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ME 243: Endsemester Exam

Date: 6/12/19.
Duration: 9.30 a.m.–12.30 p.m.
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Instructions:

You may directly use the formulae at the back.

1. Let B and C denote the left and right Cauchy Green strain tensors. The (25)
purpose of this exercise is to determine under what conditions the eigen-
vectors of B and those of the rate of deformation tensor D coincide. Let
B =

∑3
i=1 λ

2
ini⊗ni, C =

∑3
i=1 γ

2
iN i⊗N i. Assume λi and γi to be distinct

and greater than zero throughout this exercise.

(a) If a relation exists between λi and γi, find this relation.

(b) Find an expression for D in terms of λ̇i, λi, ni, N i and Ṅ i, where the
superposed dot denotes a material derivative.

(c) From this expression, find the necessary and sufficient conditions for the
eigenvectors of D to be the same as the eigenvectors ni of B.

2. This is the nonlinear version of the shrink fit problem. A hollow circular (20)
disc of initial inner and outer radii b and c is fitted over a solid circular
cylinder of initial radius a where a > b (This is generally done by heating
the hollow circular disc, slipping it over the solid cylinder and then cooling
the entire assembly to room temperature; solve this problem under the static
framework within the purely mechanical context without considering any
thermal effects). The constitutive equation is given by τ = µB, where µ is
a constant. By assuming an appropriate two-dimensional deformation field
(i.e., z = Z) in the cylinder and hollow disc, find the governing equations
for the unknown functions. State the appropriate boundary and interface
conditions (which have to be stated precisely without using any assumptions
such as those made in linearized elasticity). Do not attempt to solve the
governing equations that result for your unknown fields.

3. By taking the dot product of the linear momentum equation with the velocity (25)
v and integrating over the material volume, derive the integral form of the
mechanical energy balance equation. Consider a rigid rod sliding against a
frictionless wall and floor under the action of gravity as shown in Fig. 1.
For the conditions given in this problem, derive from the mechanical energy
balance equation you have derived, a conservation law of the form

∫

V (t)

(.)ρ dV = constant. (1)
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Figure 1: Problem 3.

Now use Eqn. (1) to derive the governing equation for θ̇, assuming that
the rod is at rest at the initial position θ = θ0. State the initial condition
for solving this equation. Do not attempt to solve this governing differential
equation. For the purpose of carrying out the integrations in Eqn. (1), assume
the rod to be one-dimensional, express the coordinates of a typical point (x, y)
on the rod in terms the coordinate ξ which runs along the length as shown
in the figure, and assume ρ dV = mdξ, where m, the mass per unit length,
is a constant.

Next use the appropriate balance law (involving the center of mass) to find
the reaction forces at the ends of the rod as functions of θ(t) and its deriva-
tives (which are assumed to be known from the previous part), g, m and
L.

4. The constitutive relations for a homogeneous solid are given by (30)

ψ = ψ̃(F ,F T
∇X ṽ),

S = S̃(F ,F T
∇X ṽ),

where ṽ is the Lagrangian velocity vector.

(a) Using the principle of material frame-indifference (MFI) and the given
constitutive relations, derive the list of kinematical variables on which ψ
and S should depend, so that MFI is automatically satisfied. You may
directly use F ∗ = QF . Derive the required formulae for other kinemat-
ical variables. (Hint: Try to reduce the list to Lagrangian variables and
their material derivatives).
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(b) Using the isothermal version of the Clausius-Duhem inequality given by

(

∂ψ̃

∂t

)

X

−
1

ρ0
T : Ḟ ≤ 0,

where T = FS is the first Piola-Kirchhoff stress tensor, find the equal-
ities and inequalities (necessary and sufficient conditions) that result.
In the proof for this part, do not attempt to construct an admissible
thermodynamic process; assume that such a process can be constructed
for arbitrary values of your kinematical variables (Hint: Split the stress
S into an equilbrium part (defined as the stress when an appropriate
kinematical variable is set to zero), and a nonequilibrium part). Justify
all steps.

Some relevant formulae

R : (ST ) = (STR) : T = (RT T ) : S = (TRT ) : ST ,

FiJ =
hi

hJ

∂χ̂i

∂ηJ
, no sum on i, J, hi ≡ (1, r, 1), hJ ≡ (1, R, 1).

If τ is symmetric tensor-valued field, then the components of ∇x · τ with
respect to a cylindrical coordinate system are

(∇ · τ )r =
∂τrr

∂r
+

1

r

∂τrθ

∂θ
+
∂τrz

∂z
+
τrr − τθθ

r
,

(∇ · τ )θ =
∂τθr

∂r
+

1

r

∂τθθ

∂θ
+
∂τθz

∂z
+

2τrθ
r
.
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