ME242: Assignment 1

Using indicial or direct notation, prove the following:

1. Show that

$$
\begin{aligned}
(\boldsymbol{a} \times \boldsymbol{b}) \cdot(\boldsymbol{c} \times \boldsymbol{d}) & =(\boldsymbol{a} \cdot \boldsymbol{c})(\boldsymbol{b} \cdot \boldsymbol{d})-(\boldsymbol{a} \cdot \boldsymbol{d})(\boldsymbol{b} \cdot \boldsymbol{c}) \\
\boldsymbol{u} \times(\boldsymbol{v} \times \boldsymbol{w}) & =(\boldsymbol{u} \cdot \boldsymbol{w}) \boldsymbol{v}-(\boldsymbol{u} \cdot \boldsymbol{v}) \boldsymbol{w} \\
(\boldsymbol{u} \times \boldsymbol{v}) \times \boldsymbol{w} & =(\boldsymbol{u} \cdot \boldsymbol{w}) \boldsymbol{v}-(\boldsymbol{v} \cdot \boldsymbol{w}) \boldsymbol{u}
\end{aligned}
$$

2. Show that

$$
\begin{gathered}
(\boldsymbol{a} \otimes \boldsymbol{b})^{T}=\boldsymbol{b} \otimes \boldsymbol{a}, \\
(\boldsymbol{a} \otimes \boldsymbol{b})(\boldsymbol{c} \otimes \boldsymbol{d})=(\boldsymbol{b} \cdot \boldsymbol{c}) \boldsymbol{a} \otimes \boldsymbol{d}, \\
(\boldsymbol{a} \otimes \boldsymbol{b}):(\boldsymbol{u} \otimes \boldsymbol{v})=(\boldsymbol{a} \cdot \boldsymbol{u})(\boldsymbol{b} \cdot \boldsymbol{v}), \\
\boldsymbol{T}(\boldsymbol{a} \otimes \boldsymbol{b})=(\boldsymbol{T} \boldsymbol{a}) \otimes \boldsymbol{b} \\
(\boldsymbol{a} \otimes \boldsymbol{b}) \boldsymbol{T}=\boldsymbol{a} \otimes\left(\boldsymbol{T}^{T} \boldsymbol{b}\right), \\
\boldsymbol{T}:(\boldsymbol{a} \otimes \boldsymbol{b})=\boldsymbol{a} \cdot \boldsymbol{T} \boldsymbol{b} .
\end{gathered}
$$

Use any of the above equations to show that for a symmetric \boldsymbol{S}, the spectral decompositions of \boldsymbol{S}^{2} and \boldsymbol{S}^{-1} (when it exists) are

$$
\begin{aligned}
\boldsymbol{S}^{2} & =\lambda_{1}^{2} \boldsymbol{e}_{1}^{*} \otimes \boldsymbol{e}_{1}^{*}+\lambda_{2}^{2} \boldsymbol{e}_{2}^{*} \otimes \boldsymbol{e}_{2}^{*}+\lambda_{3}^{2} \boldsymbol{e}_{3}^{*} \otimes \boldsymbol{e}_{3}^{*} \\
\boldsymbol{S}^{-1} & =\lambda_{1}^{-1} \boldsymbol{e}_{1}^{*} \otimes \boldsymbol{e}_{1}^{*}+\lambda_{2}^{-1} \boldsymbol{e}_{2}^{*} \otimes \boldsymbol{e}_{2}^{*}+\lambda_{3}^{-1} \boldsymbol{e}_{3}^{*} \otimes \boldsymbol{e}_{3}^{*}
\end{aligned}
$$

3. Using any of the above results, show that

$$
\boldsymbol{Q}=\boldsymbol{e}_{i} \otimes \overline{\boldsymbol{e}}_{i},
$$

is an orthogonal tensor. Show that the components of \boldsymbol{Q} are $Q_{i j}=$ $\overline{\boldsymbol{e}}_{i} \cdot \boldsymbol{e}_{j}$.
4. Show that

$$
\boldsymbol{R}:(\boldsymbol{S T})=\left(\boldsymbol{S}^{T} \boldsymbol{R}\right): \boldsymbol{T}=\left(\boldsymbol{R} \boldsymbol{T}^{T}\right): \boldsymbol{S}=\left(\boldsymbol{T} \boldsymbol{R}^{T}\right): \boldsymbol{S}^{T}
$$

5. The components of a symmetric tensor corresponding to a given basis are given by

$$
\boldsymbol{\tau}=\left[\begin{array}{ccc}
4 & 0 & 0 \\
0 & 1 & -3 \sqrt{3} \\
0 & -3 \sqrt{3} & -5
\end{array}\right]
$$

Find the principal values and principal directions of this tensor, and find the components of the tensor with respect to the principal basis (without using the results of the theorem).
6. If \boldsymbol{S} and \boldsymbol{W} are symmetric and antisymmetric tensors, respectively, and \boldsymbol{T} is an arbitrary second-order tensor prove that

$$
\begin{gather*}
\boldsymbol{S}: \boldsymbol{T}=\boldsymbol{S}: \boldsymbol{T}^{T}=\boldsymbol{S}:\left[\frac{1}{2}\left(\boldsymbol{T}^{T}+\boldsymbol{T}\right)\right] \\
\boldsymbol{W}: \boldsymbol{T}=-\boldsymbol{W}: \boldsymbol{T}^{T}=\boldsymbol{W}:\left[\frac{1}{2}\left(\boldsymbol{T}-\boldsymbol{T}^{T}\right)\right] \\
\boldsymbol{S}: \boldsymbol{W}=0 . \tag{1}
\end{gather*}
$$

7. Find the principal invariants of a skew-symmetric tensor, \boldsymbol{W}, and deduce that \boldsymbol{W} has only one real eigenvalue.
8. Show that $\boldsymbol{\nabla} \cdot[(\boldsymbol{\nabla} \boldsymbol{u}) \boldsymbol{v}]=(\boldsymbol{\nabla} \boldsymbol{u})^{T}: \boldsymbol{\nabla} \boldsymbol{v}+\boldsymbol{v} \cdot[\boldsymbol{\nabla}(\boldsymbol{\nabla} \cdot \boldsymbol{u})]$.
9. Show that $\boldsymbol{\nabla} \cdot(\boldsymbol{u} \times \boldsymbol{v})=\boldsymbol{v} \cdot(\boldsymbol{\nabla} \times \boldsymbol{u})-\boldsymbol{u} \cdot(\boldsymbol{\nabla} \times \boldsymbol{v})$.
10. Show that

$$
\begin{aligned}
\boldsymbol{\nabla} \cdot(\phi \boldsymbol{v}) & =\phi(\boldsymbol{\nabla} \cdot \boldsymbol{v})+\boldsymbol{v} \cdot(\boldsymbol{\nabla} \phi), \\
\boldsymbol{\nabla} \cdot\left(\boldsymbol{T}^{T} \boldsymbol{v}\right) & =\boldsymbol{T}: \boldsymbol{\nabla} \boldsymbol{v}+\boldsymbol{v} \cdot(\boldsymbol{\nabla} \cdot \boldsymbol{T})
\end{aligned}
$$

