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1. Let S denote the surface, V denote the domain of a body, t denote the static (30)
traction field acting on S, and τ the stress field. The body force and the
acceleration can be assumed to be zero throughout this problem.

(a) If Q(t) ∈ Orth+, determine if QT Q̇ is skew-symmetric, symmetric,
orthogonal or none of these.

(b) If
∫

S

Qt · (Q̇x) dS = α,

where α is a constant, determine α by converting the left hand side of
the above equation to a volume integral using the divergence theorem,
and then simplifying. Justify every step in your derivation. You may
directly use the Cauchy relation relating the traction and stress fields.

2. A rigid inclusion of radius a is inserted into a hole of radius a in an unbounded (25)
domain, and its surface is bonded to the surface of the hole as shown in Fig. 1.
The rigid inclusion is rotated by an angle φ about its axis so that for example,
the point A on the periphery of the hole is now displaced to point B as shown
in the figure. The relevant plane-stress solution is given by
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[

(1− 3ν)r2Ĉ2 +
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State the boundary conditions with respect to the polar coordinate system
(Hint: Find in Cartesian and then transform to polar). Determine the
nonzero constants in the above solution. Finally, determine the in-plane
principal stresses at r = a in terms of the nonzero constants (you need not
simplify by substituting for these constants).

3. Consider the torsion of a beam of rectangular cross section as shown in Fig. 2 (30)
From among the various choices

ψ = xy +

∞
∑

n=1

An cosαnx coshαny, (1a)

ψ = xy +

∞
∑

n=1

An sinαnx coshαny, (1b)

ψ = xy +

∞
∑

n=1

An cosαnx sinhαny, (1c)

ψ = xy +
∞
∑

n=1

An sinαnx sinhαny, (1d)

choose the correct form of the warping function by providing a justification

for your choice. Next, determine the constants αn and An as a function of n
using the boundary condition

(∇ψ) · n = ynx − xny.

In your results, you can have one and only one unevaluated integral (which
should be stated with the proper integration limits though).

4. Consider the bending by a terminal load Wy = P along the y-axis of a beam (15)
of semi-parabolic cross section as shown in Fig. 3. With κy = P/(EIxx), the
nonzero stresses are given by

τxz
κyG

= −αy +
x(c1 − 3y)

6
,

τyz
κyG

= αx+
(c2 − 3y)(y + a)

3
.

You may guess the value of α (with proper justification). Then solve for the
constants c1 and c2. Let A denote the domain occupied by the cross section
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of the beam at z = c (z = 0 and z = L are the left and right ends of the
beam). Without actually evaluating any integrals state the values of

∫

A

τxz dA =?

∫

A

xτzz dA =?
∫

A

τyz dA =?

∫

A

yτzz dA =?
∫

A

τzz dA =?

∫

A

(xτyz − yτxz) dA =?

Some relevant formulae

cosh x =
1

2
(ex + e−x),

d(cosh x)

dx
= sinh x,

sinh x =
1

2
(ex − e−x),

d(sinh x)

dx
= cosh x,

cos(θ + φ) = cos θ cosφ− sin θ sin φ,

sin(θ + φ) = sin θ cosφ+ sin φ cos θ.
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Figure 1: Perfectly bonded rigid inclusion in a circular hole of radius a rotated
by an angle φ about its axis.
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Figure 2: Rectangular bar undergoing torsion.
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Figure 3: Bar of semi-parabolic cross-section subjected to a terminal load
along the y-direction.
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