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ME 243: Endsemester Exam

Date: 12/12/14.
Duration: 9.00 a.m.–12.00 noon
Maximum Marks: 100

Instructions:

You may directly use the formulae at the back.

1. Assume that the heat flux is a function of the deformation gradient F and (25)
the temperature gradient g := ∇xθ, i.e., q = q̃(F , g). Derive the rela-
tions for F ∗ and g∗. Then state the conditions for q̃ to be frame-indifferent
and isotropic. (Do not try to find a characterization for a frame-indifferent,
isotropic q̃). Next, if q0 := (cof F )Tq and g0 := ∇X θ̃ is the referential tem-
perature gradient, find the conditions for q̃0(F , g0) to be frame-indifferent
and isotropic. Now evaluate if the following constitutive relations for the flux
are frame-indifferent and/or isotropic or neither (C = F TF , B = FF T , β0,
β1, β2 are constants, and C is a constant fourth-order tensor).
(1) q̃ = (β0I + β1B + β2B

2)g, (6) q̃0 = (β0I + β1B + β2B
2)g0.

(2) q̃ = (β0I + β1C + β2C
2)g, (7) q̃0 = (β0I + β1C + β2C

2)g0.
(3) q̃ = (CB)g. (8) q̃0 = (CB)g0.
(4) q̃ = (CC)g. (9) q̃0 = (CC)g0.
(5) q̃ = β0(g · g)g. (10) q̃0 = β0(g0 · g0)g0.
(Hint: Isotropy can be considered as a rotation of the reference configuration
X = QX̄ leading to F̄ = FQ. Assume that g = ∇xθ remains unaffected
by this rotation.)

2. Let {λ1, λ2, λ3} be the distinct (not necessarily nonzero) eigenvalues of a (20)
tensor S ∈ Sym.

(a) Find the eigenvalues of S − λ1I. Using cof S = I2I − (trS)S + S2,
find cof (S − λ1I).

(b) Using the fact that λ1 satisfies the characteristic equation of S, i.e.,
det(S − λ1I) = 0, find ∂λ1/∂S. Your expression should be an explicit
function of S and the eigenvalues λi (try to reduce to the simplest
possible form). By a permutation of indices, find ∂λ2/∂S and ∂λ3/∂S.

(c) Let {λ1, λ2, λ3} denote the eigenvalues of V :=
√
B =

√
FF T . If

W (B) = µ
[

(log λ1)
2 + (log λ2)

2 + (log λ3)
2
]

,

where µ is a constant, find S = 2∂W/∂C.

3. Let X∗-Y ∗-Z∗ be a ‘fixed’ frame of reference with basis vectors (e∗

1, e
∗

2, e
∗

3). (25)
Let X-Y -Z be a rotating frame of reference with basis vectors (e1, e2, e3)
making an angle θ(t) with the fixed frame as shown in Fig. 1. Assume
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Figure 1: Rotating cantilever beam with the deformed shape shown by the
dotted line.

b∗ = 0 and assume a St. Venant-Kirchhoff material with density ρ0(X).
A cantilever beam whose fixed support is aligned with e2, and hence ro-
tates with the same angular speed as the rotating frame, gets deformed (the
deformed shape at some instant of time is shown by a dotted line; do not
assume the cantilever to have reached ‘steady-state’ with respect to the ro-
tating observer) from the original reference configuration (which is shown as
a rectangle) due to this rotation. Note that this reference configuration is
fixed at all times with respect to the rotating observer. Assuming that the
beam occupies the rectangular domain at t = 0 and has zero initial velocity,
write the complete problem formulation for the displacements with respect
to this reference configuration (Lagrangian formulation). Your formulation
should include the initial conditions and the in-plane boundary conditions;
you may ignore the out-of-plane deformations. There should be as many
equations as unknowns in your formulation (e.g., if you use F , then define
the inplane X and u that you are using with the help of a figure, and then
express F in terms of these quantities). Do not attempt to solve any of these
equations but derive the formulae that you use, say for Ω or c̈. Apart from
the boundary conditions where components need to be used, the remaining
equations can be in tensorial form.

Next, derive the linearized equations assuming that the displacement vector
and its gradients are small with respect to the (rotating) reference config-
uration. (thus, with respect to the fixed observer, a ‘small’ deformation is
superimposed on a ‘large’ rigid rotation).

4. (a) Taking the dot product of the linear momentum equation in Eulerian (30)
form with the velocity vector, and integrating over a material volume,
derive a relation for the rate of kinetic energy. Derive any tensorial
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Figure 2: Sliding rod.

identities that you need on the way.

(b) A rigid bar of length L and mass per unit length m = M/L is released
from rest under gravity loading from an initial angle θ = π/4 in the setup
shown in Fig. 2. Assuming that the ends of the bar slide frictionlessly
along the surface, find the angular velocity of the bar when θ = π/6
(Hint: Is any quantity conserved?). Approximate the rod as a one-
dimensional rigid body (ρdV ≡ mdx). You may directly use v − ˙̄x =
ω × (x− x̄), where x is the position vector, x̄(t) is the position of the
centroid, and ω = (0, 0, θ̇). You may also directly use

∫

V
ρ(x− x̄) · (x−

x̄) dV = ML2/12. Derive any other relations that you may need. Do
not use the Euler equations. Solve using first principles.

Some relevant formulae

cof (AB) = (cof A)(cof (B),

det(T +U) = detT + cof T : U + cof U : T + detU ,

∇X · T = J∇x · τ ,
ρ0 = ρ̃J,

t0 = Tn0,

d

dt

∫

V (t)

f(x, t) dV =

∫

V (t)

∂f

∂t
dV +

∫

S(t)

f(v · n) dS,

d

dt

∫

V (t)

ρf(x, t) dV =

∫

V (t)

ρ
Df

Dt
dV =

∫

V (t)

ρ

{

∂f

∂t
+ v · (∇f)

}

dV,

b = QT [b∗ − c̈]− Ω̇× x−Ω× (Ω× x)− 2Ω× v.

Qij = e∗

i · ej,

Ω =





ė2 · e3

ė3 · e1

ė1 · e2



 ,
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