1. An incompressible Riener-Rivlin fluid whose constitutive relation is given by

$$
\boldsymbol{\tau}=-p \boldsymbol{I}+\beta_{1}\left(\left(I_{2}\right)_{\boldsymbol{D}},\left(I_{3}\right)_{\boldsymbol{D}}\right) \boldsymbol{D}+\beta_{2}\left(\left(I_{2}\right)_{\boldsymbol{D}},\left(I_{3}\right)_{\boldsymbol{D}}\right) \boldsymbol{D}^{2}
$$

fills the space between parallel rigid plates. The lower plate is held fixed and a steady shearing motion is produced by translating the other plate in its own plane with constant speed V. Introducing a Cartesian coordinate system in which the stationary and moving plates occupy the planes $x_{2}=0$ and $x_{2}=d$ respectively, and the moving plate travels in the 1-direction, and assuming that the velocity field in the fluid is of the form $v_{1}=v_{1}\left(x_{2}\right), v_{2}=0$ and $v_{3}=0$, calculate the stress components. Verify that the stress component τ_{12} is a function of D_{12} only. Given that there is no pressure gradient in the 1 -direction, β_{1} and β_{2} are constants and that no body forces act, find the velocity and stress distributions. Compare your results with the solution for a Newtonian fluid.
2. Show that

$$
\begin{aligned}
& \boldsymbol{\epsilon}: \boldsymbol{\epsilon}+\boldsymbol{W}: \boldsymbol{W}=\boldsymbol{\nabla} \boldsymbol{u}:(\boldsymbol{\nabla} \boldsymbol{u}) . \\
& \boldsymbol{\epsilon}: \boldsymbol{\epsilon}-\boldsymbol{W}: \boldsymbol{W}=\boldsymbol{\nabla} \boldsymbol{u}:(\boldsymbol{\nabla} \boldsymbol{u})^{T} .
\end{aligned}
$$

3. Let $\boldsymbol{u}=\mathbf{0}$ on the surface S of a volume V. Derive the relation

$$
\boldsymbol{\nabla} \boldsymbol{u}:(\boldsymbol{\nabla} \boldsymbol{u})^{T}=\boldsymbol{\nabla} \cdot((\boldsymbol{\nabla} \boldsymbol{u}) \boldsymbol{u}-(\boldsymbol{\nabla} \cdot \boldsymbol{u}) \boldsymbol{u})+(\boldsymbol{\nabla} \cdot \boldsymbol{u})^{2},
$$

and use it to prove Korn's inequality:

$$
\int_{V} \boldsymbol{\nabla} \boldsymbol{u}: \boldsymbol{\nabla} \boldsymbol{u} d V \leq 2 \int_{V} \boldsymbol{\epsilon}: \boldsymbol{\epsilon} d V .
$$

4. Show that

$$
\begin{gathered}
D \boldsymbol{U}(\boldsymbol{I})[\boldsymbol{\nabla} \boldsymbol{u}]=D \boldsymbol{V}(\boldsymbol{I})[\boldsymbol{\nabla} \boldsymbol{u}]=\boldsymbol{\epsilon}, \\
D J(\boldsymbol{I})[\boldsymbol{\nabla} \boldsymbol{u}]=\boldsymbol{\nabla} \cdot \boldsymbol{u}=\operatorname{tr} \boldsymbol{\epsilon} .
\end{gathered}
$$

where $J=\operatorname{det} \boldsymbol{F}$, and \boldsymbol{U} and \boldsymbol{V} are the tensors which occur in the polar decomposition of \boldsymbol{F}.
5. Assuming that the residual stress vanishes, show that

$$
\hat{\boldsymbol{\tau}}(\boldsymbol{F})=\mathbf{C}[\boldsymbol{\epsilon}]+\mathrm{o}(\boldsymbol{\nabla} \boldsymbol{u}) .
$$

6. Assuming that the residual stress, $\hat{\boldsymbol{T}}(\boldsymbol{I})$, does not vanish, show that

$$
\hat{\boldsymbol{T}}(\boldsymbol{F})=\hat{\boldsymbol{T}}(\boldsymbol{I})+\mathbf{C}[\boldsymbol{\epsilon}]+\boldsymbol{W} \hat{\boldsymbol{T}}(\boldsymbol{I})+\mathrm{o}(\boldsymbol{\nabla} \boldsymbol{u}),
$$

where $\boldsymbol{\epsilon}$ and \boldsymbol{W} are the symmetric and skew-symmetric parts of $\boldsymbol{\nabla} \boldsymbol{u}$, respectively.

