Indian Institute of Science

ME 242: Final Exam

Date: 1/12/22.
Duration: 9.00 a.m. -12.00 noon.
Maximum Marks: 100

1. Let S denote the surface, V denote the domain of a body, \boldsymbol{t} denote the static traction field acting on S, and $\boldsymbol{\tau}$ the stress field. The body force and the acceleration can be assumed to be zero throughout this problem.
(a) If $\boldsymbol{Q}(t) \in \mathrm{Orth}^{+}$, determine if $\boldsymbol{Q}^{T} \dot{\boldsymbol{Q}}$ is skew-symmetric, symmetric, orthogonal or none of these.
(b) If

$$
\int_{S} \boldsymbol{Q} \boldsymbol{t} \cdot(\dot{\boldsymbol{Q}} \boldsymbol{x}) d S=\alpha
$$

where α is a constant, determine α by converting the left hand side of the above equation to a volume integral using the divergence theorem, and then simplifying. Justify every step in your derivation. You may directly use the Cauchy relation relating the traction and stress fields.
2. A rigid inclusion of radius a is inserted into a hole of radius a in an unbounded domain, and its surface is bonded to the surface of the hole as shown in Fig. 1. The rigid inclusion is rotated by an angle ϕ about its axis so that for example, the point A on the periphery of the hole is now displaced to point B as shown in the figure. The relevant plane-stress solution is given by

$$
\begin{aligned}
2 E u_{r} & =-\frac{2(1+\nu) F_{1}}{r}+4(1-\nu) r \hat{C}_{1}+2\left[(1-3 \nu) r^{2} \hat{C}_{2}+\frac{(1+\nu) A_{-2}}{r^{2}}\right] \cos \theta \\
& +2\left[(1-3 \nu) r^{2} \hat{D}_{2}+\frac{(1+\nu) B_{-2}}{r^{2}}\right] \sin \theta \\
& +(1+\nu)(3-\nu) \log r\left(J_{2} \cos \theta-H_{2} \sin \theta\right) \\
2 E u_{\theta} & =-\frac{2(1+\nu) F_{2}}{r}+2\left[(5+\nu) r^{2} \hat{C}_{2}+\frac{(1+\nu) A_{-2}}{r^{2}}\right] \sin \theta \\
& -2\left[(5+\nu) r^{2} \hat{D}_{2}+\frac{(1+\nu) B_{-2}}{r^{2}}\right] \cos \theta \\
& -H_{2}(1+\nu)(1+\nu+(3-\nu) \log r) \cos \theta \\
& -J_{2}(1+\nu)(1+\nu+(3-\nu) \log r) \sin \theta \\
\tau_{r r} & =\frac{F_{1}}{r^{2}+2 \hat{C}_{1}+2\left(r \hat{C}_{2}-\frac{A_{-2}}{r^{3}}\right) \cos \theta+2\left(r \hat{D}_{2}-\frac{B_{-2}}{r^{3}}\right) \sin \theta} \\
& +\frac{(3+\nu)\left(J_{2} \cos \theta-H_{2} \sin \theta\right)}{2 r}
\end{aligned}
$$

$$
\begin{aligned}
\tau_{\theta \theta} & =-\frac{F_{1}}{r^{2}}+2 \hat{C}_{1}+2\left(3 r \hat{C}_{2}+\frac{A_{-2}}{r^{3}}\right) \cos \theta+2\left(3 r \hat{D}_{2}+\frac{B_{-2}}{r^{3}}\right) \sin \theta \\
& +\frac{(1-\nu)\left(H_{2} \sin \theta-J_{2} \cos \theta\right)}{2 r} \\
\tau_{r \theta} & =\frac{F_{2}}{r^{2}}+2\left(r \hat{C}_{2}-\frac{A_{-2}}{r^{3}}\right) \sin \theta-2\left(r \hat{D}_{2}-\frac{B_{-2}}{r^{3}}\right) \cos \theta \\
& -\frac{(1-\nu)\left(H_{2} \cos \theta+J_{2} \sin \theta\right)}{2 r} .
\end{aligned}
$$

State the boundary conditions with respect to the polar coordinate system (Hint: Find in Cartesian and then transform to polar). Determine the nonzero constants in the above solution. Finally, determine the in-plane principal stresses at $r=a$ in terms of the nonzero constants (you need not simplify by substituting for these constants).
3. Consider the torsion of a beam of rectangular cross section as shown in Fig. 2 From among the various choices

$$
\begin{align*}
& \psi=x y+\sum_{n=1}^{\infty} A_{n} \cos \alpha_{n} x \cosh \alpha_{n} y \tag{1a}\\
& \psi=x y+\sum_{n=1}^{\infty} A_{n} \sin \alpha_{n} x \cosh \alpha_{n} y \tag{1b}\\
& \psi=x y+\sum_{n=1}^{\infty} A_{n} \cos \alpha_{n} x \sinh \alpha_{n} y \tag{1c}\\
& \psi=x y+\sum_{n=1}^{\infty} A_{n} \sin \alpha_{n} x \sinh \alpha_{n} y \tag{1d}
\end{align*}
$$

choose the correct form of the warping function by providing a justification for your choice. Next, determine the constants α_{n} and A_{n} as a function of n using the boundary condition

$$
(\boldsymbol{\nabla} \psi) \cdot \boldsymbol{n}=y n_{x}-x n_{y} .
$$

In your results, you can have one and only one unevaluated integral (which should be stated with the proper integration limits though).
4. Consider the bending by a terminal load $W_{y}=P$ along the y-axis of a beam of semi-parabolic cross section as shown in Fig. 3. With $\kappa_{y}=P /\left(E I_{x x}\right)$, the nonzero stresses are given by

$$
\begin{aligned}
& \frac{\tau_{x z}}{\kappa_{y} G}=-\alpha y+\frac{x\left(c_{1}-3 y\right)}{6} \\
& \frac{\tau_{y z}}{\kappa_{y} G}=\alpha x+\frac{\left(c_{2}-3 y\right)(y+a)}{3}
\end{aligned}
$$

You may guess the value of α (with proper justification). Then solve for the constants c_{1} and c_{2}. Let A denote the domain occupied by the cross section
of the beam at $z=c(z=0$ and $z=L$ are the left and right ends of the beam). Without actually evaluating any integrals state the values of

$$
\begin{aligned}
\int_{A} \tau_{x z} d A=? & & \int_{A} x \tau_{z z} d A=? \\
\int_{A} \tau_{y z} d A=? & & \int_{A} y \tau_{z z} d A=? \\
\int_{A} \tau_{z z} d A=? & & \int_{A}\left(x \tau_{y z}-y \tau_{x z}\right) d A=?
\end{aligned}
$$

Some relevant formulae

$$
\begin{gathered}
\cosh x=\frac{1}{2}\left(e^{x}+e^{-x}\right), \quad \frac{d(\cosh x)}{d x}=\sinh x, \\
\sinh x=\frac{1}{2}\left(e^{x}-e^{-x}\right), \quad \frac{d(\sinh x)}{d x}=\cosh x, \\
\cos (\theta+\phi)=\cos \theta \cos \phi-\sin \theta \sin \phi, \\
\sin (\theta+\phi)=\sin \theta \cos \phi+\sin \phi \cos \theta .
\end{gathered}
$$

Figure 1: Perfectly bonded rigid inclusion in a circular hole of radius a rotated by an angle ϕ about its axis.

Figure 2: Rectangular bar undergoing torsion.

Figure 3: Bar of semi-parabolic cross-section subjected to a terminal load along the y-direction.

