Indian Institute of Science
 ME 242: Midsemester Test

Date: $1 / 10 / 22$.
Duration: 9.30 a.m.-11.30 a.m.
Maximum Marks: 100

1. We have seen that a rotation can be written as

$$
\begin{equation*}
\boldsymbol{R}(\boldsymbol{w}, \alpha)=\boldsymbol{I}+\sin \alpha \boldsymbol{W}+(1-\cos \alpha) \boldsymbol{W}^{2} \tag{30}
\end{equation*}
$$

where $\boldsymbol{W} \in \operatorname{Skw}$ whose axial vector \boldsymbol{w} is of unit magnitude. Let \boldsymbol{u} be a unit vector in the plane perpendicular to \boldsymbol{w}.
(a) Determine $(\boldsymbol{u}, \boldsymbol{R u})$ in terms of α. Derive any results that you require on the way.
(b) Find the specific \boldsymbol{R} (let us call it \boldsymbol{R}_{0}) in terms of \boldsymbol{W} such that the axis of \boldsymbol{R}_{0} is \boldsymbol{w}, and such that $\boldsymbol{R}_{0} \boldsymbol{u}=\boldsymbol{W} \boldsymbol{u}$.
2. Treat this problem as a two-dimensional problem by ignoring the z-coordinate, z-displacement (40) etc. Thus, the deformation gradient, velocity gradient etc. are 2×2 matrices. Consider the rigid bar of length L and height h as shown in Fig. 1. At $t=0$, the end A of the bar is at the origin of the $\boldsymbol{e}_{1}-\boldsymbol{e}_{2}$ coordinate system, the end B is at the corner of the two walls, and the bar is horizontal, i.e. $\theta(0)=0$. At $t=0$, the ends A and B of the centerline of the bar start sliding along the horizontal and vertical walls, respectively. Point A moves with a constant velocity v_{0}, so that at time t, the bar makes an angle $\theta(t)$ with respect to the horizontal.
(a) Consider the point that has coordinates (X, Y) at time $t=0$ in the undeformed configuration. First find the coordinates of this point with respect to the $\tilde{\boldsymbol{e}}_{1}-\tilde{\boldsymbol{e}}_{2}$ coordinate system at time t.

Figure 1: A bar with sliding ends.
(b) Next, find the coordinates of this point with respect to the $\boldsymbol{e}_{1}-\boldsymbol{e}_{2}$ coordinate system. This will determine the motion $\boldsymbol{\chi}(\boldsymbol{X}, t)$.
(c) Using this equation of motion, find the deformation gradient \boldsymbol{F}, and the Lagrangian and small strain tensors \boldsymbol{E} and $\boldsymbol{\epsilon}$ at time t.
(d) Find the Lagrangian and Eulerian velocities $(\tilde{\boldsymbol{v}}, \boldsymbol{v})$, the velocity gradient \boldsymbol{L}, and the rate of deformation \boldsymbol{D}. Using the constraint that point B slides along the vertical wall, determine the differential equation for finding $\theta(t)$, and state the initial condition for solving this differential equation. Do not attempt to solve this differential equation. You may use matrices to present your results in a compact manner.
3. Let $\boldsymbol{A} \in \operatorname{Lin}$ be an invertible constant tensor (not dependent on \boldsymbol{x} or \boldsymbol{x}^{*}). Let

$$
\begin{align*}
\boldsymbol{x}^{*} & =\boldsymbol{A} \boldsymbol{x}, \tag{30}\\
\boldsymbol{T}^{*} & =\boldsymbol{A} \boldsymbol{T} \boldsymbol{A}^{T} .
\end{align*}
$$

Find an expression for $\boldsymbol{\nabla}_{\boldsymbol{x}^{*}} \cdot \boldsymbol{T}^{*}$ (which denotes the divergence of \boldsymbol{T}^{*} with respect to \boldsymbol{x}^{*}) in terms of $\boldsymbol{\nabla}_{\boldsymbol{x}} \cdot \boldsymbol{T}$ (which denotes the divergence of \boldsymbol{T} with respect to \boldsymbol{x}) and \boldsymbol{A}.

Some relevant formulae

$$
Q_{i j}=\bar{e}_{i} \cdot e_{j} .
$$

