Indian Institute of Science ME 242: Midsemester Test

Date: 1/10/22. Duration: 9.30 a.m.–11.30 a.m. Maximum Marks: 100

1. We have seen that a rotation can be written as

$$\boldsymbol{R}(\boldsymbol{w},\alpha) = \boldsymbol{I} + \sin \alpha \, \boldsymbol{W} + (1 - \cos \alpha) \boldsymbol{W}^2,$$

where $W \in \text{Skw}$ whose axial vector w is of unit magnitude. Let u be a unit vector in the plane perpendicular to w.

- (a) Determine $(\boldsymbol{u}, \boldsymbol{R}\boldsymbol{u})$ in terms of α . Derive any results that you require on the way.
- (b) Find the specific \boldsymbol{R} (let us call it \boldsymbol{R}_0) in terms of \boldsymbol{W} such that the axis of \boldsymbol{R}_0 is \boldsymbol{w} , and such that $\boldsymbol{R}_0 \boldsymbol{u} = \boldsymbol{W} \boldsymbol{u}$.
- 2. Treat this problem as a two-dimensional problem by ignoring the z-coordinate, z-displacement (40) etc. Thus, the deformation gradient, velocity gradient etc. are 2×2 matrices. Consider the rigid bar of length L and height h as shown in Fig. 1. At t = 0, the end A of the bar is at the origin of the e_1 - e_2 coordinate system, the end B is at the corner of the two walls, and the bar is horizontal, i.e. $\theta(0) = 0$. At t = 0, the ends A and B of the centerline of the bar start sliding along the horizontal and vertical walls, respectively. Point A moves with a constant velocity v_0 , so that at time t, the bar makes an angle $\theta(t)$ with respect to the horizontal.
 - (a) Consider the point that has coordinates (X, Y) at time t = 0 in the undeformed configuration. First find the coordinates of this point with respect to the \tilde{e}_1 - \tilde{e}_2 coordinate system at time t.

Figure 1: A bar with sliding ends.

(30)

- (b) Next, find the coordinates of this point with respect to the e_1 - e_2 coordinate system. This will determine the motion $\chi(\mathbf{X}, t)$.
- (c) Using this equation of motion, find the deformation gradient F, and the Lagrangian and small strain tensors E and ϵ at time t.
- (d) Find the Lagrangian and Eulerian velocities $(\tilde{\boldsymbol{v}}, \boldsymbol{v})$, the velocity gradient \boldsymbol{L} , and the rate of deformation \boldsymbol{D} . Using the constraint that point B slides along the vertical wall, determine the differential equation for finding $\theta(t)$, and state the initial condition for solving this differential equation. Do not attempt to solve this differential equation. You may use matrices to present your results in a compact manner.
- 3. Let $A \in \text{Lin}$ be an invertible *constant* tensor (not dependent on x or x^*). Let (30)

$$x^* = Ax,$$

 $T^* = ATA^T.$

Find an expression for $\nabla_{x^*} \cdot T^*$ (which denotes the divergence of T^* with respect to x^*) in terms of $\nabla_x \cdot T$ (which denotes the divergence of T with respect to x) and A.

Some relevant formulae

$$oldsymbol{Q}_{ij} = ar{oldsymbol{e}}_i \cdot oldsymbol{e}_j.$$