Indian Institute of Science, Bangalore

ME 243: Endsemester Exam

Date: 10/12/18.
Duration: 9.00 a.m.-12.00 noon
Maximum Marks: 100

Instructions:

You may directly use the formulae at the back.

1. In what follows λ and μ are constants, $\tilde{\boldsymbol{v}}$ is the Lagrangian velocity vector, a superposed dot denotes a material derivative, \boldsymbol{V} and \boldsymbol{R} are the polar decomposition factors of $\boldsymbol{F}, \boldsymbol{C}=\boldsymbol{F}^{T} \boldsymbol{F}, \boldsymbol{S}$ is the second Piola-Kirchhoff stress, $\boldsymbol{\tau}$ is the Cauchy stress, \boldsymbol{q} is the heat flux, \boldsymbol{g} is the temperature gradient, $\boldsymbol{F}^{*}=\boldsymbol{Q}(t) \boldsymbol{F}$ and $\dot{\boldsymbol{F}}=\boldsymbol{L} \boldsymbol{F}$. Find expressions for $\boldsymbol{L}^{*}, \boldsymbol{D}^{*}, \boldsymbol{W}^{*}, \boldsymbol{R}^{*}, \boldsymbol{V}^{*}$ and \boldsymbol{g}^{*}, where $\boldsymbol{L}=\boldsymbol{\nabla}_{x} \boldsymbol{v}, \boldsymbol{D}=\left(\boldsymbol{L}+\boldsymbol{L}^{T}\right) / 2, \boldsymbol{W}=\left(\boldsymbol{L}-\boldsymbol{L}^{T}\right) / 2$ and $\boldsymbol{g}=\boldsymbol{\nabla}_{x} \theta$.
(a) Determine if the following constitutive relations are frame-indifferent:

$$
\begin{gathered}
\boldsymbol{S}=\mu \boldsymbol{\nabla}_{X} \tilde{\boldsymbol{v}} \\
\boldsymbol{S}=\lambda \dot{J} \boldsymbol{C}^{-1}+\mu\left[(\operatorname{cof} \boldsymbol{F})^{T} \dot{\boldsymbol{F}} \boldsymbol{C}^{-1}+\boldsymbol{C}^{-1} \dot{\boldsymbol{F}}^{T} \operatorname{cof} \boldsymbol{F}\right], \\
\boldsymbol{\tau}=\mu\left(\boldsymbol{R} \boldsymbol{V}+\boldsymbol{V} \boldsymbol{R}^{T}\right)
\end{gathered}
$$

(b) Find a relation between $\boldsymbol{w}:=\boldsymbol{\nabla}_{x} \times \boldsymbol{v}$ and \boldsymbol{W}. Use this relation to find a relation between \boldsymbol{w}^{*} and \boldsymbol{w}. Take $\boldsymbol{\Omega}$ to be the axial vector of $\dot{\boldsymbol{Q}} \boldsymbol{Q}^{T}$. Use this relation to find if the following constitutive equations are frame indifferent:

$$
\begin{aligned}
& \boldsymbol{\tau}=\lambda(\boldsymbol{\nabla} \cdot \boldsymbol{w}) \boldsymbol{I}+\mu\left[(\boldsymbol{\nabla} \boldsymbol{w})+(\boldsymbol{\nabla} \boldsymbol{w})^{T}\right] \\
& \boldsymbol{q}=(\boldsymbol{\nabla} \boldsymbol{w}) \boldsymbol{g} \\
& \dot{\boldsymbol{q}}-\boldsymbol{W} \boldsymbol{q}=\mu \boldsymbol{B} \boldsymbol{g} .
\end{aligned}
$$

2. Consider the torsion of of an incompressible circular cylinder of initial radius and length R_{0} and L, respectively, which is fixed at the bottom $z=0$ (see Fig. 1). Normal and tangential tractions are applied at the top surface $z=L$ so that the length remains L at all times, and generate a torque $T(t) \boldsymbol{e}_{z}$ which is assumed to be given. The constitutive relation is given by $\boldsymbol{\tau}=-p \boldsymbol{I}+\mu \boldsymbol{B}$ where the pressure p is independent of θ, and μ is a constant. Assume the deformation to be given by

$$
\begin{aligned}
& r=a R \\
& \theta=\Theta+f(Z, t), \\
& z=Z
\end{aligned}
$$

where a is a constant, and assume that a body force $\rho \boldsymbol{b}=\left[\rho r\left(\omega_{0}^{2}-(\partial f / \partial t)^{2}\right)-\mu r(\partial f / \partial Z)^{2}\right] \boldsymbol{e}_{r}$, where ω_{0} is a given constant, acts on the cylinder. The lateral surface of the cylinder is traction free.
(a) Find a and the governing differential equation for $f(Z, t)$. Do not attempt to solve this equation. Assuming that the cylinder is initially in a state of rest, state the initial and boundary conditions on $f(Z, t)$ in terms of known quantities such as $T(t)$. (Hint: Exercise care while finding the governing equation for $f(Z, t)$ since ($\left.\boldsymbol{e}_{r}, \boldsymbol{e}_{\theta}\right)$ change with time.)
(b) Find the normal force exerted on the top surface $Z=L$ of the cylinder.
3. Consider the setup shown in Fig. 2 where two masses of mass M rotate about the \boldsymbol{e}_{3} axis. The masses M are connected to a mass m and the ground by means of massless, rigid links of length L; all joints are pin-joints. The $\left\{\boldsymbol{e}_{1}, \boldsymbol{e}_{2}, \boldsymbol{e}_{3}\right\}$ frame of reference rotates with a given angular velocity $\Omega=$ $\omega(t) \boldsymbol{e}_{3}$ with respect to a fixed frame of reference in which the body force is $-g \boldsymbol{e}_{3}$. A normal force $F \boldsymbol{e}_{2}$ (indicated by ' x ') is exerted on the masses M so as to keep them in the $\boldsymbol{e}_{1}-\boldsymbol{e}_{3}$ plane. The mass m is connected to the ground by means of a spring with spring constant k. At $t=0$ the system is in a state of rest with $\theta(0)=\theta_{0}$, and the spring is undeformed in this position. Assuming the masses to be concentrated at their center of mass, find the governing equation for $\theta(t)$ along with the appropriate initial conditions, and the force F on any one of the masses M. Do not attempt to solve the equation for $\theta(t)$. You may directly take $\boldsymbol{Q}^{T} \boldsymbol{b}^{*}=-g \boldsymbol{e}_{3}$ in the body force transformation formula since gravity is the only body force in the fixed frame of reference. Justify all assumptions that you make.

Some relevant formulae

$$
\begin{gathered}
\operatorname{cof}(\boldsymbol{A B})=(\boldsymbol{\operatorname { c o f }} \boldsymbol{A})(\operatorname{cof}(\boldsymbol{B}), \\
\operatorname{det}(\boldsymbol{T}+\boldsymbol{U})=\operatorname{det} \boldsymbol{T}+\operatorname{cof} \boldsymbol{T}: \boldsymbol{U}+\operatorname{cof} \boldsymbol{U}: \boldsymbol{T}+\operatorname{det} \boldsymbol{U}, \\
w_{i}=-\frac{1}{2} \epsilon_{i j k} W_{j k}, \\
W_{i j}=-\epsilon_{i j k} w_{k}, \\
\boldsymbol{b}=\boldsymbol{Q}^{T}\left[\boldsymbol{b}^{*}-\ddot{\boldsymbol{c}}\right]-\dot{\boldsymbol{\Omega}} \times \boldsymbol{x}-\boldsymbol{\Omega} \times(\boldsymbol{\Omega} \times \boldsymbol{x})-2 \boldsymbol{\Omega} \times \boldsymbol{v} . \\
F_{i J}=\frac{h_{i}}{h_{J}} \frac{\partial \hat{\chi}_{i}}{\partial \eta_{J}}, \quad \text { no sum on } i, J, \quad h_{i} \equiv(1, r, 1), \quad h_{J} \equiv(1, R, 1) .
\end{gathered}
$$

If $\boldsymbol{\tau}$ is symmetric tensor-valued field, then the components of $\boldsymbol{\nabla}_{x} \cdot \boldsymbol{\tau}$ with respect to a cylindrical coordinate system are

$$
\begin{aligned}
& (\boldsymbol{\nabla} \cdot \boldsymbol{\tau})_{r}=\frac{\partial \tau_{r r}}{\partial r}+\frac{1}{r} \frac{\partial \tau_{r \theta}}{\partial \theta}+\frac{\partial \tau_{r z}}{\partial z}+\frac{\tau_{r r}-\tau_{\theta \theta}}{r} \\
& (\boldsymbol{\nabla} \cdot \boldsymbol{\tau})_{\theta}=\frac{\partial \tau_{\theta r}}{\partial r}+\frac{1}{r} \frac{\partial \tau_{\theta \theta}}{\partial \theta}+\frac{\partial \tau_{\theta z}}{\partial z}+\frac{2 \tau_{r \theta}}{r} \\
& (\boldsymbol{\nabla} \cdot \boldsymbol{\tau})_{z}=\frac{\partial \tau_{z r}}{\partial r}+\frac{1}{r} \frac{\partial \tau_{z \theta}}{\partial \theta}+\frac{\partial \tau_{z z}}{\partial z}+\frac{\tau_{z r}}{r} .
\end{aligned}
$$

Figure 1: A circular cylinder of initial radius and length R_{0} and L, respectively, subjected to a torque $T(t)$ on its top surface.

Figure 2: Problem 3.

