Indian Institute of Science ME 242: Midsemester Test

Date: 28/9/19. Duration: 9.30 a.m.-11.00 a.m. Maximum Marks: 100

1. Using the formula

$$\boldsymbol{u} \cdot (\boldsymbol{v} \times \boldsymbol{w}) = \epsilon_{ijk} u_i v_j w_k,$$

evaluate $\boldsymbol{a} \cdot (\boldsymbol{b} \times \boldsymbol{c})$ where $\boldsymbol{a} = \boldsymbol{u} \times \boldsymbol{v}$, $\boldsymbol{b} = \boldsymbol{v} \times \boldsymbol{w}$ and $\boldsymbol{c} = \boldsymbol{w} \times \boldsymbol{u}$ in terms of $\boldsymbol{u} \cdot (\boldsymbol{v} \times \boldsymbol{w})$.

- 2. Let $\boldsymbol{a}, \boldsymbol{b}$ and \boldsymbol{c} be arbitrary vectors.
 - (a) Using indicial notation, determine whether

$$a \cdot (b \times c) = b \cdot (c \times a) = c \cdot (a \times b),$$

 $a \times (b \times c) = (a \cdot c)b - (a \cdot b)c.$

(b) Let $g := \boldsymbol{a} \cdot (\boldsymbol{b} \times \boldsymbol{c})$, and let W(g) be a function of g. It is given that

$$\boldsymbol{a} \times \frac{\partial W}{\partial \boldsymbol{a}} + \boldsymbol{b} \times \frac{\partial W}{\partial \boldsymbol{b}} + \boldsymbol{c} \times \frac{\partial W}{\partial \boldsymbol{c}}$$

is a constant vector independent of \boldsymbol{a} , \boldsymbol{b} and \boldsymbol{c} . Using the results from Part (a), find this constant vector.

3. Treat this problem as a two-dimensional problem by ignoring the z-coordinate, z-displacement (35) etc. Thus, the deformation gradient, velocity gradient etc. are 2×2 matrices. The motion in the $\bar{e}_1 - \bar{e}_2$ coordinate system is given by

$$\bar{x} = X \cos \gamma t,$$
$$\bar{y} = \bar{Y},$$

where γ is a constant, and (\bar{x}, \bar{y}) and (\bar{X}, \bar{Y}) denote the deformed and undeformed coordinates with respect to the \bar{e}_1 - \bar{e}_2 coordinate system. The \bar{e}_1 - \bar{e}_2 coordinate system rotates about the e_3 axis as shown with \bar{e}_1 making an angle $\theta(t)$ with respect to the e_1 axis. With respect to the e_1 - e_2 coordinate system,

- (a) Find the motion $\chi(X, t)$, the deformation gradient F, and the Lagrangian and small strain tensors E and ϵ at time t.
- (b) Find the Lagrangian and Eulerian velocities $(\tilde{\boldsymbol{v}}, \boldsymbol{v})$ and accelerations $(\tilde{\boldsymbol{a}}, \boldsymbol{a})$. The Eulerian acceleration $\boldsymbol{a}(\boldsymbol{x}, t)$ must be found using the expression for $\boldsymbol{v}(\boldsymbol{x}, t)$.

(35)

(30)

Figure 1: A spinning rod.