Indian Institute of Science ME 242: Midsemester Test

Date: 28/11/20. Duration: 9.30 a.m.–12.00 noon Maximum Marks: 100

1. Let \boldsymbol{u} and \boldsymbol{v} be unit vectors. Given that the tensor

$$\boldsymbol{R} = \boldsymbol{I} + r\boldsymbol{v} \otimes \boldsymbol{u} - s(\boldsymbol{u} \otimes \boldsymbol{u} + \boldsymbol{u} \otimes \boldsymbol{v} + \boldsymbol{v} \otimes \boldsymbol{v}), \tag{1}$$

is a rotation that rotates \boldsymbol{u} into \boldsymbol{v} ,

- (a) Show that the axis of \mathbf{R} is perpendicular to the plane containing \mathbf{u} and \mathbf{v} . Derive any results that you require on the way.
- (b) Determine the scalars r and s as functions of u and v using the fact that v = Ru. (Hint: u and v are linearly independent vectors).
- 2. For the two-dimensional flow around a point vortex of constant strength Γ , where each (40) particle moves along a circle about the origin, the equation of motion $\chi(\mathbf{X}, t)$ is given by

$$x = f(\mathbf{X}) \cos \frac{\Gamma t}{2\pi (X^2 + Y^2)} - Y \sin \frac{\Gamma t}{2\pi (X^2 + Y^2)},$$

$$y = X \sin \frac{\Gamma t}{2\pi (X^2 + Y^2)} + g(\mathbf{X}) \cos \frac{\Gamma t}{2\pi (X^2 + Y^2)}.$$
(2)

If $\boldsymbol{X} = (X, Y)$, then

- (a) Determine the scalar-valued functions $f(\mathbf{X})$ and $g(\mathbf{X})$.
- (b) Determine the velocity vector $\boldsymbol{v}(\boldsymbol{x},t)$, the velocity gradient \boldsymbol{L} , and the acceleration vector $\boldsymbol{a}(\boldsymbol{x},t)$ in the Eulerian setting. (Hint: See if the expressions for v_x and v_y have a y and x, respectively, in the numerator).
- (c) Indicate (without actually carrying out the computation) how you would find the polar components of the Eulerian velocity and acceleration, (v_r, v_θ) and (a_r, a_θ) , respectively, in terms of (r, θ) .

Note that you *do not* need any inputs from your fluid mechanics class (specifically, you do not need to know what a 'point vortex' means) for solving this problem. Just a basic knowledge of kinematics is sufficient.

- 3. Let $\phi(x, y)$ be a scalar-valued function. All the operators and tensors in this problem are (30) two dimensional, e.g., $\nabla^2 \phi = \frac{\partial^2 \phi}{\partial x^2} + \frac{\partial^2 \phi}{\partial y^2}$, I has the components δ_{ij} , i, j = 1, 2, etc. All the usual rules of indicial notation are still valid.
 - (a) If

$$\boldsymbol{\tau} = (\boldsymbol{\nabla}^2 \phi) \boldsymbol{I} + \beta \boldsymbol{\nabla} (\boldsymbol{\nabla} \phi), \tag{3}$$

determine the constant β such that $\nabla \cdot \boldsymbol{\tau} = \boldsymbol{0}$.

(30)

- (b) Using the condition $\nabla^2(\operatorname{tr} \boldsymbol{\tau}) = 0$, determine the governing equation for ϕ , and write this governing equation in indicial notation.
- (c) Consider a function $\phi(x, y)$ such that $\nabla^2 \phi = 0$. Does this $\phi(x, y)$ satisfy the governing equation that you derived in part (b) above? Now let

$$\begin{split} \boldsymbol{u} &= \boldsymbol{\nabla}\phi, \\ \boldsymbol{\epsilon} &= \frac{1}{2} \left[\boldsymbol{\nabla} \boldsymbol{u} + (\boldsymbol{\nabla} \boldsymbol{u})^T \right], \\ \boldsymbol{\tau} &= \lambda(\operatorname{tr} \boldsymbol{\epsilon}) \boldsymbol{I} + 2\mu \boldsymbol{\epsilon}, \end{split}$$

where (λ, μ) are constants. Under the constraint $\nabla^2 \phi = 0$, determine $\nabla \cdot \boldsymbol{\tau}$ from the above three equations.