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Instructions:

1. Justify all your steps.

2. The points for each question are indicated in the right margin.

1. If (λ1, e
∗

1
), (λ, e∗

2
), (λ, e∗

3
) are the eigenvalue/eigenvector pairs of S1 ∈ Sym, and (µ1, e

∗

1
), (20)

(µ, f∗

2
), (µ, f∗

3
) are the eigenvalue/eigenvector pairs of S2 ∈ Sym, determine if S1 and S2

commute, i.e., determine if S1S2 = S2S1.

2. If w is the axial vector of W ∈ Skw, then using indicial notation, find a relation between (20)
cof W and w. Use this expression to find the second principal invariant of W in terms of
w.

3. Let w(x, t) be the axial vector of W (x, t) ∈ Skw. (25)

(a) Find an expression for ∇×W in terms of w.

(b) Let v represent the velocity vector. Find a relation between [∇v−(∇v)T ] and ∇×v.

(c) Using the above two results, find a relation of the form

∇× [∇v − (∇v)T ] = α∇(∇× v),

where you have to determine α.

4. A hollow cylinder of length L and inner and outer radii a and b, is fixed at r = a, and (35)
subjected to a uniform circumferential shear at r = b resulting in a net moment M , as
shown in Fig. 1. By assuming the body forces to be zero, and the displacement field to be
given by

ur = c1r,

uθ = c2r +
c3

r
,

uz = 0,

use the relevant differential equations and boundary conditions to find the displacement,
strain and stress fields in terms of the Lame constants, M and other given data. (Make
sure that you show that the relevant boundary conditions are satisfied on each surface of
the cylinder including the top and bottom ones.)
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Figure 1: Hollow cylinder of length L fixed at the inner boundary r = a, and subjected to
a moment M at the outer boundary r = b.

Some relevant formulae

(a⊗ b)(c⊗ d) = (b · c)a⊗ d,

wi = −
1

2
ǫijkWjk,

Wij = −ǫijkwk,

(cof T )ij =
1

2
ǫimnǫjpqTmpTnq,

(∇× T )ij = ǫirs
∂Tjs

∂xr

.
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τ = λ(tr ǫ)I + 2µǫ.
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