Indian Institute of Science ME 242: Midsemester Test

Date: 27/9/14. **Duration:** 9.30 a.m.–11.00 a.m. **Maximum Marks:** 100

1. Let $\mathbf{S} = \sum_{i=1}^{3} \lambda_i \mathbf{e}_i^* \otimes \mathbf{e}_i^*$ be the spectral resolution of a symmetric tensor. Using the formula (25)

$$(\mathbf{cof} \, \boldsymbol{T})^T = I_2 \boldsymbol{I} - I_1 \boldsymbol{T} + \boldsymbol{T}^2$$

where I_1 and I_2 are the first and second principal invariants of a second-order tensor T, find the spectral resolution of **cof** S. You may directly use the formulae for I_1 and I_2 in terms of the eigenvalues in case you remember them (or derive them if you don't). Use this spectral resolution to find the eigenvalues and the corresponding eigenvectors of **cof** S.

2. In what follows, a subscript comma denotes differentiation, e.g., $\phi_{,i} = \partial \phi / \partial x_i$. A function (40) ϕ is said to be harmonic if

$$\boldsymbol{\nabla}^2 \phi = \phi_{,ii} = 0,$$

and is said to be biharmonic if

$$\nabla^4 \phi := \nabla^2 (\nabla^2 \phi) = 0.$$

Given that ϕ is harmonic, determine if $(\boldsymbol{x} \cdot \boldsymbol{x})\phi$ is biharmonic. You may use the comma notation.

- 3. Treat this problem as a two-dimensional problem by ignoring the z-coordinate, z-displacement (35) etc. Thus, the deformation gradient, velocity gradient etc. are 2×2 matrices. A point with position vector (X, Y) at t = 0, occupies the position (x, y) after time t as shown in Fig. 1, by rotating through an angle ωt and moving radially outward by δR , where $R = \sqrt{X^2 + Y^2}$, and ω and δ are constants.
 - (a) Find the motion $\chi(\mathbf{X}, t)$, the deformation gradient \mathbf{F} , and the Lagrangian and small strain tensors \mathbf{E} and $\boldsymbol{\epsilon}$ at time t (Hint: Express your motion in terms of an orthogonal tensor; the subsequent calculations will be easier since you can use $\mathbf{Q}^{-1} = \mathbf{Q}^T$ etc.).
 - (b) Find the Lagrangian and Eulerian velocities $(\tilde{\boldsymbol{v}}, \boldsymbol{v})$ and accelerations $(\tilde{\boldsymbol{a}}, \boldsymbol{a})$. The Eulerian acceleration $\boldsymbol{a}(\boldsymbol{x}, t)$ must be found using the expression for $\boldsymbol{v}(\boldsymbol{x}, t)$.
 - (c) Find the body force **b** at the point (x, y), and the traction **t** at the point $(a \cos \alpha, a \sin \alpha)$ (in the reference configuration) shown in the figure, where a is the radius of the disc.

Some relevant formulae

$$\boldsymbol{\tau} = \lambda(\operatorname{tr} \boldsymbol{\epsilon}) \boldsymbol{I} + 2\mu \boldsymbol{\epsilon},$$

$$\cos(A+B) = \cos A \cos B - \sin A \sin B,$$

$$\sin(A+B) = \sin A \cos B + \sin B \cos A.$$

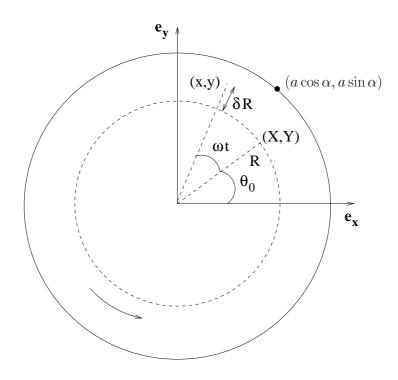


Figure 1: A spinning circular disc of radius a.