additional terms need to be added.
As another example, if one wants to approximate the function f(z) on [0, L] using
sin(nmz/L), then we get

x > nmwx
C,, sin —
+Z Sin 7

, (1.60)
n=1
where
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In the classical representation, the nonseries terms would be absent.
As a final example, the representation of a continuously differentiable function on [0, L]
with the functions cos[(2n — 1)7wx/(2L)] is given by

Co—FClLL’—FZCnCOSW = f(x), (1.61)

n=1

with

C1 = 1(0),
f(x) = f(x) = Co - Chz, (1.62)
1 L (2n — 1)mz
C’n—E/Lf(x)00572L dzx.

The equation VT = 0 in a polar coordinate system is given by

10 oT 1 0°T
—— | r= —— =0. 1.63
r or <T0T)+r26«92 (1.63)
A separable solution to Eqn. (1.63) is given by
T = cy+ cylogr + cofl + c30logr + Z r" [A,, cos(nf) + By, sin(nf)] . (1.64)
"0

The term n in Eqn. (1.64) can be replaced by \,, where A, are the roots of some char-
acteristic equation. As in the Cartesian case, the non-series terms play a critical role
in the representation of a function on a given surface. For example, on a surface r =
constant, if one wants to represent an even function g(#) on the domain 6 € [—6y, 6] using
cos[(2n — 1)70/(26p)], then similar to Eqn. (1.53), we have

s 2n — 1)l

Co+ ; C,, cos % =g(0).

In two-dimensional problems, the most convenient way of generating the individual har-
monic terms in the solutions such as those given by Eqns. (1.44) and (1.64) is to consider
the real and the imaginary parts of a complex-valued function W (z) where z = = + iy =
re?. Thus, in Eqn. (1.44), the individual terms are generated using cos(kz) = cos[k(x +
iy)] = cos(kx) cosh(ky) + isin(kx) sinh(ky), sin(kz) = sin[k(x + iy)] = sin(kz) cosh(ky) +
icos(kz)sinh(ky) (or, equivalently, cosh(kz), sinh(kz) etc.), which are obtained on using
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the relations cos(iz) = coshx, sin(iz) = isinhx etc. Similarly, in the case of the polar
coordinate system, with z = re, the individual harmonic terms are generated by consid-
ering the real and the imaginary parts of 2" = (re®?)" = r"e = r"(cosnf + isinnd), or
log z = log(re®) = logr + if and so on.

Now consider the equation V*T = 0 expressed in the cylindrical coordinate system

(r,0,z) as

10 orT 1 0°T 0°T
il 4 I =0 1.65
ror (T8T)+r2892+8z2 ( )
An axisymmetric separable solution to the Laplace equation is
T =co+cilogr + coz + c3zlogr
+ Z{Anfo(km’f’) cos(k1n2) + BnKo(kanr) cos(kan2)
(1.66)

+ Cylo(ks,r) sin(ks,z) + DpKo(kanr) sin(ky,2)
+ E,Jo(ks,r) sinh(ks,z) + F,Yo(kenr) sinh(ke,2)

+ G Jo (k) cosh(kz,z) + H, Yo (ksnr) Cosh(krgnz)}

where Jy and Y, denote Bessel functions of the first and second kind, and I, and K, denote
modified Bessel functions of the first and second kind. Once again, the nonseries terms
in Eqn. (1.66) correspond to a zero separation constant, and will play a key role in what
follows.

If the problem is not axisymmetric, then in place of Eqn. (1.66), we get

T =co+ crlogr + coz + c3zlogr + c40 + c50logr + cgfz + c70z log r

+ Z Z {Aanm(k‘lnr) cosh(ky,z) cosmb + By Jm(kanr) cosh(ks,2) sin mf

n=1 m=0

+ CrnJm(ksnr) sinh(ks,2) cosmO + Doy J i (Kanr) sinh(ky, z) sinmé (1.67)

(
+ B Y (ksnr) cosh(ks,z) cosmb + Fpn Yo, (kenr) cosh(ke,z) sin mé
+ Gn Yo (k7nr) sinh(kz,2) cos mb + Hypp Yo (Kgnr) sinh(ks, 2) sin m@},

with similar terms where J is replaced by I, Y is replaced by K, cosh is replaced by cos,
and sinh is replaced by sin appended to the above solution. As usual, m in Eqn. (1.67) can
be replaced by \,,, where \,, are, say, the roots of a characteristic equation.

If the domain is a solid cylinder and the boundary conditions are axisymmetric, then,
based on Eqn. (1.66), we represent a function at a surface z = constant as

co+ i:l Ay <%) = f(r), (1.68)
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where \,,, n =1,2,..., 00, are, for example, the positive roots of say Jo(z) = 0 or J;(z) = 0.
If they are the roots of Jy(z) = 0, then using Eqns. (1.6) and (1.68), we have

Co = f(R)v
flr) = f<r> f(Rr

A, R2J1 /ffﬁ () d.

If, however, \,, n =1,2,..., 00, are the positive roots of J;(z) = 0, then the ¢y term is
present even in the classical treatments and from Eqns. (1.7) and (1.68), we have

2 s
co = ﬁ rf(r)d’r

2 L AT
Anzm/o 10 (%) o

Finally, consider the equation V*T = 0 expressed in the spherical coordinate system

(r.0,0) as 2
10 (,0T 10 1 o°T
2 or ( ar> + 2 O¢ << -&) f) r2(1 — €2) 9¢? =0, (1.69)

where £ := cos @ € [—1,1]. The most general axisymmetric separable solution to Eqn. (1.69)
in terms of (r, &) is

T = [Aur" + Bur "] [CLPu(8) + Du@n(€)] (1.70)

where P, (§) are Legendre polynomials. The Legendre functions of the second kind @,,(§)
are singular at £ = 41, and hence have to be excluded in case the domain is spherical or
is the annular region between two hollow spheres. The solution corresponding to a zero
separation constant is of the form ¢ + ¢;/r which is already captured by the n = 0 term
in Eqn. (1.70), and thus unlike the ordinary Fourier and Fourier-Bessel series that we
considered in the preceding sections, there are no missing terms in the case of a Fourier-
Legendre series.
The most general separable solution of Eqn. (1.69) (which is a generalization of Eqn. (1.70)

to the non-axisymmetric case is

T= i i [Anr™ + Bur= V] [CL P () + DaQU(€)] [En cos me + Fy sinmd]
m=0 n=0
(1.71)
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As usual, the integers m and n can be replaced by the roots of appropriate characteristic
equations.

From Eqn. (1.70) and by considering the boundary condition at the inner or outer radius
of a spherical domain, it follows that for an arbitrary continuous function f(£) defined on
[—1, 1], we have (after renaming the constant)

YA€) = (),

where, on using Eqn. (1.28), we have

2n+1
2

Ay =

1.5.2 Separable solutions to the transient heat conduction equa-

tion V°T = 12 with o > 0

In the Cartesian system, a separable solution is of the form
T=3 > Awncos(a) cos(Buy) cos(yuz)e CTHntml, (1.72)
I=1 m=1 n=1

and similar combinations involving [cos(.), cos(.), sin(.)], etc. associated with (z,y, z) which
need to be added to the above solution. If there is no dependence on z, say, then ~, can
be set to zero, so that the resulting form is

T = Z Z mn COS( Q) COS( By et (1.73)

m=1 n=1

and similar combinations involving [cos(.),sin(.)], etc. associated with (x,y), which need
to be added to the above solution.
In a cylindrical coordinate system, a separable solution is of the form

T=3 3" Awndy,(ar) cos(Bnz) cos(y,f)e T+, (1.74)

=1 m=1n=1

and similar combinations involving [Y(.), cos(.), sin(.)], etc. which need to be added to the
above solution. If there on no dependence on 6, then +, can be taken as zero, so that the
resulting form is

T = ZZAanO () cos(Br2)e a(a%ﬁﬁ%)t, (1.75)

m=1 n=1
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and similar combinations involving [Y.(.),sin(.)], etc. associated with (r, z) which need to
be added to the above solution. For a polar coordinate system, we can take f3,, to be zero,
so that the resulting form is

T = ZZAmn (1) cos(ynb)e ‘m%”t, (1.76)

m=1 n=1

and similar combinations involving [Y(.),sin(.)], etc. associated with (r,#) which need to
be added to the above solution.
In a spherical coordinate system, a separable solution with £ := cos is of the form

T=%""> Awnis, () P57 () cos(rug)e " (L77)

=1 m=1n=1

and similar combinations involving [y.(.), @")(.),sin(.)], etc. associated with the variables
(r,&, ¢) which need to be added to the above solution. If there on no dependence on ¢,
then ~, can be taken as zero, so that the resulting form is

T = Z Z Amnjﬁn (amr)Pﬁn (g)e_aagntv (178)

m=1n=1

and similar combinations involving [y.(.),Q.(.)], etc. associated with the variables (r,¢)
which need to be added to the above solution.

1.5.3 Separable solutions to the wave equation V?pp = ai%a;ff

In the Cartesian system, a separable solution is of the form

Z Z Apn cos(aqz) cos(Bmy) cos(v,z) cos[aot/a? + (2, + 2], (1.79)

=1 m=1n=1

oo

and similar combinations involving [cos(.), cos(.), sin(.), sin(.)], etc. associated with (z,y, z,t)
which need to be added to the above solution. If there is no dependence on z, say, then -,
can be set to zero, so that the resulting form is

pa= 3" A cos(an) cos(Buy) coslast /a2, + 52, (1.80)

m=1 n=1

and similar combinations involving [cos(.), sin(.), sin(.)], etc. associated with (x,y,t), which
need to be added to the above solution.
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In a cylindrical coordinate system, a separable solution is of the form

(o olNe o lNe o]

DA = Z Z A, (aqr) cos(Bmz) cos(y,0) coslagty/ o + B2, (1.81)

=1 m=1 n=1

and similar combinations involving [Y(.), cos(.), sin(.), sin(.)], etc. associated with the vari-
ables (r, z,0,t) which need to be added to the above solution. If there on no dependence
on @, then ~, can be taken as zero, so that the resulting form is

PA = Z Z ApinJo(ur) cos(5,2) cos|agt/ a2, + B2], (1.82)

m=1 n=1

and similar combinations involving [Y.(.), cos(.),sin(.)], etc. associated with (r, z,¢) which
need to be added to the above solution. For a polar coordinate system, we can take 3, to
be zero, so that the resulting form is

Pa =D D Ay, (amr) cos(1,6) cos(apaunt), (1.83)

m=1 n=1

and similar combinations involving [Y(.), cos(.),sin(.)], etc. associated with (r,8,t) which
need to be added to the above solution.

In a spherical coordinate system, a separable solution with £ := cos# is of the form

oo 0 0

pa = > Y Aumnis, (r) Py (€) cos(16) cos(auaot), (1.84)

=1 m=1n=1

and similar combinations involving [y (.), @ (.),sin(.),sin(.)], etc. associated with the vari-
ables (1,&, ¢,t) which need to be added to the above solution. If there on no dependence
on ¢, then ~, can be taken as zero, so that the resulting form is

A = Z Z Amn]ﬁn (am’r)PBn (5) COS(amaot% (185)
m=1 n=1

and similar combinations involving [y.(.), @ (.),sin(.)], etc. associated with the variables
(r,&,t) which need to be added to the above solution.
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1.5.4 Separable solutions to the Helmholtz equation V*p+k%p = 0

Assuming k is prescribed!, in the Cartesian system, with o2 + 32 ++2, = k?, a separable
solution is of the form

D= i i A cos(amx) cos(Bry) cos(Ymnz), (1.87)

m=1

and similar combinations involving [cos(.), cos(.),sin(.)], etc. associated with (z,y, z) which
need to be added to the above solution.

If there is no dependence on y, say, then 3, can be set to zero, so that with a2, +72, = k?,
the resulting form is

p = Z A, cos(n ) cos(Ymz), (1.88)
m=1
and similar combinations involving [cos(.), sin(.)], etc. associated with (z, z) which need to
be added to the above solution.
If there is no dependence on y and z, then the solution reduces to

p = ¢y cos kx + cosin k. (1.89)

Note that the solution in Eqn. (1.89) and the solution in Eqn. (1.88) needs to be added
to the solution in Eqn. (1.86) while dealing with three-dimensional problems (similarly,
the solution is Eqn. (1.89) needs to be added to the one in Eqn. (1.88) while dealing with
two-dimensional problems).

In a cylindrical coordinate system, with a?, + 32, = k
form

2 a separable solution is of the

p = Z Z Apin sy, (1) cos(Bm z) cos(1n8), (1.90)
m=1 n=1
and similar combinations involving [Y(.), cos(.),sin(.)], etc. associated with the variables
(r,z,6) which need to be added to the above solution. If there on no dependence on 6,
then v, can be taken as zero, so that with a2, + 3% = k?, the resulting form is

NE

p= ApmJo(a,r) cos(Brnz), (1.91)

1

3
I

f k is not prescribed, as in the case of an eigenvalue problem then in place of Eqn. (1.87), we get

p=2 Z Z tmn €08() COS(Bmy) cos(n2). (1.86)
=1 m=1n=1

A similar extra summation gets introduced in solutions to the Helmholtz equation in other coordinate
systems, e.g., see Eqns. (1.92) and (1.93).
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and similar combinations involving [Y.(.),sin(.)], etc. associated with the variables (r, z)
which need to be added to the above solution. For a polar coordinate system, we can take
Bm to be zero, so that the resulting form is

p=>Y_ Andy, (kr) cos(y), (1.92)

n=1

and similar combinations involving [Y(.),sin(.)], etc. associated with the variables (r, )
which need to be added to the above solution. As usual, in the case of an eigenvalue
problem, in place of Eqn. (1.92) we have

=Y Apnds, (Ar) cos(1,0). (1.93)

m=1n=1

In a spherical coordinate system, a separable solution with £ := cos @ is of the form

P=>_) Amnja, (kr) P (€) cos(Bm), (1.94)
m=1 n=1

and similar combinations involving [y.(.), Q")(.),sin(.)], etc. associated with the variables
(r,&, @) which need to be added to the above solution. As usual in the case of an eigenvalue
problem, k is replaced by )\; with an additional sum over [. If there on no dependence on
¢, then £, in Eqn. (1.94) can be taken as zero, so that the solution form is

B= Anjan (kr)Pa, (€), (1.95)

m=1

and similar combinations involving [y.(.),Q.(.)], etc. associated with the variables (r,¢)
which need to be added to the above solution. As mentioned above, in the case of an
eigenvalue problem, in place of Eqn. (1.95) we have

=2 Annjan(Anr)Pa, (6). (1.96)
m=1 n=1

Functions ¢ that satisfy the biharmonic equation V*¢p = 0 are known as biharmonic
functions. If ¢ is harmonic, then the functions ¢, z¢, yo, 2¢, (z*+y>+2%)¢ are biharmonic.
In the two-dimensional context, if ¢ is harmonic, then the functions ¢, ¢, y¢ and (2% +y?)¢
are biharmonic. Thus, separable solutions to V*¢ = 0 can be generated from the solutions
to the Laplace equation using this result.
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1.6 Laplace transform

The Laplace transform of a function f(t) is defined by

/ f(t)e*tdt.

The inverse Laplace transform is given by

: 1 cotie r st
F(1) = Jim / " Fspetas, (1.97)
where the real constant cg is chosen such that the line s = ¢ is to the right of any singularity
of f(s) in the complex s plane. Rather than with the use of Eqn. (1.97), the inversion is
usually carried out directly with the aid of tables and the use of the convolution theorem.

In order to use the tables, one needs to express the Laplace transform f(s) which is
generally of the form P(s)/Q(s), with P(s) being of a lower degree than Q(s), in the form

= — (1.98)
— g. ki
Q(s) i=1 k;=1 (5= 5:)
where s;, i = 1,2,..., N are the distinct roots of Q(s), m; is the multiplicity of each root

s;, and the c,(i,) associated with each s; are independent of s. In order to determine these
constants, we multiply both sides by (s — s;)™, successively differentiate with respect to s,

and evaluate these derivatives at s;. The final result is

i 1 dmh
c,g ) — lim

s=si (my — k;)! dsmi—hi

P(s)
Q(s)

(s—si)™i

(1.99)

When all the roots of Q(s) are distinct, then m; = 1 for all 4, and in such a case the

constants are given by
, P(s)
@ = : 1.1
’ Ll@/ds} - 00

Eqn. (1.100) is known as the Heaviside formula.
By the final value theorem

lim f(t) = lim sf(s). (1.101)

If f(t) and g(t) are two functions of time, then their convolution is defined by the

equation
* g = — d
fxg /0 St =T)g(r)dr
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_ /Otf(r)g(t—r) dr.

From the above relations, we observe that f x g = g x f. The Laplace transform of the
convolution f x g is

Frg(s) = f(s)g(s). (1.102)
Thus, the inverse Laplace transform of a product of Laplace transforms of two functions is

the convolution of the two functions.
Another extremely useful result is the following:

LT (s +a)] = e “T(t). (1.103)

As an example, using Eqn. (1.103) and Table B.1 with ¢ := {/s/a, and for « > 0 and
z >0, we get

2
£t <e_z\/m> = Z edmant (1.104a)
Vdrat3 ’

—z/ ?+~? 2 )
o A I e = s (1.104b)
Vat+7? ml

If f'(t) denotes the derivative of a function f(¢), then the Laplace transform of f'(t) is
given by

LIFOI= [ e @ =[e 05 + [ se ) dt = sLIf0)] - F0). (1105)
0 0
Similarly, for the second derivative, we have

LI ()] = s*LIf ()] — s£(0) = £(0). (1.106)

1.7 Classification of PDEs

We deal only with the classification of second-order partial differential equation for a scalar
function u(x,t). Consider the partial differential equation

Auy + Bugy + Cugy + Dug + Eug + Fu— G = 0, (1.107)

where the coefficient A, B, C, D, E, F and G can be functions of (z,t). The key quantity
that determines the type of the partial differential equation is the discriminant

A = B?> —4AC.

At a given (z,t), the partial differential equation in Eqn. (1.107) is called
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e hyperbolic if A(z,t) > 0,

e parabolic if A(x,t) =0, (with the constraint A> + B? + C? # 0),
e clliptic if A(z,t) <O0.
As examples, we have

e The wave equation uy — g, = 0 has discriminant A = 4, and is hyperbolic.
e The heat equation u; — u,, = 0 has discriminant A = 0, and is parabolic.

e The Poisson equation u,,+u,, = 0 (with y playing the role of ¢ here) has discriminant
A = —4, and is elliptic.

Most of the partial differential equations that occurs in mechanics problems (e.g., the
Navier—Stokes equations in fluid mechanics) are far more complicated than the prototype
given by Eqn. (1.107). However, under certain conditions, approximations can be made
which fall into one of the above categories. For example, the acoustic wave equation which
is a low Mach number approximation of the Navier-Stokes equations is hyperbolic.

We now discuss the boundary and initial conditions to be imposed, the uniqueness and
other properties of the solution to the three types of partial differential equations mentioned
above. We use the steady-state heat conduction, the transient heat conduction equation
and the acoustic wave equation as the prototypes for the discussion on elliptic, parabolic
and hyperbolic partial differential equations, respectively.

1.7.1 Elliptic and parabolic partial differential equations

With V' denoting the domain, S denoting the boundary of the domain, and T denoting the
temperature, consider the heat conduction equation given by
pQ 10T
kK aot’
where o = k/(pc) is the thermal diffusivity, k& is the conductivity (which is a positive
constant), ¢ is the specific heat, and @) is the heat input.
The appropriate boundary conditions are that the temperature be prescribed on part

of the boundary, say Sr, and the normal heat flux be prescribed on the remaining part of
the boundary, say S,. Thus, with Sp U S, =5, we have

TITOHST,
(VI)-n=qons,.

V3T + nvV, (1.108)

The initial condition is given by T|,_, = To(x). The different types of boundary value
problems are
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e S = Spr: Dirichlet or temperature boundary value problem.

e S =5, Neumann or normal flux boundary value problem.

e S =S5prUS,; Mixed boundary value problem.

The ‘steady-state’ version of Eqn. (1.108) is obtained by setting 0T'/0t to zero, i.e.,

EV?*T +pQ =0on V. (1.109)

Eqn. (1.109) is an example of an elliptic partial differential equation. Note that a steady-
state solution exists if and only if

@ inV and q-mn on S are independent of ¢, and, in addition
(1.110)
/deV—/q-ndSzO.
1% S

Needless to say, for the steady-state solution to exist, the series or integrals in the presented
solution obtained have to converge. If the domain is bounded, and if S is not a null set,
then one need not check the condition on the second line of Eqn. (1.110), since the normal
flux on Sy will adjust itself so that this condition is satisfied.

However, Eqn. (1.110) has to be applied with great care on unbounded domains. For
two-dimensional and some three-dimensional unbounded domains (which we do not elabo-
rate upon in this course), if Sy denotes the union of all the surfaces other than the one at
‘infinity’, then the following necessary and sufficient condition ensures that a steady-state
solution exists for the temperature and the flux fields:

/ pQdV —/ g-ndS =0, (2D and some 3D problems). (1.111)
1% S¢

As an example, consider the domain to be the region outside a circular hole in an unbounded
domain (so that Sy is the boundary of this circular hole), and let = 0. If a constant
normal flux gq is applied at the boundary of the circular hole, then by virtue of Eqn. (1.111),
no steady state solution exists! However, if —k(97/0r),—, = g(0), and if fozﬂg(é) df =0,
then a steady state solution exists. The important point to note here is that one should
first ensure that a steady-state solution exists before attempting to find one.

In the absence of net heat input into the domain, and in the absence of net overall flux
at the boundary, the steady-state temperature is the average of the initial temperature
distribution. To see this, if we integrate the governing equation

1T 2 PQ
il v 2l LB
a Ot Vi k-’
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over the domain V', then we get

1d

1 P
S rav——2 [ qgnas+2 [ Qa
aat J, TV l{:/sqns+k/‘,QV’

If the heat input ) within the domain V', and the normal flux q - n on the boundary S are
such that the right-hand side of the above equation is zero, then we get fv T'dV = constant.
If the initial temperature is f(x), then evaluating the constant at ¢ = 0, we get

/VTdV:/Vf(:c)dV, (1.112)

at all instants of time. In particular, if the temperature reaches to a constant steady-state
value, say Ty, then from Eqn. (1.112), we get

x)dV
eI @1.

An example where Eqn. (1.112) holds is if the net heat input fv Q dV is zero, and if the
boundary is insulated. Similarly, if there is no heat input, and if a normal flux g - n is
prescribed over the entire boundary which is such that |, ¢q-mndS =0, then Eqn. (1.112)
holds. If the temperature is prescribed on part of the boundary, and a zero normal flux
on the remaining boundary, then the reaction flux on the part of the boundary where the
temperature is prescribed renders f 5 @ mdS nonzero, and thus Eqn. (1.112) does not hold
in such a situation.

Assuming that a steady-state solution exists, we now discuss the uniqueness of solution
to Eqn. (1.109). Let g := k(VT) - n. By multiplying Eqn. (1.109) by 7, and by carrying
out an integration by parts, we get

/k;(VT)~(VT)dV:/pQTdV+/quS. (1.114)

Let T1(x) and Ty(x) be two solutions to Eqn. (1.109), so that

(1.113)

kV2T, +pQ =0on V, (1.115a)
kV*Ty + pQ =0 on V. (1.115b)

Let T := T) — Ty.Subtracting Eqn. (1.115b) from Eqn. (1.115a), we get

kYT = 0. (1.116)
Thus, Eqn. (1.116) has the same form as Eqn. (1.109) with @ = 0, so that on using
Eqn. (1.114) with @ set to zero, and with ¢ := k(VT) - n, we get

/k:(VT)-(VT)dV:/quS. (1.117)
\% S
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On the part of the boundary S where the temperature is prescribed, we have T =0, and
on the remaining part of the boundary where the normal flux is prescribed, we have ¢ = 0,
so that [¢¢T'dS = 0. Thus, Eqn. (1.117) reduces to

/ k(VT)-(VT)dV = 0. (1.118)
\%

Since the integrand is non-negative on the entire domain, we get V7T = 0, so that T} =
T 4 ¢, where ¢g is a constant. In the Dirichlet and mixed boundary value problems, since
the temperature is prescribed on the part of the boundary I'y, we get ¢y = 0, so that T
is unique. However, in the Neumann boundary value problem, the temperature solution is
unique modulo a constant.

To show the uniqueness for the transient problem is more involved. By using the same
arguments as above starting from Eqn. (1.108), we now get

1 d
20 dt A%

T*dV = — / (VT)-(VT)dV <0. (1.119)
\%

Since both solutions 7; and T, satisfy the same initial conditions, we have T = 0.
t=0
Assuming that

lim [ T?dV =0, (1.120)

t—0 Vv

when T = 0 (this assumption may get violated in certain pathological problems where
t=0

the limit and the integral cannot be interchanged in Eqn. (1.120)), Eqns. (1.119) and
(1.120) imply that [, 72dV < 0. But we also have [, 72dV > 0 since the integrand
is nonnegative. Thus, we have [, T2dV = 0, so that 7 = 0, yielding uniqueness of the
solution in all three types of boundary-value problems.

The wave speed for the solution to a parabolic PDE is infinite, i.e., the disturbance due
to say a surface loading in an unbounded domain is transmitted instantaneously to any
point in the domain.

1.7.2 Hyperbolic partial differential equations

As a typical hyperbolic partial differential equation, we consider the acoustic wave equation
given by

1 0°pa
at o2’
where g is the wave speed. Similar to the heat conduction problem, with S = S,UJS,, the
allowable boundary conditions are

Vipa = (1.121)
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e The pressure pa prescribed on part of the boundary .S,,.

e The normal acceleration Vpa - n prescribed on the remaining part of the boundary

Sa

Since Eqn. (1.121) has a second-partial derivative with respect to time, initial conditions
have to be specified on pa and pa.
By multiplying Eqn. (1.121) by pa and integrating by parts, we get

% U <§A2 Ty Via VpA) dV} Z/SPA(Vpa-n) ds. (1.122)

Consider an interior acoustic problem where part of the surface S is radiating sound, and
the remaining part of S is rigid, i.e., Vpa - = 0. If the part of S that is radiating sound
is suddenly brought to rest, then fs Pa(Vpa - n)dS is zero, so that the total ‘energy’

Einterior := / (é)AQ + = VPA VPA) dv
is conserved from that time onwards. For exterior acoustic problems, the total energy can
be shown to be a non-increasing function of time after the excitation ceases.

Such ‘energy conservation’ is a feature of non-dissipative systems described by hyper-
bolic equations. In case there is dissipation, then the total energy is a non-increasing
function of time. For example, in a hyperelastic structure, the total energy given by the
sum of the kinetic and strain energy is conserved in the absence of external traction and
body force loading. In the presence of damping, this total energy is a non-increasing func-
tion of time in the absence of external loading.

We now use Eqn. (1.122) to prove the uniqueness of the solution. Let (pa); and (pa)2
be two solutions of Eqn. (1.121), and let p = (pa)1 — (pa)2. Since (pa); and (pa)2 both
satisfy Eqn. (1.121), we have

1 (pa)
V3(pa)h = 2 or (1.123a)
2 1 9*(pa)s
= — . 1.12
V(pa)2 PR (1.123b)

Subtracting Eqn. (1.123b) from Eqn. (1.123a), we see that p also satisfies Eqn. (1.121).
Thus, in place of Eqn. (1.122), we now get

% U (21522 +5 VP Vp) dV} :/Sﬁ(V;ﬁ-n) ds. (1.124)

2 Einterior does not have units of energy, but is an ‘energy-like’ term.
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On the part of the boundary where the pressure is prescribed, p = 0, while on the remaining
part of the boundary where the normal acceleration is prescribed, (Vp-n) = 0, so that
the right hand side of Eqn. (1.124) vanishes, i.e.,

d [ N
- £ o4 . dav| = 0. 1.12
7 [/v (2@3 + 2Vp Vp) V] 0 (1.125)
Thus .
P
/ <—2 +-Vp- V;ﬁ) dV = constant, (1.126)
v \2a; 2

for all times. Since at time ¢t = 0, p(a,0) = p(x,0) = 0, the constant value in the above
equation is zero. Because of their non-negative nature, we deduce that the individual terms
in the integrand are zero, i.e., considering the first term,

p(x,t) = 0. (1.127)

This implies that p(x,t) = p(x) at all times. But at ¢ = 0, since both (pa); and (pa)2
satisfy the same initial condition, we have p(x) = 0. Hence p(x,t) = 0 for all & and ¢
proving the uniqueness of the solution.

In contrast to parabolic problems, the wave speed for solutions to hyperbolic PDEs is
finite, i.e., a disturbance due to say a surface loading is transmitted only a finite distance
(depending on the wave speed) in a finite amount of time.

Oftentimes, one is interested in ‘periodic steady-state’ solutions to hyperbolic equations
(especially in the field of acoustics and elastodynamics) when the loading is periodic, and
there is a small amount of damping in the system that damps out the initial transients
(although this damping is usually not part of the mathematical model). Note that the
initial conditions play no role in finding the periodic steady-solution, and in that sense the
solution procedure is very similar to that for an elliptic PDE.

Substituting pa = Re[pe™?] into the wave equation given by Eqn. (1.121), the governing
equations for p reduces to the Helmholtz equation given by (with k = w/ay)

V% + k*p = 0. (1.128)

We have already presented the general solutions to the Helmholtz wave equation given by
Eqn. (1.128) in various coordinate systems. The coefficients in these solutions are found
using the boundary conditions.

We now show that the governing equation and boundary conditions governing the trans-
verse vibrations of a membrane are almost identical to those of the two-dimensional acous-
tic equation. Let w(z,y,t) denote the transverse displacement, o denote the areal density
(units of kg/m?), T" denote the tension in the membrane (units of force per unit length),
and ¢(z,y,t) denote the normal force per unit area acting on the membrane. Further, let
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A denotes the domain occupied by the membrane in the two-dimensional plane (say, the
x-y plane in the above setup), C' denote its contour, and n denote the unit in-plane normal
to the contour. The governing equation for the membrane is given by

- O?
TV*w + q(z,y,t) = 08—;0, (1.129)
which can also be written as
t 102
vy 4 488 10w (1.130)

T T2 o’

where 2 =T /o denotes the wave speed. The allowable boundary conditions are that either
w or (Vw) -m be prescribed at every point on the contour C, while the appropriate initial
conditions are that w|,_, and (Ow/0t);—¢ be prescribed as functions of (z,y).

A steady-state solution exists if and only if ¢(z,y,t) is independent of ¢, and if

/C(Vw)-nds+/ q@T’y) dA =0, (1.131)

A

In case it exists, the steady-state solution is found by solving Eqn. (1.130) with the right
hand side set to zero, i.e., by solving

q(z,y)
T

V3w + =0, (1.132)

which is exactly analogous to the steady-state heat conduction equation. Thus, steady-
state solutions to the membrane problem for various domains can be obtained by making
the substitutions

T — w,
pQ = 4,
k—T,
On the other hand, the transient equation given by Eqn. (1.130) is exactly analogous to

the acoustic wave equation. Thus, the transient solutions for membranes can be obtained
by making the substitutions

p or pa — w,
ag — C,

G—>g~.
T



Chapter 2

Elliptic and parabolic partial
differential equations

In this chapter, we consider the solution of elliptic and parabolic partial differential equa-
tions on various domains.

2.1 Rectangular domain

Consider the rectangular domain [0, L] x [0, H] (see Fig. 2.1). First we consider the solution
of steady-state problems for which the governing equation is

PT  0*T  pQ
PR 2.1
0x? + 0y? + k 0 (2.1)

Initially, we consider the case when ) = 0.
If the boundary conditions are given by

T|y:0 = fb(x)a T|y:H - ft(x)a

(2.2)
Tmo=ay), Tl,—p=9:-(v),

with the constraints f,(0) = ¢i(0), fi(L) = g,(0), £i(0) = qi(H) and f(L) = g,(H), then
assuming the form of the solution to be given by

sin(a,x) [A, sinh[ay,(H — y)] + B, sinh(a,y)]

T:co+clsc+02y+cgscy+z

— sinh(a,, H)
> sin(B,y) [Cy sinh[B,(L — )] + D,, sinh(S,z
330 G —) R

n=1
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(L, H)

xT

Fig. 2.1: Rectangular domain.

where a,, = nw/L and B, = nw/H, we get on imposing the boundary conditions,

co+ i+ Z Ay sin(a,x) = fi(z),

n=1

co+cr+coH+csHr + Z B, sin(a,r) = fi(v),

n=1

o+ ey + > Cosin(Buy) = ai(y),

n=1
co+ 1L+ coy + esLy + Z D, sin(Bry) = g-(y).
n=1

With the above-mentioned constraints, we get co = f,(0) = ¢,(0), c1 = [fo(L) — f(0)]/L,
¢ = [gi(H) = 9i(0)]/H, and ¢5 = [g,(H) — gi(H) + fo(0) — fo(L)]/(HL). Let

(
ft@) fi(x) —co— crx — coH — c3H,
9(y) = 9(y) — co — 2y,
Gr(y) = g-(y) — co — c1L — coy — c3Ly.

The remaining constants are now given by

-2 [* iersitent
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/ ft ) sin(a, ) dz,

=2 / 1(3) sin(5,9) di,

Note that the above solution is derived under the constraint that the imposed temperature
be continuous, while the solution given by Eqn. (9), Section (5.3) of [2] does not impose
any such constraint.

As an example, if fy(x) = fi(z) = g(x) = g.(x) = Tp, then ¢ = Ty with all the
remaining constants zero, so that the steady state-solution is

T

7= (2.4)

As another example, if f;(x) = g/(y) = g.(y) = 0, and fy(z) = Toz(L — x)/L?, then we
get co=c1=cp=c3=0, B, =C, =D, =0 for all n, so that

S sin (2n— 1)7rx sinh (2n—1)w(H—y)
- Z 2 ?) H (2'5)

We now consider the solution of steady-state problems for which @) # 0.
If the boundary conditions are given by

T|y (. T|y H — 0

(2.6)
T|:v:0 - T|:1::L - O’

then we assume the solution forms to be (these forms are the same as those that appear in
the solution of the Helmholtz equation)

T = Z Z A Sin o, sin B,y (2.7a)
n=1 m=1

% = Z Z o SIN Qe sin By, (2.7b)
n=1m=1

where a,,, = mn /L, 5, =nw/H, and

L = kLH/ / Q(z,y) sin ay,x sin B,y dz dy.
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Substituting the forms given by Eqns. (2.7) into the governing equation, we get

me a2, + [2 - kLH oﬂ + 32)

/ Q(z,y) sin ay,x sin By dz dy. (2.8a)

As an example, if Q) = @y, we get

kA, _ 41 — (=)™ — (=1)")(LH)?
pQO 7T2(m71')<n )[(mH)Q (nL>2] )
16 sin G- iy Gnolmy

L2Q0 Z Z w2[(2m — )x|[(2n — D)x] {[(2m — 1)H]2 + [(2n — 1) L]?}

(2m— 1) (2m—1)7(H—2y)

L 4 sin ¥ cosh
m—1 2m — 1 ] COSh — L
If the boundary conditions are given by
or
k— =T|,_5=0,
oy =0 v
o7 oT (2.10)
k— = k— =0
ox |, ox |, ’
then we assume the solution forms to be
T = ZD Cosﬁny+z ZAmn COS Oy, X €OS B, (2.11a)
n=1 m=1
pQ Z Sy cos By + Z Z Zn COS Qi T COS B, (2.11b)
n=1 m=1

where «,,, = mn/L, B, = (2n — 1) /(2H), and

Sh, kLH//Qa:ycosﬁnydxdy,

7 —
. k:LH/ / Q(z,y) cos apyx cos By dx dy.

Substituting the forms given by Eqns. (2.11) into the governing equation, we get

S 2p H L
n n JO 0
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mne a2 + (32 - kLH a2 + 52)

/ Q(z,y) cos ayx cos By dx dy. (2.12Db)

As an example, if () = @, then we have with n :=y/H,
kD,  4dp(—=1)"*!
pH2Qy  km(2n —1)’
KT i 16(—1)"" cos[(2n — D)y /(2H)]  1—n?
pH?Qy [(2n — 1)x]? 2

(2.13)

(2.14)

n=1

Now we turn to the solution of transient problems.
If the heat input is zero, and the initial temperature is given by f(x,y) with the bound-
ary conditions given by

orT oT

k— = k— =0
Oz |, ox |, ’
8T 8T (2.15)
k— =0, =0,
Y |0 8?/ y=H
then with a,, := mn/H and (3, = nn/L, the solution form given by
T = Z Z Ay €OS Brx cOs amye_o‘(a%#ﬁ%)t, (2.16)

n=0 m=0

automatically satisfies the governing equation and boundary conditions. Imposing the
initial condition, we get

i i Amn COS an COS Y = f(fE, y)a

n=0 m=0

which yields

2 "
ﬁ/O /O f(z,y) cosapydrdy, (m>1),
9 H L
Ao, = ﬁ/O /0 f(z,y)cos Bpxdxdy, (n>1),
L
/

f(x,y)cos Buxrcosapydrdy, (m>1,n>1).
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As an example, if f(z,y) = co, then all the constants in Eqn. (2.16) except Agy = ¢
are zero, so that T'/co = 1. As another example, if f(x,y) = ¢ocos(mz/L), then all the
constants in Eqn. (2.16) except Ag; = ¢o are zero, so that T/cy = cos(mx/L)e o™ /17

If the heat input Q(z,y,t) is nonzero, the initial conditions are zero, and the boundary
conditions are still given by Eqn. (2.15), then we assume the solution forms to be given by

T(z,y,t) ZZAmn ) cos B2 cos ay,ye —elan Bt
n=0 m=0 (217)
Az vl DI
s mn (t) €OS BT cOs Y,

n=0 m=0

where

Zoo kLH/ / Q$y, d$dya

Zn(t) = k:LH/ / Q(z,y,t)cos Bpxcosapydrdy, (m>1,n>1).

Substituting Eqn. (2.17) into the governing differential equation for 7', we get
A;nn(t) = OzZmn(t)ea(Oé?n-i-ﬁ%)t’

which, on integrating subject to the initial condition T'|,_, = 0, yields
Ago(t) = Oé/ot Zoo(T) dr,
Apn(t) = « /t Zan (7)™t 7 (m, n, not simultaneously zero).
0
If Q(x,y,t) is a function of time alone denoted by Q(t), then Zy(t) = pQ(t)/k is the only

nonzero component, so that T'(z,y,t) = (ap/k) fg Q(7) dr. In particular, if Q(z,y,t) = Qo,
where Qg is a constant, we get T'(z,y,t)/Qo = apt/k.

2.2 Doubly infinite strip

Consider the domain to be the region —oco < z < oo and 0 < y < d (see Fig. 2.2). In this
section, we consider only the case where there is no variation of the boundary conditions or
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T

Fig. 2.2: Region bounded by two parallel planes.

the heat input with x. However, we shall indicate in the next section (see Eqn. (2.72)) how
the results of this section can be extended to the case where such a variation is present.
Since there is no variation along x, the governing equation is given by

19T _ 9T | pQy,1)
a ot Oy? k

. (2.18)

First we consider the solution of steady-state problems. Initially consider the case where
@ = 0. If the boundary conditions are T|y:0 = T, and T|y:d = Ty, then the solution is
given by
d— y)Ta + yTb
pi )
If the boundary condition is T'|,_, = Ty and k(9T/0y)y=a = qo, then the steady-state
temperature is

7 |

(2.19)

T=T,+ %. (2.20)

If the boundary conditions are —k(97/0y)y—0 = ¢, and k(0T /0y)y—a = q, then by
Eqn. (1.111), a steady state solution exists if and only if ¢, + ¢, = 0. Under this constraint

the solution is given by
qay qvy
=Cy+ —= 2.21

T=Cy—

where () is an arbitrary constant.
Now consider the case where Q(y) # 0. If the boundary conditions are given by T'| y—a =
T|y:d = 0, then the solution is given by

T=3 A,sin 2, (2.222)
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PQ ., . Ty
? = ;Zn S1n 7, (222b)

where

Zn / Q(y sm@

Substituting Eqns. (2.22) into the steady-state governing equation, we get

2d
P / Q(y sin—dy

As an example, if Q(y) = Qoy/d, then with & := y/d, we get

KT 2. 2(—1)"* ! sin(n7€) L —£?)
P > ok == (2.23)

n=1

If the boundary conditions are T'|,_; = k(9T/0y)y=q = 0, then the solution is given by

s . (2n—1)my
T= ZA" sin —— (2.24a)
n=1
PQ <, . (2n—Dmy
? = ; Zn S1n T, (224b)

where

If the boundary conditions are k(91/0y),—o = k(0T /0y)y—q = 0, then by Eqn. (1.111),
a steady-state solution exists if and only if fo Q(y)dy = 0. Under this constraint the
solution is given by

T=Cy+ E A, cos n%;y’ (2.25a)
2 _ nmy.

Ln 2.25b

E cos —= (2.25b)
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where () is an arbitrary constant, and

n / Q COS B dyv

2pd
n: 2/ Qy cos—dy

7T

As an example, if Q(7) = Qo(1/2 — Q/d), then with £ := y/d, we get

KT kG —dcos[2n— )&l kCy 1 —6¢% 448
pd?Qy pd%@o%jéz [r@2n =D pd®Qo 24

Now we turn to the solution of transient problems. We will consider the cases of nonzero
initial temperature f(y) and nonzero Q)(y) separately. Hence, first consider the case where
f(y) = Q(y) = 0. On taking the Laplace transform of Eqn. (2.18), since the time derivative
with respect to t gets transformed to an algebraic variable s by virtue of Eqn. (1.105), the
partial differential equation given by Eqn. (2.18) gets transformed to the following ordinary
differential equation:

(2.26)

T
—— +¢*T =0, (2.27)

where ¢ = /—s/a. The general solution of Eqn. (2.27) is

T = c1(s) cos qy + co(s) sin qy, (2.28)

where the constants ¢;(s) and c3(s) are determined using the boundary conditions. We
consider the following three types of boundary conditions:

L T|,_o="Tu(t) and T|,_, = Tp(1):
On imposing the boundary conditions, Eqn. (2.28) yields
1

T = Sngd [T..(s)sing(d — y) + Tp(s) sinqy] . (2.29)
The roots of singd = 0 are given by qd = nm, n = 1,2,...,00. Hence, we can write
the above equation as

S s e A _ ~~ B

T =Tu(s) # + Ty(s) # (2.30)

;;5+Jﬁﬁ ;;5+J?£
Since ¢* = —s/a, we have
dq 1

o —— (2.31)
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Using Eqn. (1.100), we have

~ sing(d —y) _ 2anm . nmy
n — (d(sinqd)) @ = d2 Sin T, (232&)
dq ds q=nm/d
_ singy _2(=D)"anm . nwy
B, = 7<d(squ)> m = 7 sin —=. (2.32b)
dq ds q=nm/d
Hence, the final solution is given by
T(y,1) QO‘i in 7Y /t CTL(t—7) + DyTy(t— )] e 2 dr L (2.33)
= — nmsin —— ndaot —T n —T)le a2 T ¢, .

C, =1,
D, = (=1)"*%
As applications of Eqn. (2.33), we have

(a) For the case where at t = 0, we impose a constant temperature T, (t) = T, with
Ty(t) = 0, we get with £ :=y/d,

T<y7 t) > 2 Sln(’nﬂ'f) _a(nTr)Qt
=1-¢§-) —— e & 2.34
T, : ; nm ¢ T ( )

which in the limit as ¢ — oo reduces to the steady-state solution given by
Eqn. (2.19) with T}, = 0.

(b) If T,(t) = Tye " and Ty (t) = 0, then the solution with v := y/wd?/« is

T(y,t) sin[y(1—¢)e™" = 2nmsinnmg _atnm?t 9 35
T. siny _;(nﬂ)2—72€ T (2:35)

If T,(t) = To(1—e "), then superposing the solutions given by Eqns. (2.34) and
(2.35), we get
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Since there is now no discontinuity in the imposed temperature at ¢ = 0, one
obtains a much faster convergence of the series in Eqn. (2.36) than in the in-
dividual cases given by Eqns. (2.34) and (2.35). One can also obtain the flux
in a straightforward way by using a term-by-term differentiation of the solu-
tion in Eqn. (2.36) without the problems of convergence that occur at t = 0 in
the case of a discontinuous imposed temperature (see the discussion following
Eqn. (2.117¢)).

(c) If To(t) = T, cosQt and T,(t) = 0, then the solution with k; := /Qd?/(2a) is

0o : _amm?t
T;zjat) = % cos Qt + % sin (2t — nz_:l (nw)?’(s;?lr()?z?f)fk% - 3 (2.37)
while if T, (t) = T, sin ¢, then
T, t) _ M sin Qt — Mo cos Qt + 2k? i or Sin(nﬂé)eia(zjg)% (2.38)
2T, D D P (nm)t+ 4kt
where

Ny = cosh ky cosh ki (1 — &) sinky sin k(1 — §)

+ sinh &y sinh kq (1 — &) cos kg cos kq (1 — &),
Ny = sinh ky (1 — &) cosh ky sin ky cos k(1 — €)

— sinh ky cosh k(1 — &) sin k(1 — &) cos ky,
D = cosh 2k; — cos 2k1,

If T, = T, = @ = 0, and the initial temperature f(y) is nonzero, we assume the
solution form (obtained by using separation of variables) to be

_Oé(nﬂ')2t

T(y,t) = Z A, sin %e Z . (2.39)
n=1

Note that this form automatically satisfies the homogeneous governing equation and
the homogeneous boundary conditions at the two boundaries y = 0 and y = d.
Evaluating at t = 0, we get

>~ Ausin =2 = f(y).
n=1

which yields
d
A, = —/ f(y) sin Y dy. (2.40)
0
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If fly)=T, =T, =0, and @ is nonzero, then similar to Eqn. (2.39), we assume the
solution and the heat input to be of the forms!

04(7’L7\')2t
ZA sm—e a2 (2.41a)

mry

Z Z(t) sin —= (2.41Db)

Zn( / Q(y sm—dy

Substituting Eqns. (2.41) into Eqn (2.18), we get

where

a(nm 2t
AL () = ae™F 7, (1), (2.42)

which on solving using the fact that f(y) = 0 yields
t
Ap(t) = a/ Zn(T)e
0
2,0a a(nm)?r
= Q g, T) sin 7 dy C a2 dr.

Substituting this expression into Eqn. (2.41a), we get

a(nTr) T

dr

2 _a(nm 2 t—1
T(y,t) = ﬂ sin @ / Qy, ™ sm — dy = g (2.43a)
kd ~— d
2 > a nm
_ e sin —= mry / Qy,t — 1) sin 19 dy ( = dr.  (2.43b)
kd “— d
If Q(y, t) is a function of time alone, i.e., Q(y, t) = Q(t), then, as expected, Eqn. (2.43b)
reduces to
4par 1 . (2n—Dmy [ _a@n-1)%x?r
T(y,t) = t— 2 dr. 2.44

As an example, if Q(y,t) = Qoy/d, then from Eqn. (2.43b), we get with £ := y/d,

KT.t) _ 60 =€) | S 21 sinfure) st
pQod? 6 +Z n3m3 T

n=1

(2.45)

which in the limit as ¢ — oo reduces to the steady-state solution given by Eqn. (2.23).

!The exponential term in Eqn. (2.41a) can be absorbed into A,,(t); the only reason we write it separately
is that, later on, it results in a slightly simplified expression for A, (¢).
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2. If the boundary conditions are of the type T|,_, = T,(t) and k(9T/0y)y—a = q(?),
and if f(y) = @ = 0, then the solution is given by

b 2 — ]_ t Dn 2n—1 2o¢7r27'
t) = % ;sin %/0 [CnTa(t —7)+ ?qb(t —7) e e dr,

(2.46)
where
(2n — 1)m
c, =T
d
D, = 2(—1)"",
As applications of Eqn. (2.46), we have
(a) If T,(t) = 0 and ¢,(t) = qo, then
kT (y,t) = (=D . (2n—1)7¢ _an—1)’x%
= 2.4
wd ST Z n—12""" 2 ° 7 (247)

which in the limit as ¢ — oo reduces to the steady-state solution given by
Eqn. (2.20) with Ty = 0.

(b) If T,(t) = Ty and g,(t) = 0, then

_ a(2n—1)27r2t

T( t) oo sin (2n;1)7r£6 vy
=1-4 ; G , (2.48)

which in the limit as ¢ — oo reduces to the steady-state solution given by
Eqn. (2.20) with ¢o = 0.

(c) If To(t) = T, cosQt, with ¢,(t) = 0, then with ky := \/Qd?/(2a), £ := y/d, we
get

N N.

T = 31008975 + ﬁSith
1)w€

42 (2n —1)3x sm( 2) o~ o(2n—1)*n%t/(4d%)

[(2n — 1)7]* + 64k} |

while if T, (t) = T, sin ¢, then

T(y,t) _ Ny | Ny
T, 6stt— 3005915
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> (2n—1)7rsinM o N2 2, a2
32]{:2 2 a(2n—1)*n4t/(4d*)
oSk z::l [(2n — 1)7]* + 64k2 ©

)

where

Ny = cos ki€ cosh k(2 — &) + cosky(2 — &) cosh kq &,
Ny =sin ki€ sinh k1 (2 — &) + sin k(2 — &) sinh k&,
D = cosh 2k; + cos 2k,

(d) If T,(t) = T,e " and ¢y(t) = 0, then with v = \/wd?/a, we get

— —wt & — (2 1)7T§ a(2n—1)2x2
T(y,t) _ cos[y(1 —&)]e 4 Z 2n — 1) sin == -y t’ (2.49)
T, cos 7y — [(2n — D)7]?2 — (27)?
while if T,(t) = 0 and ¢(t) = g™, then
kT > SlIl 2 1)7‘-5 a(2n— )2772
W) _ sinr)e +83 ] L (a5
@ 7y cosy — 2n - 1 — (27)

(e) If T,(t) = 0 and g,(t) = qo cos Qt, then we have with ki := /Qd?/(2«),

KT(y,t)
qod

Ny
th+3stt

4d?

[(2n— D +64k2 "0 2 ’

Ny
D¢
i 8(—1)"[(2n — D7) . (2n— 1)ﬂ§6_a(2n—1)2w2t
=1

while if g,(t) = qo sin Qt, we get

ET(y,t N N-
% = Flsith — FQCOSQt
i "k2 . (2n —1)m€ _aen-n2*
— Sin e 4d?
2n — 1 44 64/{34 2 ’

where

Ny = sinh ky sin kq [cosh k1€ sin k1€ — sinh k1€ cos k€]
+ cosh ky cos ky [cosh k1€ sin k1€ + sinh k1€ cos ki €]
Ny = cosh kq cos ky [sinh k1€ cos k1€ — cosh k1€ sin k€]
+ sinh & sin ky [cosh k1€ sin k1€ + sinh k€ cos k€]
D = ky(cosh 2k; + cos 2ky).
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If T, = g = Q =0, and f(y) is nonzero, then the solution is given by

> 2n — 1 a(2n—1)2r?
T(y,t) = ZA” sin w‘e R (2.51)

n=1
where

/f ain ¢ )WydA

If 7, = @ = f(y) = 0, and Q(y,t) is nonzero, then following the derivation of
Eqns. (2.43), and now assuming that

— a(2n— 2‘rr2
ZA ) sin 771 1)7ry6_ S t,
2d

(2n — )7y
Zn( AP AL
Z sm T

200 on —1 trord 2n — 1)y a@n=1)2r2(t=7)
T(y 1) = L2 gig 20— DTy /O /O Q(Msmwd@} tnien

2d
(2.52a)

2d

(2.52D)

If @ is a function of time alone, i.e., Q(y,t) = Q(t), then we get

Apa & 1 . (2n — )my /t _a@n-1)2x2r
T = — 2 . 2.

If @ is a function of y alone, then in the limit as ¢ — oo, the solution given by
Eqn. (2.52b) reduces to the steady-state solution given by Eqn. (2.24a).

. Now consider the case where the boundary conditions are of the form —k(97'/0y),—o =

¢u(t) and k(0T /0y)y—a = qu(t). If f(y) = Q = 0, then the Laplace-transformed solu-

tion is given by

T s q(d — y)ga + cos qub. (2.54)
kqsin qd

2 > 2 — ]_ tr d 2 — ]_ 1 a(2n— )27727'
= ﬂZsin 7( n )ﬂy/ / Q(y,t — 7)sin 7( n—Dmy dg} T
_ 0 LJO

T.
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Eqn. (2.54) can be written as

(@t ®) | | Cnla Qon
T=—"—""4 :
kjds Z S _|_ %;F)Q S _'_ a(nﬂ—)

(2.55)

n=1

where the coefficient of 1/s in the first term on the right hand side of the above
equation is obtained using Eqn. (1.99) as

o [cosa(d = y)da + (cosqy) @] ag® _ a(qo + @)

q—0 kqsin gd kd
and the remaining coefficients are obtained using Eqn. (1.100) as
cosq(d —y) 20 nwy
Q1p = — ; = 77;C08 ——,
kq (d(squ)) dg  kd d
dq ds g=nr/d
cos qy 2(—1)"« nmwy
Qop = — = cos ,
2 ke (d(sinqd)) dq kd d
dq ds g=nn/d
so that
T(y, t) kd ¢ > nmy t —Oé(nﬂ')27'/d2
—2 L = | [qu(7) + qp(7)] dT + 2 Z cos —= [ qu(t—T)e dr
a 0 n=1 d 0

= n nmy ' —a(nm)?T/d?
+2 Z(—l) cos —= i @t —7)e dr. (2.56)
n=1

As applications of Eqn. (2.56), we have

(a) If g, = 0 and g, is constant, then with £ := y/d, we have

kT(y,) at _2_§+__22cos nwé) el

Gad @

)

(b) If —qu(t) = q»(t) = constant, then

( t) cos 2n—17r§]_ on— 1122t /d?
—— 414 a(2n )nt/d.
=¢ Z [(2n— DAz ©

which in the limit as ¢ — oo reduces to the steady-state solution (apart from a
constant) given by Eqn. (2.21). Note that in the steady-state case, the arbitrary
constant is undetermined, while in the transient case, there is no such undeter-
mined constant by virtue of the necessity of having to meet the initial condition
in addition to the boundary conditions.
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(c) If g, = 0 and q,(t) = goe™ ", then with v := /wd?/«

FO(y.t) 1 <1 ~ M) Ly A eos il Ty s

god A2 sin vt (nm)? — 42
(d) If g, = 0 and g,(t) = qosinwt, then with k; := \/wd?/(2«), we have
kT (y,t) 1 M N, . 5o (—1)" cos(nm€)e—anm)*t/d
= — Leoswt — Zsinwt + 4k
wd 2@ D st psmets 1; (nm)t + 4k? ’
(2.58)
while if ¢, = g coswt, we get
kT (y,t) N cos(mr&) —a(nm)*t/d®
Tad 5smwt——coswt QZ P , (2.59)

where

Ny = cos ky sinh kq [cos k1€ cosh k1€ — sin k€ sinh k€]
+ sin ky cosh ky [cos k1€ cosh k1€ + sin k€ sinh k1],
Ny = sin ky cosh ky [cos k1€ cosh k1€ — sin k€ sinh k€]
— cos ky sinh ky [cos k1€ cosh k1€ + sin k; € sinh k€],
D = ky(cos 2k; — cosh 2ky).

Note the constant (nonintuitive) term that appears in the solution given by
Eqn. (2.58) but not in Eqn. (2.59).

If g, = ¢ = Q =0, and f(y) is nonzero, then the solution is given by

. > nﬂ'y _a(n‘rr)Qt
T(y,t) = Ao+ ; A, cos ¢ z (2.60)
where, on imposing the initial conditions, and using the orthogonality of the cosine

functions, we have
1
2 [ o

nmy

/f cos—dy, n > 1.
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Finally, if ¢, = ¢ = f(y) = 0, and Q(y, t) is nonzero, then assuming 7" and @ to be
of the forms

a(nTr)Qt

T(y, )+ ZA cos —e az (2.61a)
pQ(y,t) nmy
- ) + ZZ COS— (2.61b)

where

p (4
%@:@/@@mw
Zn( / Q(y,t) cos @ dy,

and following the derivation of Eqn (2.43), we get

k”% //Q%@M

+ QZCOS —/ [/ Qy, T cos— dy] a(miﬂ(t 2 dr (2.62a)

IAAQ@ﬂ@M

o t d >  a(nm)?
+2 Z cos nfzy / [/ Q(y,t — ) cos nfzy d;&} "B dr. (2.62b)
n=1 0 0

If Q(y,t) is a function of time alone, then the second term in each of the equations
(2.62) is zero.

As an example, if Q(y,t) = Qoy/d, then from Eqn. (2.62b), we get

KT(y,t) ot 6% —1—4&3 cos[(2n — 1)7E] _aen-p2a%
= —+ —-+4 2 . 2.63
20, 2 2 Z (2n—)at ¢ " (263)
As another example, if Q(y,t) = Qo(1/2 — y/d), we get
kT 1— 662 +48 N 4cos[(2n — 1)wé] _atn=1?x%
_ N 2.64
pre) 7D Dh (i = IR e

n=1
which in the limit as ¢ — oo reduces to the steady-state solution given by Eqn. (2.26)
(apart from the arbitrary constant Cy in Eqn. (2.26) which remains indeterminate).
Note that a steady-state solution exists in the case of Eqn. (2.64) but not in the case
of Eqn. (2.63) since the constraints given by Eqn. (1.110) are met in the latter case,
but not in the former.
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2.3 Two-dimensional half space

We first consider the solution of steady-state problems on the two-dimensional half-space
y > 0, and governed by the equation

*T  O°T
N N pQ(z,y,1)
ox?  0y? k

= 0. (2.65)
Consider the case where @ = 0 and T'|, _, = f(x). We assume the temperature form to be

given by
T = / [A(X) cos Az + B(\) sin Az] e d, (2.66)
0

which automatically satisfies Eqn. (2.65). Imposing the boundary condition, we get
/OO [A(N) cos A\x + B(\) sin Ax] d\ = f(z),
0
which on inverting using Eqn. (1.37) yields
AN = %/Z f(z) cos \z dz, (2.67a)
B(\) = %/Z f(2)sin Az dz. (2.67Db)

Substituting Eqns. (2.67) into Eqns. (2.66), and carrying out the integration with respect
to A\ using Eqn. (A.2b), we get

Ly [c f@)di
r=tf @2+ g (2.68)

which agrees with the solution presented by Eqn. (20), Section (5.2) of [2] (with z and y
interchanged). As usual, the boundary condition on the surface y = 0 is to be verified by
evaluating the limit y — 0 after evaluating the integral in Eqn. (2.68).

As an example, if f(z) =T, for —a < x < b, and zero elsewhere, then we get

r_1 (b= an— at+w

ﬁ:;[tan (y)+t <y)]

9= _ (a+b)(a—b+2z)y

k _ﬂ[(b_x)2+y2] [(a+x)2+yz]> (2.69)
g _ (a+D)[(b—2z)(atz)+y’]

kooowlb—2)+ 92 [(a+2)? +y?)
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which in the limit y — 0 yields the imposed boundary condition on the temperature. Al-
though we have considered a discontinuity in the prescribed temperature on the boundary,
such a problem is not well-posed since it results in an infinite flux at (z,y) = (—a,0) and
at (z,y) = (b,0), besides other anomalies such as different limiting values depending on
the order in which one takes the limit y — 0 and x — b (or z — —a); the reason we have
considered it here is that similar boundary conditions are often considered in the literature
as in, e.g. [2]. For a,b — oo, we get the expected solution T' = T.
If the boundary condition is given by

= f(x), (2.70)

then by Eqn. (1.111), a steady-state solution exists if and only if f_oooo f(z)dz = 0. We
shall not consider this case further because of this complication.

To find the steady-state temperature when Q(z,y) # 0, and T| y—o = 0, we assume the
solution forms to be

/ / ) cos Az + B(A, ) sin Az| sin vy dy dA, (2.71a)
/ / )cos Az + S(\, ) sin Az| sin vy dry d, (2.71b)
where
R\, vy) = 7r2k:/ / Q(z,7) cos Az sin vy dz dy,

S\, y) = 7r2k:/ / Q(Z, 4) sin Az sin vy d dy.

Substituting the forms given by Eqns. (2.71) into the governing equation given by Eqn. (2.65),
we get

R(A, v
A<)\77> = ﬁ’yzu
S(\,7)

If the boundary condition is (07/0y)y—o = 0, then by Eqn. (1.111), a steady-state

solution exists if and only if
|| etwididi=o
—o0 J0
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We shall not consider this case further because of this complication.

The results derived so far can be easily extended to the case of a doubly infinite strip
as shown in Fig. 2.2. First consider the case when ) = 0, and the imposed temperature or
normal flux conditions on the surfaces y = 0 and y = d are functions of x. Then in place
of Eqn. (2.66), we now have

T = /00 [A(X) cos Az + B(A) sin Az| [C'(A\) cosh(Ay) + D(A) sinh(Ay)] dA, (2.72)

where the functions A(X), B(\), C(\) and D(\) are found based on the imposed boundary
conditions.

Similarly, if Q(z,y) # 0, and if, for example, homogeneous temperature boundary
conditions are imposed on the surface y = 0 and y = d, then in place of Eqn. (2.71), we
now have with =, := nn/d,

T = i sin(y,y) /OOO [A,(X) cos Az + By, () sin Az] dA, (2.73a)
n=1
% = i sin(v,y) /OO [Rn () cos Az + S, (A) sin Az| dA, (2.73b)
- 0
which on substituting intolthe governing steady state equation yields
M) = s
By = S0

We now turn to the solution of transient problems. Consider the halfspace y > 0
with the temperature specified as T,(t) on the bottom surface y = 0. Since there is no
dependence of the boundary condition (and hence of T') on x, the governing equation is

10T _ 0T  pQy,1)
a ot Oy? ko7
First consider the case where the initial temperature and the heat input are both zero.

The Laplace-transformed solution of Eqn. (2.74) is given by

2T  sT
_ 27 . 2.75
7o 0 (2.75)

(2.74)

The solution to this equation is given by T = cie® + coe” %, where ¢ = V/s/a. Since T = 0
as y — oo and T'(0,s) = T,(s), we have ¢; =0, and ¢y = Tp(s), so that

T = The . (2.76)
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Using Table B.1 and the convolution theorem, and with 7 := y/vat, we get

¢
o Y Ty (t — 7—) —y?/(4at)
T(y,t) = 2\/75/0 € dr (2.77a)

2) 0 y2 a2
= NG , Tyt — Tz ) € dz, (2.77b)
"

where the last step has been obtained by making the substitution #? = y*/(4a7). The
above solution agrees with the solution given by Eqn. (7), Section (12.4) of [2].
For Ty(t) = Tp, we get from Eqn. (2.77a),

T e (2)
TO—GI'C 2 .

Note that lim;_,., 7'/Ty = 1, while lim, ,o T/Ty = 0, which results in a ‘conflict’ as ¢ and
y both tend to infinity, the reason being that in our derivation of the transient solution,
we require that the solution decay to zero as y — oo, while T//Ty = 1 is an admissible
steady-state solution if we merely impose the restriction that the solution remain bounded
at infinity.

For Ty(t) = TocosQt and Tysin Qt, we get with o := /€/(2a) (compare against
Eqn. (8), Section (12.7) of [2]),

T 1 o0 —(Qt)A
(j@ia t) =e Y cos(QU — oy) — — / % sin(oyv2\) dA, (2.784a)
0 T Jo
T(y,t) ey 1 o0 e—(Qt))\ )
T, e sin(Qt — oy) + - /0 e sin(oyv2\) dA, (2.78b)

or, alternatively, on using Eqns. (A.2d) and (A.2e),

Tly.t) _ 2 [ (09)* e
- =7 Ot — - — Qt — ¢ 2.
T e 7 cos(Qt — oy) N cos | Q 262 et dE, (2.79a)
T(y7 t) _ _—0Y .1 2 W/2 : (Uy)2 —§2
T e sin(Q — oy) — N sin | Qt — 262 e~ dg. (2.79b)

The second part of the solution in Eqns. (2.78) and (2.79) dies out as t — oo, and the
‘periodic steady-state’ solution in the two cases is given by

Tis(t)

=e 7Y cos(QU — oy), (2.80a)

= e 7sin(QU — oy). (2.80b)
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Finally, for Ty(t) = Toe™, we get with o := 2v/Qa (which is imaginary when Q < 0),

T(u.t Qt t —ot
(y,1) — & | o g Y to + e IV erfe 12 ; (2.81)
Ty 9 Ny, viat

which agrees with the solution given by Eqn. (9), Section (2.5) of [2]. Alternative forms
of the solutions in Eqns. (2.78) (which do not involve integrals, but which involve the
imaginary number i) are obtained by replacing €2 by i€ in Eqn. (2.81), and then taking
the real and imaginary parts of the resulting solutions.

If T,(t) = 0, and the initial temperature is f(y), then we assume the solution form to

be
T(y,t):/o AN sin(Ay) e Nt dA. (2.82)

Note that the above form automatically satisfies the governing equation and the homoge-
neous boundary condition at y = 0. Enforcing the initial condition, we get

/O A sin() dA = f(y),

-2 [ o

Substituting the above expressions for A()) into Eqn. (2.82), and carrying out the integra-
tion with respect to A using Eqn. (A.2c), we get

which leads to

T(y,t) = y=9)%/(dat) _ o —(y+9)*/(dat) | g5 2.83
)= 5= | j (2.83)

For f(y) = Ty, from Eqns. (2.83) and (A.2h), we get

T(y,t)

T, = erf

Nl
5

If T,(t) = f(y) = 0, and Q(y,t) is nonzero, then we assume the solution forms to be

T = / AN, 1) sin(Ay)e N d), (2.84a)
0
% = / Z(A t)sin(Ay) dA, (2.84b)
0
where
2p [ .
Z()‘v t) = 7. Q(y7 t) Sln()‘y) dy
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Substituting Eqns. (2.84) into Eqns. (2.74), and with a prime denoting a derivative with

respect to time, we get
2
A\ t) = ae ' Z(\ ),

which leads to .
ANE = a / N7 (N, 7) dr. (2.85)
0

In place of a prescribed temperature, if we have an imposed normal flux condition given
by —k(9T/0y)y—0 = q»(t), then in place of Eqn. (2.76), we now get

Jage Ve

kT = 2.86
7 (2.86)
Inverting the above Laplace transform using Table (B.1), we get in place of Eqn. (2.77a),
a [Tgt—1) 2
KT (y,t) =/ — [ B—="Le v /an g 2.87
) =2 [ D gr (2:87)
y [ v\ e
== —q |t — “d 2.87b
\/%/,7/2 @2%( 40@2) o (2.87D)
where 7 = y/Vat.
For ¢,(t) = qo, we get from Eqn. (2.87a),
kT dat - Yy
— =4 /—e" /Uat) _ 4 erfe , 2.88
o ™ Y Viat ( )
which agrees with Eqn. (7), Section (2.9) of [2].
For q,(t) = qocosQt and qosinQt, we get with o := /Q/(2a) (compare against
Eqn. (13), Section (2.9) of [2]),
kQT (y, t 2 [V Aem (A
ﬁ = e 7 [cos(QU — oy) +sin(QU — oy)] — \/7_ i \/1_(17)\2 cos(oyV2\) dA,
(2.89a)
EQT (y,t) oy ‘ V2 /oo o— (D)X
—2 L = 7Y [cos(QU — oy) + sin(QU — oy)] + — ————cos(oyV2A) d\,
v [cos( y) ( wl+— N R (oyV2A)
(2.89b)

or, alternatively,

QT (y,t) , 20y ["? 1 (0y)*\ _e
— L =7 Qt — + sin(Qt — — — — Ot — d
ot e 7Y [cos( oy) + sin( oy)] N cos e e 3
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KT (y,t) ., . 20y (7?1 (0y)*\ e
v —e % [cos(QUt — oy) — sin(Qt — oy)] — N sin [ Qt — 262 e % dE.

Finally, for ¢,(t) = goe™, we get with o := 2v/Qa,

kT(?/? t) _ [ Qt+y~/Q/a erfe y + ot thfy\/Q/a erfe Y- Ot:| )

qo Va4 Viat Viat
Alternative forms of the solutions in Eqns. (2.89) (which do not involve integrals, but which
involve i) are obtained by replacing € by i) in Eqn. (2.90), and then taking the real and
imaginary parts of the resulting solutions.

If ¢,(t) = 0, and the initial temperature is f(y), then we assume the solution form to
be

(2.90)

T(y,t) = /0 h A(N) cos(Ay) e Nt d. (2.91)

Note that the above form automatically satisfies the governing equation and the homoge-
neous boundary condition at y = 0. Enforcing the initial condition, we get

/0 AW cos(O) dA = f(y),

/ f(y) cos(Ag) d

For f(y) = Ty, we get, as expected, T/Ty = 1.
If ¢4(t) = f(y) =0, and Q(y,t) is nonzero, then we assume the solution forms to be

which leads to

T:/ A, t) cos(Ay)e Nt dA, (2.92a)
0
%: / Z(M\ 1) cos(Ay) d, (2.92)
0
where
20 [
Z(At) =+ Q(,1) cos(Ay) dg
T Jo

If Q(x,y,t) is a function of time alone, then we get

D _, /0 Q) dr. (2.93)

For Q = Q, we get from Eqn. (2.93),

kT

205 = at. (2.94)
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2.4 Semi-infinite halfspace—axisymmetric case

This section considers the axisymmetric version of the three-dimensional semi-infinite half-
space problem. First we discuss the solution of steady-state problems. Let the boundary
condition be given by T'|__, = f(r). We assume the temperature to be of the form

T= / b AN Jo(Ar)e ™ d. (2.95)

Note that this form automatically satisfies the steady-state governing equation. Imposing
the aforementioned boundary condition, we get

/O T AW L) dA = (1),

which on using Eqn. (1.39) yields

T = /0 T f(#) { /0 h Ao(Ar) Jo(AP)e ™ d\| dr. (2.96)

The flux is obtained by using g = —kVT.
As an example, if T' = Tyy/1 —12/a? for 0 < r < a, and zero elsewhere, we get

A(N) _ sin(Aa) — Aa cos(Aa)

TO a? ’
T Z . 4 a
— =1——-sin" ——.
Tol,—o a va? + 22

Now consider the boundary condition to be

or
— k&

= f(r).

z=0

Imposing the above boundary condition on the temperature form given by Eqn. (2.95), and
using Eqn. (1.39), we get,

kT = /O T f(#) { /O h JoAr) Jo(A\F)e ™ d\| di (2.97)

The flux is obtained by using g = —kVT.
As an example, if f(r) = qoe_57"2, then along the z-axis and on the plane z = 0, we get

KT\/B

qo0

= geﬁzg erfc(z\/B), (2.984a)

r=0
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RIVB| VT gy 5_7“2)
" =5 210< R (2.98b)

2=0

If @Q#0,and T|,_, =0, then we assume the solution forms to be
/ / ) Jo(Ar) sinyz dy dA, (2.99a)

pQ / / 7)Jo(Ar) sinyz dy dA, (2.99b)

where

2 A
Z(\ ) i / / 7 Jo(AF) siny2Q(7, 2) dZ dr.
Substituting the above forms into the steady-state governing equation, we get

Z(A\,7)

A<)\77) = A2 _'_/72

(2.100)

If Q # 0, and (0T/0z).—o = 0, then we assume the solution forms to be

/ / v)Jo(Ar) cosyz dry dA, (2.101a)
pQ
v)Jo(Ar) cos vz dry dA, (2.101b)
where

2 A
Z(N\, ) '0 / / 7 Jo(AF) cosy2Q(T, 2) dz dr,

_ Z(A,v)
A2 42

In the transient case, if we assume that the boundary conditions are a function of time
alone, or, in case the initially imposed temperature is of the form f(z,t), or the imposed
heat input is of the form Q(z,t), then the solutions are identical to the transient solutions
presented in Section 2.3, with now z playing the role of y.

As in Section 2.3, the solution for an axisymmetric imposed temperature or imposed
normal flux on the faces z = 0 and z = d of an infinite slab (i.e., infinite along the radial
direction), is obtained by replacing e=** in Eqn. (2.95) by a combination of cosh(\z) and
sinh(Az) functions. For a nonzero @), the solution is obtained by replacing 7 by -, where
v, are the roots of an appropriate characteristic equation obtained using the boundary
conditions, and the integral with respect to ~ is replaced by a summation.
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2.5 Spherical domain

Consider the axisymmetric spherical domain problem. Let £ := cosf and ¢ := r/a. The
governing equation is given by

10 (,0T 10 oT pQ(r,&t) 10T

—— — —— ((1-)= — L= 2.102

r26r<r 87’)+r28§(< £)8§)+ k a ot ( )
First we consider the solution of steady-state problems on a spherical domain of radius a.

Initially, consider the case where ) = 0. If the boundary condition is given by T'|._, = g(§),
then we assume the steady-state temperature to be of the form

T = i Co (P (£). (2.103)

n=0

Imposing the boundary condition, we get

S CLP(€) = gl6), (2.104)
n=0
which on using Eqn. (1.28) leads to
2n+1 !
Cu =222 [ aonie i (2.105)

As an example, if g(§) = Ty, we get Cy = Ty, and C,, = 0 for all n > 1, so that the
steady-state temperature is T = Tj.

If the boundary condition is given by k(9T/0r),—. = g(§), then by Eqn. (1.110), a
steady-state solution exists if and only if fjl g(&§)d¢é = 0. Under this constraint, the
solution is

T=Cy+ % 3 CulmP(6), (2.106)

n=1

where () is an arbitrary constant, and

) LGS (2.107)

2n -1

If Q(r,&) # 0, and the boundary condition is given by 7| _, = 0, then we assume the
solution form to be given by?

T=>"Y Conjn (A2C) Pu($), (2.108a)

n=0 m=1

2Since T and @ have the same form, the functions that appear in the double Fourier-type expansion
for T and @ are the same as the functions that appear in the separable approximation to the Helmholtz
equation as given by Eqn. (1.96).
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2L S Zone ) Pa(E), (2.108)
n=0 m=1
where )\%), m = 1,2,...,00, are the positive roots of j,(x) = 0, and where on using

Eqns. (1.17) and (1.28),

(n

2 1 N A

A C L //AQQN AT p(€) dé di
ka3]n+1

Substituting Eqns. (2.108) into the steady-state form of Eqn. (2.102), we get

a? Zmn

(A2
(27’L+1 .9 ] )\(n ~ R 72
ka(A)252,, (A5 / / QU ( )Pn(ﬁ) dg dr. (2.109)

As an example, if @ = @, then by virtue of Eqn. (1.29), C,,0, m = 1,2,..., 00, are the
only nonzero components, so that on using Eqn. (1.15d), we get

Cmn =

2 (=)t sm(mﬂo 1-¢2
m ZZ - (2.110)

If the boundary condition is given by (07/0r),—, = 0, then by Eqn. (1.110), a steady-
state solution exists if and only if [ fjl Q(7,€)72dr d€ = 0. We do not consider this case
further because of this constraint. We now proceed to the solution of spherically symmetric
transient problems.

Assuming spherical symmetry in the heat supply and boundary conditions, the govern-

ing equation is
1or 1.0 (,0T pQ(r,t)
adt  r2or <r 67“) LT (2.111)

where o« = k/(pc,). Let the initial temperature and the heat input be zero, and let the
boundary condition be given by

T|,_, = Ta(t). (2.112)

To solve Eqn. (2.111), it helps to introduce a new variable u(r,t) := rT'(r,t). In terms of
this new variable, Eqn. (2.111) can be written as

10u 0*u B

—— 52 =0 (2.113)
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with boundary conditions given by

ul,_, = aTq(t),

ul,_, = 0.
Taking the Laplace transform of Eqn. (2.113), we get

du
4 iFu=0 2.114
st (2.114)
where ¢ = \/—s/a. Then the homogeneous solution of the above equation that meets the
boundary condition at r = 0 is ¢y sin gr. Using the boundary condition u|,_, = aT, we get

T
T= # (2.115)

sinqga

Similar to the inversion Eqn. (2.30), we get

o0 t 27—
T(rt) =3 /O DaTu(t —m)e "2 dr, (2.116)
n=1

where
2(—1)""tant sin(nm()

J

D, =
ar

which agrees with Eqn. (3), Section (9.3) of [2].
As an example, if Q = f(r) =0 and T, = C}, where ('} is a constant, then we get

T 2 o= (—1)"*sin(nn() _alnm?
=1 = a 2.117
& " ij - I (r>0), (2.117a)
— 142 (e E (r=0, t>0), (2.117h)
n=1
_0 (r>0,t=0), (2.117c)
2 > —1 n 1 a(nm 2t
ggll = e ; ( n) [mr cos(nm() — Esin(mrg) 2 , (t>0), (2.117d)
_0 (t=0), (2.117¢)

which in the limit as ¢ — oo reduces to the steady-state solution given by 7' = Tj. Note
that the flux as given by Eqn. (2.117d) does not tend to zero as t — 0 (in fact, the series is
nonconvergent at t = 0), and is a result of the discontinuity (with respect to time) in the
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applied temperature at (r,t) = (a,0). If there is no discontinuity in the applied temperature
field, then the flux expression obtained by a term-by-term differentiation of the temperature
field is valid for all £ > 0. To summarize, although the flux expressions are not presented
elsewhere in this section, they can be obtained simply by a term-by-term differentiation of
the temperature field with the range of validity being ¢ > 0 or ¢ > 0 depending on whether
a discontinuous temperature field is applied or not. If a discontinuous flux is applied (with
no discontinuous temperature field applied at some other boundary), then the range of
validity of the obtained flux solution (as in the case of Eqn. (2.134c)) is t > 0.

As another example, if Q@ = f(r) =0, and T, = Ty sinwt, then the transient solution is
found by substituting 7, (t — 7) = Ty sinw(t — 7) into Eqn. (2.116). With v := \/wa?/(2a),
the complete solution for the case T,(t) = Ty sinwt is given by (compare against Eqn. (12),
Section (9.3) of [2])

T N N a(n‘rr)Qt
= 51 cos wt + 32 sin wt — Z nn jirilj;ﬂroe o (2.118)

while that for the case T,(t) = Ty coswt is given by

T Ny . N, 2 o= (—=1)*(nm)3sin(nw¢) _amm?
.- D sin wt + 6coswt+gnz (nr)i £ 4 e (2.119)

where

Ny = 2(cosy cosh y( sin ¢ sinh v — cos y( cosh 7 sin y sinh v(),
Ny = 2(cosh vy cosh v sin y sin y(¢ + cos 7y cos ¢ sinh 7y sinh (),
D = ((cosh 2y — cos 27).

If T,(t) = Toe™™*, then with v := \/wa?/a, we get

T _ siny¢ smv( 2 2. (—1)"*nmsin(na()e
> (nr? 7

—a(nm)?t/a?

(2.120)

Ty  (sin 7 2

The evolution of the initial temperature field f(r) under the conditions Q = T, = 0 can
be found by assuming the solution form to be

= % Z C,sin(nm)e " @
n=1

where, on imposing the initial condition, we get

nmr

C, = 3/ 7 f(7) sin — dr.
0

a? a
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As an example, if f(r) = Cp, then we get

T )" sin(nn¢) _awm?
o= 2 Z e, (r > 0), (2.121a)
a nim 2

- —22 i (r=0,t>0), (2.121b)
= 1, (r>0,t=0), (2.121c)

qra - ) L. _alnm?t
o Z lmr cos(nm() — Zsm(mrg)] e @2, (t>0), (2.121d)

o 7¢ !

=0, (t=0). (2.121e)

If f(r) = Co(1 — (), then we get

Z sin[(2n — 1) WC] _aCno?a?
e a
C() C 277, - 1 ’

which agrees with Eqn. (13), Section (9.3) of [2], while if f(r) = Cysin(n()/¢, then Cy = Cj
is the only nonzero constant, so that

T sin (¢ )e~omt/a*
Co ¢ ’

(2.122)

which (after the correction of a typographical error) agrees with Eqn. (17), Section (9.3)
of [2].

Similarly, if f(r) = T, = 0, but Q(r,t) is nonzero, then we assume the solution forms
to be

= % i C,(t) sin(nm()e” wnF (2.123a)

Z Z(t) sin(nm(), (2.123b)

where

ka?

Substituting Eqns. (2.123) into Eqn. (2.111), we get

Zn(t) = 2/ rQ(7, t) sm% dr.
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which, after accounting for the initial condition, leads to

Cu(t) = a/ot Zn(T)e o dr. (2.124)

Substituting for C,,(t) into Eqn. (2.123a), we get

kTp = a%{z sin (nm() / [/ rQ(7,t — 7)sin (n%f) df] eianig% dr}. (2.125)

For the case where () is a function of ¢ alone, we get

T = Z%/ Qt —T1)e” (";5)27 dr, (Q = Q(1)), (2.126)
n=1 0
where S
Tn = % sin(nm(),

while for the case where @ is a function of r alone, Eqn. (2.125) reduces to (compare against
Eqn. (17), Section (9.8) of [2])

0~ |1 — —a(mn)?t/a® | o a .
KT(r, ) 2 Z [ e }sm(mWC)/ FO(F) sin (m;rr) P (2.127)
0

2 2
pa ar ~— (mm)

For @@ = @y, the solution obtained using Eqn. (2.127) is given by

kT 1—¢? N % i (—1)"sin(nm()e

pQoa® 6 (nm)? ’

—a(nm)?t/a?

(2.128)

which agrees with the solution given by Eqn. (6), Section (9.8) of [2]. In the limit as t — oo,
we recover the steady-state solution given by

KT 1-¢2

= 2.12
which agrees with Eqn. (2.110), and with Eqn. (12), Section (9.2) of [2].
For Q(r) = Qo(1 — C), we get
kT 1-0)(1 2) 8 X sin[(2m — 1) e—l(@m—1)r]*t/a?
pa*Qo 12 szl [(2m — 1) K
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which agrees with the solution given by Eqn. (8), Section (9.8) of [2], while for @ =
Qo(¢* — 1), we get
KT (1=¢)(7-3¢3) 12 i (—1)™ 1 sin(mm()e—otmn)?t/a?
pa*Qy 60 c

: (2.131)

which agrees with the solution given by Eqn. (10), Section (9.8) of [2].
At the boundary, if in place of a prescribed temperature, we have a prescribed flux
¢a(t), then by using —k (8T/87’)T:a = q,, we now get

2_ .
- a“q, sin qr
7 Gasin g

2.132
kr (singa — qa cos qa)’ ( )

The inversion of Eqn. (2.132) can be carried out similar to that of Eqn. (2.46). Let A,
n=1,2,..., 00, be the positive roots of tanz = x. Assuming q,(¢) to be arbitrary, we have

a’q, sin qr

T =

kr (sin ga — qa cos qa)
— b oo .
AN

A2 o
kr |s = s+ a2

Using Eqn. (1.100), we get

b=-=1,

a3
2asin(A,(Q)
a?sin )\,

Thus,

(6% SlIl 2 2
T=_—— 2 —aT/a — . 2.1
R e e R T

If Q@ = f(r) =0, q.(t) = qo, where qo is a constant, then, for ¢ > 0, we get on using
Eqn. (2.133)

0 2.134
-~ a2 (r >0), (2.134a)

kKT [ 3at 5§2—3 Zsm t]
wa | a® ¢ A2 sm)\ ’

(r=0), (2.134b)

[3at 3 < _Mgt]
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q 2 — 1 1. a2
% =(+ Z ; m {E sin(A,¢) — Apcos(A,Q) | e a2, (r > 0), (2.134c¢)

~0, (r=0), (2.134d)

which, after noting that gy = —Fp, is in agreement with Eqn. (1), Section (9.7) of [2].
If @ = f(r) =0, and ¢, = goe™*", then the transient solution is given by substituting
Ga(t — 7) = qoe™““) into Eqn. (2.133), and with v := y/wa?/a, is given by

-\2at/a?

(2.135)

kT3 N sin(y¢)e " Czsm

agp 2 ((siny — ycosn) sin A\, )\2—7)

If @ = f(r) =0, and g, = qo sinwt, then the transient solution is given by substituting

Go(t —7) = qosinw(t — 7) into Eqn. (2.133), and with v := \/wa?/(2«), is given by
kT N, N, N 4y?sin( M) _aade
=Co+ — t+ — t— a? 2.136
aqo 0t st R sinw z_:lgsin)\n()\fb+474)e ’ ( )

while for ¢, = ¢ cos wt, we have

kT Ny . N, L 2X%sin(M\, () _aade
—_— = —— t+ — t - a? 2.137
aqo p Smwit Ty cosw +z::1§sin)\n()\fb+4v4)e ’ ( )

where Cy = —3/(2v?), and
Ny = 2{cosh ¢ siny( [(cosy + 7 siny) sinh v — 7 cos y cosh 7]
+ sinh ¢ cos y( [y sin ysinh y — (sin~y — 7 cos y) cosh fy]},
Ny = —Q{Cosh (¢ sinyC [(y cosy — sin ) cosh  + ~ sin 7 sinh 4]

+ sinh ¢ cos y( [y cosy coshy — (cosy + 7 sin y) sinh 7]},
D = [(29° — 1) cos 2y + (1 + 29%) cosh 2y — 2(sinh 2y + sin 27)] .

The ‘periodic steady-state’ solution is obtained by ignoring the last term in Eqns. (2.136)
and (2.137). Note that although the average of the applied flux over a time-period is zero,
due to the Cj term, the average temperature over a time-period in this periodic solution is
not zero!

Let \,, n = 1,2,...,00, denote the positive roots of tanx = x. The evolution of the
initial temperature field is given by

aA%t

T =ko+ % > Cusin(AaC)e

n=1
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where, on imposing the initial conditions and using Eqns. (1.18) with &£ = 0, we have

k(]:% i P2 f(7) dP
2 @ AT
Cn:m/o rf(r)sder.

As an example, if f(r) = Cj, where Cj is a constant, then we get T = Cy. As another
example, if f(r) = Cy(?, then we get

sm )\ C A2t/a2
Tamt/eT 2.138
CZ)\Q sm)\ ( )

Co
As we can see from the above solution and consistent with Eqn. (1.113), the steady-state
temperature is the average of the initial temperature distribution f(r).
Similarly, if f(r) = ¢, = 0, but Q(r,t) is nonzero, then the form of the solution is given
by

(2.139a)

9 _ Z(t)

. > Z,(t)sin(AQ), (2.139b)

+

T:Co(t)+%zc (t) sin(AnQ)e”
1
¢

where

2p “ AT
Zn(t) = m/ TQ(T t) SIHTdT

Substituting Eqns. (2.139) into Eqn. (2.111), we get
Cylt) = aZoft),
arZt
Ol (1) = aZa(t)e &

which, after accounting for the initial condition, leads to

Co(t) = oz/ot Zo(T) dr, (2.140a)

a>\2 T

Cy(t) :a/OtZ (T)e a2 dr. (2.140b)
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If Q(r,t) is a function of time alone, then we get

kT t
C—af Q@ @=Q). f) =g =0) (2141)

0

As an example, if Q(r,t) = (Qo, then we get
T 1502 10¢3 9 X 9 —aX2,t/a?
kT (r,t) _ 3at n 5¢* — OC 2 Z (AmC) tan?(\,,/2)e . (2.142)
pQoa? 4a? C — Ak sin A,
As another example, if Q(r,t) = Qo(1 — 4¢/3), then we get
KT 4+ 5¢32¢ — N 8tan?(\,,/2) sin( A, e mt/a*

_4+5¢3(2¢ - 3) +Z8 an®(\,,/2) sin(\,.Q)e ' (2.143)

pQoa® 90 3A2.C cos A,

m=1



Chapter 3

Hyperbolic partial differential
equations

We shall deal mainly with the acoustic wave equation. However, the equation for the
transverse vibration of a membrane is very similar, and the solutions for the acoustic
wave equation can be used to generate solutions for membrane vibration problems also.
In the previous chapter, we first considered solution to steady-state problems, and then
to transient problems. In this chapter, we first consider ‘periodic steady-state’ solutions
before proceeding to the solution of transient problems.

The relation between the velocity and the pressure fields is

- N
P o Vpa, (3.1)

so that the acceleration Ou/0t is analogous to the flux in heat conduction problems. For
finding the periodic steady-state solutions, we assume pr = p(x)e™! and u = a(x)e™?,

and solve for the field p(x), after which one can obtain @(x) using Eqn. (3.1) as
U=——-: (3.2)

Since u(x) can be determined from the above equation once p(x) is determined, we shall
focus on finding p(«). The physical solution pa under cosine or sine loading is obtained as
the real and imaginary parts of p(x)e™*, with a similar procedure for finding u from ().
If ap denotes the acoustic wave speed, then k := w/ag is used to denote the wave number
throughout this chapter. A rigid boundary implies that the normal velocity component
u - n is zero (and hence (Vpa) - n = 0) along such a surface.
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3.1 Straight duct with specified accelerations or pres-
sures at the two ends

Let the length of the duct be h, and let & := x/h.

The periodic steady-state solution for the case when the acceleration and pressure is
specified at the ends z = 0 and at x = h as A(t) = Viwe™" and P(t) = Pye™" is obtained
from Eqn. (1.87) by assuming the solution form to be p = ¢; sin kh§ + ¢5 cos khé, and then
determining the constants c¢; and ¢, using the boundary conditions as

5= ipagV sin[kh(1 — )] N Py cos(kh&)

cos kh cos kh (3.3)

Similarly, the periodic steady-state solution for the case when A(t) = Viwe™! at the
end z = 0, with the end x = h being rigid is

p  dcos[kh(l—¢)]

pagV sin kh '

(3.4)

If the pressure is specified as P = Pye™! and P = 0 at the ends x = 0 and = = h,

respectively, then the periodic steady state solution is
B, sin kh

Now we turn to the solution of transient problems. First consider the case when the
domain is unbounded, i.e., h — oo. We assume that the fluid is initially stationary, i.e.,
both u and pa are assumed to be zero at t = 0, and that the normal acceleration a, is
specified as A(t) at x = 0. Under the one-dimensional flow approximation being made,
Eqn. (1.121) reduces to
Ppa 1 9°pa

2

= . 3.6
0z?  af Ot (3:6)
Taking the Laplace transform of Eqn. (3.6), we get
Ppa $°Pa 0
dx? a

whose general solution is ¢;(s)e? + co(s)e™¥*, where ¢ = s/ag. Since pa — 0 as ¥ — oo,
we get ¢, = 0. From the boundary condition at z = 0, we get co = pA(s)/q = pagA(s)/s.
Thus, we have

pa A(s)e v/
oay %, (3.7)
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Using the convolution theorem, we get

Pr _ pey) / Al — 1) dr = H(L) / " Ay (3.8)

Po

where H(.) denotes the Heaviside function, and ¢; :=t — x/aq is the ‘shifted time’. For an
applied constant acceleration Agy, we get pa = 0 for ¢, < 0 and pa/(pag) = Apts for ts > 0.
For A(t) = Vwcoswt, we get pa = 0 for t; < 0 and pa/(pagV) = sin(wt,) for t; > 0.
Similarly, for A(t) = Vwsin(wt), we get pa = 0 for t; < 0 and pa/(papgV’) = 1 — cos(wts)
for t, > 0.

If the normal velocity is zero at x = 0, and the initial conditions are pa(z,0) = po(z)
and pa(z,0) = vo(z), then we assume the solution form to be

pA = / cos Az [A(X) cos(Aapt) + B(A) sin(Aagt)] dA. (3.9)
0
Imposing the initial conditions, we get

/ A()N) cos Ax d\ = po(x),
0

/ AB(A) cos Az da = 22
0 ap

from which we get

2 o0
A = 2 / pol) cos(\) di,
T Jo
2 (o]
B(\) = / vo(Z) cos(Az) dz.
7T(10)\ 0

As an example, if vg = 0, and po(x) = po for x < a, and zero elsewhere, then we get
B(X\) =0, and
A(N)  2sin(Xa)
Po B A

9

which on substituting into Eqn. (3.9), and carrying out the integration with respect to A
yields

2 —x — apt — agt

+sgn(a —x a0i+sgn(a+x agp )’ 0<z<a

Pa _ (3.10)

Po sgn(a — x + apt) + sgn(a + = — aot)

4 9

O<a<ux.
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If pl,_y = ﬁ‘ o = 0, if the normal velocity is zero at z = 0, and if we consider the
non-homogeneous wave equation given by
0?p
— 4+ G(x,t) =
52 TG )

1 9%p
at ot?’

(3.11)

then, analogous to the method of variation of parameters, we assume the solution form to
be the following modified form of Eqn. (3.9):

ﬁ(x,t):/ A(N, t) cos Az dA, (3.12a)

0

G(x,t):/ R(\,t) cos A\x dA. (3.12b)
0

Note that the assumed form for p automatically satisfies the boundary conditions. Substi-
tuting Eqns. (3.12) into Eqn. (3.11), and with a prime denoting a derivative with respect
to t, we get

A"\ ) + (Mag)? A\ 1) = aiR(\, t).

The above equation can be solved using the method of variation of parameters, or more
conveniently, using a Laplace transform. Thus, taking the Laplace transform of the above

equation, and in view of the initial conditions A(\,0) = A(X,0) = 0, we get

.
- agR(\, s)
AR = S

which on using the Laplace transform for a sine function and the convolution theorem yields

¢
A\ = %/ sinfagA(t — 7)|R(\, 7) dr. (3.13)
0
From Eqn. (3.12b), we get
2 oo
R(\t) = —/ G(z,t) cos(Az) dz,
T Jo

which when substituted into Eqn. (3.13) yields A(A,t), and hence p(z, ).
If in place of the normal acceleration, the pressure itself is specified at the end z = 0,
i.e., pa(0,t) = P(t), then in place of Eqns. (3.7), we get

pa = P(s)e

—sz/ag

Inverting the above transform, we get

palz,t) = P(ts)H(ts). (3.14)
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Thus, pa = 0 for t; > 0 and p(z,t) = P(ts) for ts > 0. If P(0) # 0, then there is a jump
discontinuity in the pressure pa(z,t) at t; = 0, which is not permissible since then dpa /0x
would be discontinuous and 8?pa /dz* would be infinite (one can also argue physically that
p(z,t) is a continuous function of z and ¢). Thus, the prescribed pressure must be such
that P(0) = 0; for example, P(t) = Py (1 — coswt) or P(t) = Py (1 — e~ *") are permissible,
but P(t) = Py coswt is not.

If the pressure is zero at x = 0, and the initial conditions are pa(z,0) = po(x) and
pa(x,0) = vo(z), then in place of Eqn. (3.9), we now have

pA = / sin Az [A(A) cos(Aagt) + B(A) sin(Aagt)] . (3.15)
0
Imposing the initial conditions, we get

/ A(N) sin Az d\ = po(x),
0

/ AB(V) sin Az da = 28
0 Qg

which on inverting yields

2 o
A = 2 / po(#) sin(A2) di,
T Jo
2 o
BOY =~ /0 vo(#) sin(A&) da

As an example, if vy(z) = 0 and po(x) = p for 0 <z < a and zero elsewhere, then we
get B(A\) =0, and
A(N)  2(1 — cos Aa)

I

Po A

which on substituting into Eqns. (3.15), and carrying out the integrations with respect to
A yields

2 +sgn(a — = — apt) — sgn(a + x — agt) — 2sgn(agt — )

1 , O0<z<a,
ba _ , (3.16)
p - t) — — apt) — t—
0 sgn(a — x + apt) — sgn(a + = — agpt) sgn(ag :10)7 0<a<u
4
If pl,_g = ﬁ‘ o = Pl,_o = 0, and if we consider the non-homogeneous wave equation
given by Eqn. (3.11), then we assume the solution form to be

ﬁ(x,t):/ A(N ) sin Az dA, (3.17a)
0
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Gl t) = / RO\ ) sin Az dA. (3.17b)
0

Note that the assumed form for p automatically satisfies the boundary conditions. Substi-
tuting Eqns. (3.17) into Eqn. (3.11), and with a prime denoting a derivative with respect
to ¢, we get

A"\ ) + (Nag)? A\ t) = agR(\, 1),
whose solution obtained using the Laplace transform method and the initial conditions (as
in the derivation of Eqn. (3.13)) is

t
A\ = %/ sinfagA(t — 7)|R(\, 7) dr. (3.18)
0
From Eqn. (3.17b), we get
2 o
R(\t) = —/ G(z,t)sin(A\2) dz,
T Jo

which when substituted into Eqn. (3.18) yields A(A,t), and hence p(z, ).

Now consider the case when h is finite. First consider the case where the acceleration
A(t) is specified at © = 0, and the pressure P(t) is specified at x = h. The general solution
for pa is ¢;singr + c3 cos gz, where ¢> = —s?/a3. Using the boundary conditions at the
two ends, we get

A(s)sing(h — )  Pcosqx
oy = PAls)sing(h —2) q

g cosqh cosqh
Since the roots of cos gh are given by gh = (2n — 1)7/2, n =1,2,...,00, we can write
sing(h —z) Z e n )
gcosqh s+ Aagi 5 — An@ot’

where A\, := (2n—1)7/(2h), and where V) and ¢ are found using the Heaviside formula,
and the fact that dgq/ds = —s/(a2q) as

AU sin[A,(h — )]

2iag COS A\,

n qhsin()\nh)% . (2n— 1)’
@ = W,

On using the convolution theorem, we get

2 4cos(\, t
pA = pag Z 4 cos(hn) / sin(A\,ao7)A(t — ) dT
0
(3.19)
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For the case of a constant applied acceleration and pressure, i.e., when A(t) = Ay, and
P(t) = By, we get with & := x/h,

8 cos(A,x) cos(A,aot)
= phAp |1 —
ba = phdo £ — Z (2n — 1)2r2
(3.20)
cp s Z " cos( A, ) cos(Apapt)
0 (2n — 1)m ’
where we have used

= 8cos(\z)
=1-¢&. 21
Z T 1~ L€ (3.21)

Note that because the acceleration is suddenly applied, there is a mismatch between the
initial and boundary conditions on the acceleration at z = 0 (in the sense that A(0) #
0). Consistent with this mismatch, term-by-term differentiation of Eqn. (3.21) is valid
everywhere except at v = 0!, i.e.,

i 4sin A,z |1, x € (0,A]
“—~ (2n—1)r 1o, z=o.
The solutions given by Eqns. (3.20) is valid for all = € [0,h]. However, while evaluat-
ing dp/0zx by term-by-term differentiation of this solution, we see by virtue of the above
equation that at ¢ = 0, dp/dz = 0 for all z € (0, k|, while it is equal to Ay at = = 0.
This ‘discontinuity’ is due to the aforementioned mismatch between the initial and bound-
ary conditions, and transmits downstream with increasing ¢; nevertheless, apart from this
moving discontinuity point (where dp/0z is indeterminate), term-by-term differentiation
yields the correct solution over the entire domain! However, as discussed after Eqn. (3.14),
although a discontinuity is allowed in the applied acceleration, it is not allowed in the ap-
plied pressure at x = h, i.e., we need P(0) = 0. Thus, the above solution for P(t) = P,
should not be used in isolation, but in superposition with other prescribed pressures such
that finally P(0) = 0; for example P(t) = Py (1 — coswt) or P(t) = Py (1 — e~ ) etc.

When A(t) = Vae  and P(t) = Pye ', where « is a positive constant, we get (with
k= a/ag)

sinh[kh(1 — f)]e_at i cos(Apx) {4 sin A\,apt 2 cos )\naot] }

pa = pa V{ _
A o cosh kh ra [(%)ul} (2n— Dr kh

!Similar constraints on term-by-term differentiation arise whenever the specified acceleration A(t) is
such that A(0) # 0.
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coshkhé ., 2 <= (—1)"cos(Az) (32 cos(Aaot) — sin(A,aot))
cosh kh © kh ; (7”) +1 '

For the case A(t) = Vwcoswt and P(t) = Py coswt, we get (with k = w/ay)

pa = pagV

sin[kh(l — §)]coswt 2 i cos(A,z) cos(Anapt)
cos kh kh <~ %)2 1

+ P

cos(kh&) cos wt Z " (32) cos(A,) cos(Anat)
cos kh kh (?n)2 1

while for the case A(t) = Vwsinwt and P(t) = Fysinwt, we get

] : (3.22a)

B sin[kh(1 — &)]sinwt cos(A\,x) sin A, apt
Pa = paoV cos kh ; 2n — 1) (A_kn)2 1
cos(kh&) sin wt " cos(Apz) sin(A,aot)
P . 23
o cos kh k:h Z k ) -1 (3:232)

If P(t) = 0, if the surface = 0 is rigid, and if the initial conditions are given by
pa(x,0) = po(x) and pa(z,0) = wvo(x), then with A\, := (2n — 1)7/2, we assume the
solution form to be given by

= An@ot . Anaot
A= Zcos()\nf) <An cos ;LLO + B, sin ;LLO ) ) (3.24)
n=1

Imposing the initial conditions, we get

Z A, cos(M€) = po(6), (3.25a)

ZA B, cos(M\€) = hUO(g) (3.25h)

which, on using the orthogonality of the sine and cosine functions, yields

1 ~ ~ A~
A =2 [l cos(0)

1
B, = h /vo(é)cos()\ng)dé.
0

Qo )\n
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As an example, if vo(z) = 0, and po(z) = py for 0 < z < h/2 and zero elsewhere, then
we get B, =0, and

A, 4 m(2n+1)
— = Ccos ,
po  m(1—2n) 4
which yields the solution
A (2n + 1) Anaot
= Z 1= Cos 1 cos (A,€) cos P (3.26)

If pl,_y = ﬁ’t:O = P(t) = 0, if the surface x = 0 is rigid, and if we consider the non-
homogeneous wave equation given by Eqn. (3.11), then we assume the solution form to be

= i Ap(t) cos A&, (3.27a)
n=1

= i R, (t) cos A\p€. (3.27b)
n=1

Note that the assumed form for p automatically satisfies the boundary conditions. Substi-
tuting Eqns. (3.27) into Eqn. (3.11), and with a prime denoting a derivative with respect
to t, we get

a0+ (25 400 = 0,

whose solution obtained using the Laplace transform method and the initial conditions is

An(t) = %L /0 sin {W} R, (7) dr. (3.28)

From Eqn. (3.27b), we get

1 A A ~
R.(f) =2 / G(E.1) cos(\é) .

which when substituted into Eqn. (3.28) yields A, (t), and hence p(z, ).
If at the right end, instead of a specified pressure, the acceleration is prescribed to be
zero, with the acceleration still prescribed to be A(t) at the left end, then we have

pA(s) cosq(h — :c)

ba =" qsin gh
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On inverting the above transforms, we get

t > A 3
Pa a_ho TA(t —7)dr + 2 Z cos(An) / sin(A,ao7)A(t — 7) dr, (3.29)
Pao 0 1l T 0

where A, := nw/h.
For the case of an applied step acceleration, i.e., when A(t) = Ap, we get

pa 1 - (h&)* + adt? B i 2 cos(A\,x) cos(Apaot)
phAy 3 2h? — (nm)? '

When A(t) = Vae ', where « is a positive constant, we get (with k = «/ag)

pa  at—1 cosh[kh(l —§&)]e

pagV. kh sinh kh
= 2cos(A) [ 1, 1
+ Z —_— [E sin A\pagt — o cos )\naot] )

= |G 1]
For the case A(t) = Vwcoswt, we get (with k = w/ay)
[N 1 cos[kh(l —&)]coswt 1 o= 2cos(\,z) cos(A,apt)

pagV. kh sin kh kih £ (2)? 1 ’

while for the case A(t) = Vwsinwt, we get

pa _ wt  cos[kh(l —¢)]sinwt i 2 cos(An) sin(Anaot)
paV  kh sin kh £ nm (%)2 1 '

If both ends of the duct are rigid, and the initial conditions are pa(z,0) = po(x) and
pa(x,0) = vo(z), then with A, := nmw, we now have

= )\naot . )\nCLQt
pa = Ag + ;COS()\TLS) <An cos — + B, sin . ) ,

(3.30)
Imposing the initial conditions, we get

Ao+ Ay cos(Aag) = po(€),
n=1
hwo(€)

b
Qo

Z A By cos(A€) =
n=1
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which, on using the orthogonality of the sine and cosine functions, yields

1
Ay = / po(€) dé.

1 ~ A~ A~
Ay =2 [l cos(,€) .

2h

B, =
ao)\n

/ " un(€) cos(E) dé.

As an example, if vo(z) = 0, and po(z) = py for 0 < 2 < h/2 and zero elsewhere, then
we get B, =0, Ay = po/2, and

A, 2  nr
— = —sin —,
Do nmw 2

which yields the solution

12 . sin n7r/2 AT Aot
——54—;2 <h)cos o

Po n=1

If pl,_, = ﬁ‘t:O = 0, if both ends of the duct x = 0 and x = L are rigid, and if we
consider the non-homogeneous wave equation given by Eqn. (3.11), then we assume the
solution form to be

pla.t) = Ao(t) + > Au(t) cos \ié, (3.31a)

G(z,t) = Ro(t) + i R, (t) cos \,€. (3.31Db)

Note that the assumed form for p automatically satisfies the boundary conditions. Substi-
tuting Eqns. (3.31) into Eqn. (3.11), and with a prime denoting a derivative with respect
to t, we get

Ag(t) = agRo(t),

a0+ (25) 400 = 0,

whose solution obtained using the Laplace transform method and the initial conditions is
t

Ap(t) = a%/ TRy(t — T) dT,
0

A(t) = % /0 s {W} Ro(r) dr.

(3.32)
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From Eqn. (3.31b), we get
1
Ro(t) = | G(&t)dé,
o) = [ Giénag
1 ~ ~ ~
t) = 2/0 G(&,t) cos(A,€) dE,

which when substituted into Eqns. (3.32) yield Ay(t) and A,(t), and hence p(z, ).

3.2 Three-dimensional half-space

If the surface z = 0 is rigid, and if the initial conditions are pa(r,z,0) = po(r, z) and
pa(r, z,0) = vo(r, 2), then the form of the solution is

pA = /OO /00 Jo(Ar) cos(vz) [A()\, ) cos(agtr/ A2 + +2)

+ B(X, ) sin(agt /A2 + 42) ] d\dr. (3.33)
Imposing the initial conditions, we get
/ / v)Jo(Ar) cos(yz) dA dy = po(r, 2),
/0 /0 A2+ 2B(\, v)Jo(Ar) cos(yz) dNdy = UO(CZ; ?) :

which on inverting yields

2A o o0
AN 7) = —/ / 7po (7, 2) Jo(AT) cos(vZ2) dr dz,
(3.34)

B(\,v) = 70o(7, 2) Jo (A7) cos(yZ2) dr dz.

i h b

If pal,_y = 0, and if the initial conditions are pa(r, z,0) = po(r, 2) and pa(r, 2,0) =
vo(r, 2), then cosyz and cosyZ are, respectively, replaced by sin vz and sin vZ in Eqns. (3.33)—
(3.34).

If pl,_o = p‘ =0 = 0, if the surface z = 0 is rigid, and if we consider the non-homogeneous
wave equation given by

i 1
V2 + G, t) = 5 (3.35)
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then we assume the solution form to be

p(r, 2,t) / / t)Jo(Ar) cosyzdA d, (3.36a)

G(r, z,t) / / t)Jo(Ar) cosyz dA dry. (3.36b)

Note that the assumed form for p automatically satisfies the far-field conditions. Substi-
tuting Eqns. (3.36) into Eqn. (3.35), and with a prime denoting a derivative with respect
to ¢, we get

A"\, 1) + (W + %) ag AN, 7, 1) = agR(A, 7, 1),

whose solution obtained using the Laplace transform method and the initial conditions is

AN v, t) = sin |agy/ A2 + 2(t — 7')} R(\, v, 7)dT. (3.37)

eIl

From Eqns. (3.36b), we get

2>‘/ / rG(7, 2, t) Jo(AF) cos(v2) dr dz, (3.38)

which when substituted into Eqn. (3.37) yields A(A,,t), and hence p(r, z, ).
If instead of the z = 0 surface being rigid, if we have p| _, = 0, then cosyz and cosyZ
are, respectively, replaced by sin~yz and sin~Z in Eqns. (3.36)—(3.38).

3.3 Spherical domain
Consider the axisymmetric case where the acoustic fluid is inside a sphere of radius r;.

If A(t) = Viwe™" and the normal acceleration at r = ry is A(t)g(€), then the periodic
steady-state solution obtained using Eqn. (1.95) is

nJn k
- __Z Enn(kr)Fu(8) (3.39)
T 0

gh(kry)

prrl

where
2n+1

1
e W GTAGES

—1
As an example, if g(§) = 1 for £ € [£, 1] (the radially vibrating polar-cap problem), then

we get
_ Pai(&) — Prni (&)
2 )

Cp =

Cn
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which when substituted into Eqns. (3.39) yields the complete solution.
Similarly, for the case where the pressure is prescribed as G(t)g(£) where G(t) = Goe™",
the periodic steady-state solution obtained using Eqn. (1.95) is

D = ¢, jn(kr)P,
%:;%];@ﬂ@’ (340

where

n+1 1 .
o= 25 [ a(@P©

Now we turn to the solution of transient problems. The wave equation in spherical
coordinates in the presence of spherical symmetry is

10 (20pa) _ 10pa
r2 or or ) a} o2’

First consider the domain to be the unbounded region outside the sphere of radius r; with
the normal acceleration A(t) prescribed at the surface. Taking into account that pa is zero
as 7 — 0o, the solution of the Laplace-transformed equation is pa = coe™*"/% /r. Using the
boundary condition at r = r;, we get

_ _s(r=r1)
_ pagriAe w0 1
Pa =757 w
soor) 24 (341)

agr r2

s<s+“—°>.
71

U, = agriAe @

The expression for @, can be written as

_ _ 75(7‘77‘1) dl d2
U, = apride —+ a |
S S+ "

where d; and ds are found using Eqn. (1.99) as

d— g (L1
! agr?’ 2 apr \ry 1)’

Thus, using the convolution theorem, it follows that

ts
La :H(ts)ﬂ/ e A7) dr

Pao rJo
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(3.42)

For the case of an applied step acceleration, i.e., when A(t) = Ao, we get u, = pa = 0 for
ts < 0, while for t, > 0, we get

pa _ s (1 _ efiglt—S>
pAor1 T ’

(3.43)

Uy r1\2 r—1Ty _%ts
= (2) (- e
Ao r ao
Note that at the surface of the sphere, the velocity is Agt, which is consistent with the
acceleration and the zero initial velocity condition.

When A(t) = Vae ', where « is a positive constant, we get u, = pa = 0 for ¢, < 0,
while for ¢, > 0, we get (with k = «o/ay)

pA — 1 (e—ats _ 67%)
parV. o r(1—kry) ’
u, 1} . (1 —kr)e s + k(r — rl)e_a(r)lts (3.44)
Voo 1—kry '

Consistent with the acceleration and the zero initial velocity condition, the velocity at the
surface of the sphere is V(1 —e~*"). Note that, at a given r, the pressure field first increases
sharply after the wave reaches r, attains a peak, and then decays to zero with increasing
time.

For the case when A(t) = Vw coswt, we get u, = pa = 0 for ¢, < 0, while for ¢, > 0,
we get (with k = w/ay)

J2N r1 [ . — %0t
= tS k ts - "1 )
pwrV. r[l 4+ (krq)?] CosWhs TSI ‘
. . o (3.45)
Vr = 72[1+—W [k‘(r —ri)coswts + (14 k*rir) sinwt, — k(r —r)e
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Consistent with the acceleration and the zero initial velocity condition, the velocity at the
surface of the sphere is V sin wt.

Similarly, for the case when A(t) = Vwsinwt, we get u, = p = 0 for ¢, < 0, while for
ts > 0, we get

bA 1 . __aqgts
= sin wtg — kry coswt krie 1
pwrV  r[l+ (kry)?] [ 5 ! s TR ’

Uy ’I“%

apgts
v = —T2[1 )7 {k(r —7r)sinwts — (1 + k27“17“) coswts + 1+ k27“% + k27’1(r — 7“1)6_2_1 .
(3.46)

Note that the exponential part of the above solution attenuates (with increasing ¢ at a
given r) although there is no damping in the model! Note that this happens only in exterior
domain problems, as a result of which the steady-state (which includes even periodic steady-
state solutions) and transient solutions agree after a long enough time; in interior domain
problems, however, the transient part does not get damped out, and the transient and
periodic steady-state solutions can be significantly different even after long times. Thus,
in exterior domain problems, the boundary at ‘infinity’ can be considered to be a damper.
Consistent with the acceleration and the initial conditions, the velocity at the surface of
the sphere is V(1 — coswt).

If instead of the acceleration, the pressure at r = r; is specified as G(t), then in place
of Eqns. (3.41), we get

_ Grl 7s(r7'r1)
pA = —¢€ a0 s
T
! 3.47)
G o s(r—rq) (
’ar — Tl (]_ + @) e ag . s
pagr rs

so that
pa = ZH(L)G(L),
w H(t,) [mG(tS) n T /ts G dr} | (3.48)

P aor r?

As an example, if G = Gy, where G is a constant, then u, = pa = 0 for ¢, < 0, while for
ts > 0, we have
pa _n

Go T ’
pu, il r? (3.49)

Go r2  aer?
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As discussed after Eqn. (3.14), only those G(t) with G(0) = 0 are permissible, and so the
above solution should be used in superposition with another solution so that this condition
is satisfied, e.g., G(t) = Go (1 — coswt), G(t) = Go (1 — e™*") etc.

Now consider the case where the acoustic fluid is inside the spherical domain of radius
r1. If the imposed acceleration on the surface r = ry is A(t), then the Laplace-transformed
solution is .

Ba = pAri sin gqr (3.50)

r(singry — qrycosqry)’

where ¢? = —s?/a2. Let \,, n=1,2,..., 00, be the positive roots of
tanx = x.

We can write

D 0 1) (2)
pa  do dy dn, dy;
A 2 s ‘ o 3.51
A s2 + s +;S+2)\:_fo S_ZA;'LIGO ( )
where
5°Pa 3pa’
do =1 s _ 0
0 Sgr(l] A 7"1 ’
d 52pA
d; = lim — £ —0
! sl—r>I(1) ds ( A ’

and the constants dY and ¢ are found using the Heaviside formula. Using the convolution
theorem, we get

t i t
PA = pag [—%/ TA(t —7)dr — Z”‘ndn/ sin MA(t —T7)dr|,
0 0

T T
1 n—1 1

where with ¢ :=r/ry,
_sin(AnQ)
"N sin A,
For the case when A(t) = Ay, we get

(e 9]

Pa 3 ¢* 3ait? An@ol
Pa 0S5 2, . 3.52
pAgr; 10 2 2r2 + ; o8 r ( )

For the case when A(t) = Vae ', where « is a positive constant, we get (with k = a//ao)

DA 3(1— at) kry sinh(kri¢)e

paoV. kny C(kry cosh kry — sinh kry)
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© 2A\,d, [(2—%) cos ’\’;—“lmt — sin )‘"r—“l‘ot}
2

2
n=1 1 + (%)

When A(t) = Vwcoswt, we get (with k = w/ay)

)\_n Anaot
o 2 (k”) And,, COS e

pa 3 kry sin(kri() coswt
pagV. kry  ((krycoskr, —sinkr) —~ ()\" )2 1 ’
n= k'_T'l -
while for A(t) = Vwsinwt, we get
pa 3wt kry sin(kri¢) sinwt i 2And,, sin /\”r—clmt
pagV.. kry  ((kricoskr, —sinkry)

A 2
n=1 (k_:1> -1

If the surface r = r is rigid, and the initial conditions are pa(r,0) = po(r) and pa(r,0) =
vo(r), then after accounting for the zero root Ao := 0, the form of the solution is

1 & Anaol Anaot
pAa = aj + E Zsin AnC {An CoS ( no ) + B, sin < no )} , (3.53)
n=1

(] 1

Imposing the initial conditions, we get

@+ 23 Avsin dnC = po(C).
n=1

1 - )\an sin )\nC - TlvO(C)
<; N

)\n ap 7
which on using the orthogonality properties given by Eqns. (1.18) yields

1 PN ~ PN
a =3 /0 Epo({) d,

1
I /épo@)sinun&)d&,
0

sin? \,,

27"1 b ~ ~ ~
B, =————F— in(A,¢) dC.
— [ Gul@ s ¢

As an example, if vy(r) = 0, and po(r) = po, then the only nonzero constant is a; = po,
so that the solution is pao = pg. The critical role played by the non-series constant a; is
evident from this example.
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If pl,_y = ﬁ‘t:o = 0, if the surface » = ry is rigid, and if we consider the non-
homogeneous wave equation given by Eqn. (3.35), then we assume the solution form to
be

p(r,t) = C Z Ap(t) sin A\, ¢, (3.54a)

G(r,t) Z ) sin A\, (. (3.54b)

Note that the assumed form for p automatically satisfies the boundary conditions. Substi-
tuting Eqns. (3.54) into Eqn. (3.35), and with a prime denoting a derivative with respect
to t, we get

AIOI (t) = a% RO <t> 9

() + (A"‘LO)QAn@) — BR(1),

1

whose solution obtained using the Laplace transform method and the initial conditions is
t

Ap(t) = a%/ TRo(t — 7) dT,
0

Ap(t) = “;“ /0 “sin [M] Ry (r) dr.

n (1

(3.55)

From Eqn. (1.18) with £ = 0, and Eqn. (3.54b), we get

1
=3 / EG( ) dé

R (1) = / CG(E ) sin(A) dC,

sin? )\

which when substituted into Eqn. (3.55) yields Ay(t) and A, (t), and hence p(r,t).
If in place of the normal acceleration, the pressure is specified at the surface of the
sphere r; as P(t), then in place of Eqn. (3.50), we get

i P
5 — rasinar) P (3.56)
7 sin qry
The inverse transform is
200 ~— t
pa(r,t) = 2 (—1)"sin nrr sin(A,ao7)P(t — 7) dr, (3.57)
T T1 0

n=1
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where A\, = nw/ry.
For P(t) = Py, we get

A " sin mr{ cos(\, aot)
—1+
R M

For P(t) = Py coswt, we get with k := w/ay,

pa(r,t) sm(krlC) coswt 2 i (=1)™ (42) sin nw¢ cos(A,aot)

P, ( sin kry + k¢ = (%)2 1 ’
while for P(t) = Fysinwt, we get
pa(r,t)  sin(krQ) sinwt Z " sin mrg sin(A\,aot)
Py,  (sinkr krlc ) 1 '

Finally, for P(t) = Pye™*, we get with k := «/aq,

pa(r,t)  sinh(kri()e N 2 i (—1)"sinnw¢ [\,
= ( sinh krq kriC —

— cos(Aaot) — sin(A,apt
o) -1 (Anaot) (Anaot)

k
Note that pa(r,t) = 0 for ¢ < (r; —r)/ap in all the above solutions. As noted in the
discussion following Eqn. (3.14), only those P(t) with P(0) = 0 are permissible, and so the
above solutions should be used in superposition with each other so that this condition is
satisfied, e.g., P(t) = Py (1 — coswt), P(t) = Py (1 — e~ ) etc.
If P(t) = 0 and the initial conditions are pa(r,0) = po(r) and pa(r,0) = ve(r), then the
form of the solution is given by

1 o
= c Z sin nm( [Ap cos (Anaot) + By, sin (A,aot)] . (3.58)
Imposing the initial conditions, we get
1 _
c > Ansin(nm¢) = po(¢),
n=1

% i A By sin(nn() = rito(¢) :
n=1

Qo

which on using the orthogonality properties of the sine functions leads to

A, —2/ Cpo ) sin mTC) d¢,
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2 PO, A on
B, = i / Cvo(€) sin(nm() dC.
aoAn Jo
As an example, if vy(r) = 0 and py(r) = po, then we have B,, = 0 and A,, = 2(—1)""'p,/(n7),
so that )
Pa 2= (=1)"sin nw¢ cos(Anaot)
— == . 3.59
Do C; nm ( )

If pl,_, = ﬁ}t:O = P(t) = 0, and if we consider the non-homogeneous wave equation
given by Eqn. (3.35), then we assume the solution form to be

B(ryt) = % S A, (1) sin . (3.60a)
n=1
Glr 1) = % f: Ro(t) sinnc. (3.60D)

n=1

Note that the assumed form for p automatically satisfies the boundary conditions. Substi-
tuting Eqns. (3.60) into Eqn. (3.35), and with a prime denoting a derivative with respect
to t, we get

nmwag

Ao+ )zAn@) — BR(1),

whose solution obtained using the Laplace transform method and the initial conditions is

1

An(t) = 20 Ot sin lm} Ry (r)dr. (3.61)

nmw 71

From Eqns. (3.60b), and the orthogonality of the sine functions, we get

1 A ~ ~ A
R (t) =2 /0 (G(E ) sin(nnC) dC.

which when substituted into Eqn. (3.61) yields A, (t), and hence p(r, t).



Appendix A

Error and complementary error
functions

Let z € R, a >0, a >0, and v > 0. Further, let erf(.) and erfc(z) = 1 — erf(z) denote the

error and complementary error functions defined by

erf(x) : /

exfe(z) f/

From the definition, it follows that erf(0) = 0 and erf(co) = 1. Then

e—(1)? d)\ e—(12)?
/ - — v/ erfe(yz),

T

/ cos(Az)e M d\ = 27 >
0 T+

2
2 mwo— =
/ cos(Az)e —ON g\ = \/_e @2,
0

2y
/e

2 [ee] —72/7 2
CoSs a—&— d)\:/ € cos a—E dT:ﬁe_W
2)\2 o 273/2 2 27y
|

e

8

e (
e (

2 0 2/ 2
a—a— d)\:/ € coS a—E dr
22 0o 2T 2

YA)?
2 0 ,—v?/T 2
N sin (@ — < d)\:/ ¢ sinf(a-2T dT:ﬁe_Wsin(a—va),
2)2 o 273/2 2 2y
YA)?

(A.la)

(A.1b)



\/7_1-

= e 7% [sin (@ — ya) 4 cos (a — ya)],

o0 f“//\ 2 00 o=?/7 2
/0 5111(&—;—)\2) d)\:/O 62\/; sin(a—%) dr

vﬁeya[

sin (@ — ya) — cos (a — ya)],
/ e+l g = i erfe(yz),
2y

o 1 2
/ Ae DO+ g\ = 502 [e‘”x) — Vmywerfe(yx) |,
v?

/ Lt

0

o

[e=]

5 F

t—wﬁd b
/ T = ovte ™/t — 2by/m erfe — (b>0),

v

g

95

(A.2f)



Appendix B

Table of Laplace Transforms

With a > 0, a table of Laplace transforms is given in Table B.1.

Llf(t)] f(t)
L o t"_l
=12 o)
1 —at
s+a €
ﬁ sin wt
212 coswt
¢ H(t—a)
o5 qe—a>/(4t)
2V 3
e—aV/s efaQ/(4t)
NG VTt
e Ve _a_
- erfc 5 \/Z>
PRNAVE o2 o av/Te—al/(4t)
2 (t + 7) erfC 2—\/2) - T
1 erf vat
sv/s+a Va
1
2ta? JO(at)

Table B.1: Table of Laplace transforms.
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