Indian Institute of Science

ME 242: Final Exam

Date: 22/1/21.
Duration: 9.15 a.m. -1.15 p.m.
Maximum Marks: 100

1. Let $\boldsymbol{W} \in$ Skw and $\boldsymbol{Q} \in$ Orth $^{+}$.
(a) Determine whether $\boldsymbol{Q} \boldsymbol{W}^{2} \boldsymbol{Q}^{T}$ is symmetric, skew-symmetric, orthogonal or none of the above.
(b) Determine the eigenvalue/eigenvectors of $\boldsymbol{Q} \boldsymbol{W}^{2} \boldsymbol{Q}^{T}$. If the eigenvectors are nonunique, choose a set of eigenvectors, and present your choice.
(c) It is possible for tensors to fall into two categories. For example, the diagonal matrix diag $[1,-1,-1]$ is both symmetric and orthogonal. Determine if $\boldsymbol{Q} \boldsymbol{W}^{2} \boldsymbol{Q}^{T}$ can be orthogonal. If it can be, give an example, if it cannot be, present a mathematical justification.
2. A circular hole of radius a in an unbounded domain is subjected to a traction distribution $\boldsymbol{t}=\left(p_{0}+p_{1} \cos \theta\right) \boldsymbol{e}_{r}$ (with (r, θ) denoting polar coordinates) on its surface. The Airy stress function and the corresponding stresses are given by

$$
\begin{aligned}
\phi= & F_{2} \theta+\frac{A_{2} a^{3}(\nu-1) \cos \theta}{2 r}+\frac{B_{2} a^{3}(1-\nu) \sin \theta}{2 r}+C_{2} r^{3} \cos \theta+a^{2} F_{1} \log r \\
& +r \cos \theta\left[2 H_{2} \theta+J_{2} a(\nu-1) \log r\right]+r \sin \theta\left[2 J_{2} a \theta+a H_{2}(1-\nu) \log r\right], \\
\tau_{r r}= & \frac{F_{1} a^{2}}{r^{2}}+2 C_{2} r \cos \theta+\frac{A_{2} a^{3}(1-\nu) \cos \theta}{r^{3}}+\frac{J_{2} a(1+\nu) \cos \theta}{r} \\
& -\frac{B_{2} a^{3}(1-\nu) \sin \theta}{r^{3}}-\frac{H_{2}(1+\nu) a \sin \theta}{r}, \\
\tau_{\theta \theta}= & -\frac{F_{1} a^{2}}{r^{2}}+6 C_{2} r \cos \theta-\frac{A_{2} a^{3}(1-\nu) \cos \theta}{r^{3}}+\frac{J_{2} a(\nu-1) \cos \theta}{r} \\
& +\frac{B_{2} a^{3}(1-\nu) \sin \theta}{r^{3}}+\frac{H_{2}(1-\nu) a \sin \theta}{r}, \\
\tau_{r \theta}= & \frac{F_{2}}{r^{2}}+2 C_{2} r \sin \theta+\frac{A_{2} a^{3}(1-\nu) \sin \theta}{r^{3}}-\frac{J_{2} a(1-\nu) \sin \theta}{r} \\
& +\frac{B_{2} a^{3}(1-\nu) \cos \theta}{r^{3}}-\frac{H_{2} a(1-\nu) \cos \theta}{r} .
\end{aligned}
$$

Determine the various constants (total seven in number) in the above formulation.
3. Consider the torsion of a bar whose cross section is a triangle with angles

Figure 1: Torsion of a bar whose cross-section is a triangle with angles $45^{\circ}-45^{\circ}-90^{\circ}$.
$45^{\circ}-45^{\circ}-90^{\circ}$ as shown in Fig. 1. The Prandtl stress function is given by

$$
\frac{\phi}{G \alpha}=c_{0} x(y-x)-\sum_{m=1}^{\infty} A_{m}\left[\sin \left(\beta_{m} x\right) \sinh \left(\beta_{m} y\right)-\sin \left(\beta_{m} y\right) \sinh \left(\beta_{m} x\right)\right]
$$

(a) Determine the constants c_{0}, A_{m} and β_{m} (where the constants with subscript m are dependent on m). Some of these constants can be in the form of an integral with appropriate limits; you need not evaluate these integrals.
(b) Write the expression for the torsional rigidity as an integral with appropriate limits. Do not evaluate this integral.
4. A cracked beam of circular cross section of radius b with the crack extending from the center to the periphery, and along the entire length $[0, L]$ is loaded by a statically equivalent load of P acting at the centroid and directed along the y-axis as shown in Fig. 2.
(a) State with justification (but without mathematical proof), the value of twist at the centroid α.
(b) State the value of $I_{x y}$ (without proof), and use it to find the 'curvatures'

$$
\kappa_{x}=\frac{I_{x x} W_{x}+I_{x y} W_{y}}{E\left(I_{x x} I_{y y}-I_{x y}^{2}\right)} ; \quad \kappa_{y}=\frac{I_{y y} W_{y}+I_{x y} W_{x}}{E\left(I_{x x} I_{y y}-I_{x y}^{2}\right)},
$$

in terms of $I_{x x}$ and $I_{y y}$ (which you need not evaluate).
(c) Use the formulae

$$
\left[\frac{1}{2} E \kappa_{x} x^{2}-f(y)\right] \frac{d y}{d s}-\left[\frac{1}{2} E \kappa_{y} y^{2}+g(x)\right] \frac{d x}{d s}=0
$$

Figure 2: Problem 4.

$$
\nabla^{2} \phi=-2 G \nu \kappa_{y} x-\frac{d g}{d x}+2 G \nu \kappa_{x} y-\frac{d f}{d y}-2 G \alpha
$$

to determine ϕ.
(d) Find the relations for $\tau_{r z}$ and $\tau_{\theta z}$ in terms of $\tau_{x z}, \tau_{y z}$ and $(r, \theta)(d o$ not substitute for $\tau_{x z}$ and $\tau_{y z}$ in these expressions.)

Some relevant formulae

$$
\begin{aligned}
w_{i} & =-\frac{1}{2} \epsilon_{i j k} W_{j k}, \\
W_{i j} & =-\epsilon_{i j k} w_{k}, \\
\boldsymbol{W} & =|\boldsymbol{w}|(\boldsymbol{r} \otimes \boldsymbol{q}-\boldsymbol{q} \otimes \boldsymbol{r}),\{\boldsymbol{w} /|\boldsymbol{w}|, \boldsymbol{q}, \boldsymbol{r}\} \text { orthonormal }
\end{aligned}
$$

