Indian Institute of Science, Bangalore

ME 243: Endsemester Exam

Date: 8/12/08. Duration: 9.30 a.m.–12.30 p.m. Maximum Marks: 100

1. Let $\operatorname{Skw}[\boldsymbol{w}]$ denote the skew-symmetric tensor of which \boldsymbol{w} is the axial vector, (20) i.e. $\operatorname{Skw}[\boldsymbol{w}]\boldsymbol{u} = \boldsymbol{w} \times \boldsymbol{u}$ for all \boldsymbol{u} . Using indicial notation or otherwise, find a relation between $(\operatorname{cof} \boldsymbol{T} \boldsymbol{u}) \times \boldsymbol{v}$ and $\boldsymbol{T} (\boldsymbol{u} \times (\boldsymbol{T}^T \boldsymbol{v}))$, where \boldsymbol{u} and \boldsymbol{v} are arbitrary vectors. Use this relation to find a relation between $\operatorname{Skw}[\operatorname{cof} \boldsymbol{T} \boldsymbol{u}]$ and $\boldsymbol{T} \operatorname{Skw}[\boldsymbol{u}] \boldsymbol{T}^T$.

Let $T \equiv Q \in \text{Orth}^+$. Using the above results, find a relation between $e^{\text{Skw}[Qu]}$ and $e^{\text{Skw}[u]}$.

- 2. We want to derive an explicit formula for $\mathbf{R}(t) \equiv e^{\mathbf{W}t}$, $\mathbf{W} \in \text{Skw}$, when (30) the underlying space dimension is 3. To derive this formula, let $\mathbf{R}(t) = h_1(t)\mathbf{I} + h_2(t)\mathbf{W} + h_3(t)\mathbf{W}^2$, where $h_i(t)$, i = 1, 2, 3, are functions to be determined. Using the equation $\dot{\mathbf{R}} = \mathbf{W}\mathbf{R}$ and appropriate initial conditions on \mathbf{R} and $\dot{\mathbf{R}}$, determine the differential equations and initial conditions for the functions $h_i(t)$. Solve these equations to find the desired explicit formula.
- 3. A circular shaft of initial radius R_0 and length L is subjected to a torque T (20) and net axial force N by tractions applied to the top and bottom surfaces. The lateral surfaces are traction free. The Z-axis lies along the axis of the cylinder, with the origin at the center of the bottom surface. The constitutive relation is given by

$$\boldsymbol{S} = \kappa (J-1) J \boldsymbol{C}^{-1} + \mu (\det \boldsymbol{C})^{-1/3} \left[\boldsymbol{I} - \frac{\operatorname{tr} \boldsymbol{C}}{3} \boldsymbol{C}^{-1} \right].$$

The deformation is assumed to be of the form

$$r = g(R),$$

$$\theta = \Theta + dZ,$$

$$z = fZ.$$

Using the scale factors $h_i = (1, r, 1)$ and $h_J^0 = (1, R, 1)$, and the relation

$$F_{iJ} = \frac{h_i}{h_J^0} \frac{\partial \hat{\chi}_i}{\partial \eta_J}, \quad \text{no sum on } i, J,$$

where η_J denote (R, Θ, Z) , set up the equation (*but do not solve*) and boundary conditions for determining g(R). Also set up the equations for determining the constants d and f.

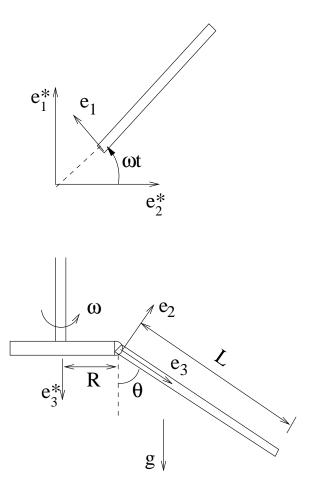


Figure 1: Rotating bar.

4. A rigid bar of length L and mass per unit length m_0 (i.e., $\rho dV = m_0 dx$) is (30) hinged to a spinning disk of radius R as shown in Fig. 1. The local axes $\{e_i\}$ can be expressed in terms of the stationary axes $\{e_i^*\}$ as

$$\begin{aligned} \boldsymbol{e}_1 &= \cos \omega t \boldsymbol{e}_1^* - \sin \omega t \boldsymbol{e}_2^*, \\ \boldsymbol{e}_2 &= \cos \theta (\sin \omega t \boldsymbol{e}_1^* + \cos \omega t \boldsymbol{e}_2^*) - \sin \theta \boldsymbol{e}_3^*, \\ \boldsymbol{e}_3 &= \sin \theta (\sin \omega t \boldsymbol{e}_1^* + \cos \omega t \boldsymbol{e}_2^*) + \cos \theta \boldsymbol{e}_3^*. \end{aligned}$$

By applying the appropriate balance laws in integral form to the material volume comprised of the bar, find the angle θ made by the bar under steady state conditions, and the reaction exerted by the bar at the hinge. Assuming that the bar is vertical at t = 0, is the total energy (kinetic plus potential) conserved between the initial and steady-state conditions?

Some relevant formulae

$$(\mathbf{cof} \, \mathbf{T})_{ij} = \frac{1}{2} \epsilon_{imn} \epsilon_{jpq} T_{mp} T_{nq},$$
$$\boldsymbol{\tau} = \frac{1}{J} \mathbf{F} \mathbf{S} \mathbf{F}^{T},$$
$$I_{2}(\mathbf{T}) = \frac{1}{2} \left[(\operatorname{tr} \mathbf{T})^{2} - \operatorname{tr} (\mathbf{T}^{2}) \right],$$
$$w_{i} = -\frac{1}{2} \epsilon_{ijk} W_{jk},$$
$$W_{ij} = -\epsilon_{ijk} w_{k}.$$

If τ is symmetric tensor-valued field, then the components of $\nabla_x \cdot \tau$ with respect to a cylindrical coordinate system are

$$(\boldsymbol{\nabla} \cdot \boldsymbol{\tau})_r = \frac{\partial \tau_{rr}}{\partial r} + \frac{1}{r} \frac{\partial \tau_{r\theta}}{\partial \theta} + \frac{\partial \tau_{rz}}{\partial z} + \frac{\tau_{rr} - \tau_{\theta\theta}}{r},$$

$$(\boldsymbol{\nabla} \cdot \boldsymbol{\tau})_{\theta} = \frac{\partial \tau_{\theta r}}{\partial r} + \frac{1}{r} \frac{\partial \tau_{\theta\theta}}{\partial \theta} + \frac{\partial \tau_{\theta z}}{\partial z} + \frac{2\tau_{r\theta}}{r},$$

$$(\boldsymbol{\nabla} \cdot \boldsymbol{\tau})_z = \frac{\partial \tau_{zr}}{\partial r} + \frac{1}{r} \frac{\partial \tau_{z\theta}}{\partial \theta} + \frac{\partial \tau_{zz}}{\partial z} + \frac{\tau_{zr}}{r}.$$