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ME 243: Endsemester Exam

Date: 29/1/21.
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Instructions:

You may directly use the formulae at the back.

1. We have seen that ifQ ∈ Orth+, then Q(u×v) = (Qu)×(Qv). Conversely, (20)
if T (u × v) = (Tu) × (Tv) ∀u, v ∈ ℜ3, then is it necessarily true that
T ∈ Orth+? Consider all possibilities when you try to present your solution
for T .

2. In this problem, assume all field variables to be independent of Z. A cylinder (25)
of inner radius a, outer radius b, and length L along the z-direction is fixed
rigidly at the inner boundary r = a, and constrained by two rigid frictionless
surfaces on the top and bottom surfaces z = 0 and z = L. This cylinder is
subjected to a moment M on the outer boundary r = b by the application of
suitable tangential tractions which are independent of θ and Z (see Fig. 1).
Assume r = αR, z = Z, and assume a suitable mapping for θ in terms of
an unknown function. The material is incompressible, and the constitutive
equation is given by τ = −pI + µB.

(a) Find the constant α and the governing differential equation for your
unknown function and any other unknown field. Do not attempt to
solve any of these differential equations.

(b) State the boundary conditions for the unknown functions and the other
unknown field.

3. The rigid rod shown in Fig. 2 will slide under the action of gravity assuming (30)
that the floor and the wall are frictionless. A continuum enthusiast who
wants the rod to remain stationary even under the action of gravity decides to
accelerate the whole setup by a constant acceleration a along the x-direction
as shown in Fig. 2.

(a) Determine if the rod can remain in static equilibrium in the accelerating

frame x-y (i.e., θ(t) = θ0 where θ0 is a constant), and if it can, is there
a specific value of a for which it will remain in equilibrium? If there is,
determine this value. For the purpose of carrying out the integrations,
assume the rod to be one-dimensional, express the coordinates of a
typical point (x, y) on the rod in terms the coordinate ξ which runs
along the length as shown in the figure as x = ξ cos θ, y = (L− ξ) sin θ,
and assume ρ dV = mdξ, where m, the mass per unit length, is a
constant. Do not use the Euler equations. Solve using first principles.



(b) For this part, assume that a 6= 0 is such that the rod is not in equilibrium
in the accelerating frame of reference (i.e., θ(t) varies with time) Starting
from the mechanical energy balance

d

dt

∫

V (t)

ρv · v

2
dV =

∫

S(t)

t · v dS +

∫

V (t)

[−τ : D + ρb · v] dV,

derive a conservation law of the form
∫

V (t)

(.)ρ dV = constant. (1)

Now use Eqn. (1) and

∫

V (t)

ρv · v

2
dV =

mL3θ̇2

6
,

to derive the governing equation for θ̇, assuming that the rod is at rest at the
initial position θ = θ0 in the accelerating frame of reference. State the initial
condition for solving this equation. Do not attempt to solve this governing
differential equation.

4. With ψ denoting the free energy, and T denoting the first Piola-Kirchhoff
stress tensor, the constitutive relations for a homogeneous solid are given by (25)

ψ = ψ̂(F , Ḟ ),

T = T̂ (F , Ḟ ),

where T is a continuous function of Ḟ , and where a superposed dot indicates
a material derivative.

(a) Using the isothermal version of the Clausius-Duhem inequality given by

(

∂ψ̂

∂t

)

X

−
1

ρ0
T : Ḟ ≤ 0,

find the equalities and inequalities (necessary and sufficient conditions)
that result. In the proof for this part, do not attempt to construct an
admissible thermodynamic process; assume that such a process can be
constructed for arbitrary values of your kinematical variables. Justify

all steps.

(b) Apply the principle of material frame-indifference (MFI) to the reduced
form of ψ̂ that you have derived in part (a). Next, using the chain
rule, derive an expression for the part of the first Piola-Kirchhoff stress
that depends on ψ̂, so that MFI is automatically satisfied. State the
condition for MFI for the remaining part of T , but do not try to derive
a reduced form in this case. You may directly use F ∗ = QF . Derive
the required formulae for other kinematical variables.

2



Some relevant formulae

b = QT [b∗ − c̈]− Ω̇× x−Ω× (Ω× x)− 2Ω× v.

Qij = e∗

i · ej,

Ω =





ė2 · e3

ė3 · e1

ė1 · e2



 ,

R : (ST ) = (STR) : T = (RT T ) : S = (TRT ) : ST ,

FiJ =
hi

hJ

∂χ̂i

∂ηJ
, no sum on i, J, hi ≡ (1, r, 1), hJ ≡ (1, R, 1).

If τ is symmetric tensor-valued field, then the components of ∇x · τ with
respect to a cylindrical coordinate system are

(∇ · τ )r =
∂τrr

∂r
+

1

r

∂τrθ

∂θ
+
∂τrz

∂z
+
τrr − τθθ

r
,

(∇ · τ )θ =
∂τθr

∂r
+

1

r

∂τθθ

∂θ
+
∂τθz

∂z
+

2τrθ
r
.
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Figure 1: Hollow cylinder fixed rigidly at the inner boundary r = a, and
subjected to a moment M on the outer boundary r = b.
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Figure 2: Problem 3.
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