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Instructions:

You may directly use the formulae at the back.

1. Let R 6= I be a rotation with (unique) axis e, and let W ∈ Skw with axial (25)
vector w. Then show that RW = WR if and only if

e =
w

|w|
.

(Hint: Operate on an arbitrary vector u).

2. A hollow cylinder of length L and inner and outer radii a and b, is fixed at (15)
R = a, and subjected to a uniform time-dependent shear stress s(t)ez at
R = b resulting in a net shear force T (t), as shown in Fig. 1. The material
is incompressible, and the constitutive equation is given by τ = −pI + µB.
The top and bottom surfaces are traction free.

(a) Assuming r = R, formulate a suitable mapping for the motion in terms
of an unknown function.

(b) Find the governing partial differential equation for your unknown func-
tion and any other unknown field. Do not attempt to solve any of these
differential equations.

(c) State the boundary conditions for the unknown functions and the other
unknown field. Find a relation between s(t) and T (t).

3. In the test, we considered the problem of a slider-crank mechanism (see (30)
Fig. 2). Imagine that there is a horizontal driving force applied to the mass
at point 2 that generates the motion. At time t = 0, we remove the force.
Let the angular velocity of the rigid circular disc, and the rigid connecting
rod at the instant the force is removed be ω1(0) and ω2(0), respectively,
and the angles that the lines 1-0 and 1-2 make with the horizontal be θ1(0)
and θ2(0), respectively. Our goal is to find θ1(t) and θ2(t) after the force
is removed using the given initial data mentioned above. Using the balance
laws stated towards the end of the question paper, and ignoring the body
forces, deduce a conservation law of the form

∫

V (t)

(.)ρ dV = constant,

and a constraint equation, and use them to find the governing differential
equations for θ1(t) and θ2(t). Do not attempt to solve these equations. For



the purpose of carrying out the integrations, assume the rod 1-2 to be one-
dimensional, express the coordinates of a typical point (x, y) on the rod in
terms of the coordinate ξ which runs along the length as shown in the figure
as x = R cos θ1 + ξ cos θ2 and y = (L − ξ) sin θ2, and assume ρ dV = mdξ,
where m, the mass per unit length, is a constant. Similarly, assume the disc
to be of unit thickness and density ρ, and the mass M of the sliding block to
be lumped at point 2. You may take ω1(t) = θ̇1(t)ez and ω2(t) = −θ̇2(t)ez.

4. The constitutive relations for a homogeneous solid are given by (30)

ψ = ψ̃(ṽ,F ,F T Ḟ , θ0,F
Tg),

S = S̃(ṽ,F ,F T Ḟ , θ0,F
Tg),

η0 = η̃(ṽ,F ,F T Ḟ , θ0,F
Tg),

q0 = q̃0(ṽ,F ,F
T Ḟ , θ0,F

Tg),

where a superposed dot denotes a material derivative, ṽ is the Lagrangian
velocity vector, and g = ∇xθ. Assume that each constitutive relation is a
continuous function of all the kinematical variables.

(a) Using the principle of material frame-indifference (MFI) and the given
constitutive relations, derive the list of kinematical variables on which
ψ, S, η0 and q0 should depend, so that MFI is automatically satisfied.
You may directly use F ∗ = QF and χ∗(X, t) = Q(t)χ(X, t) + c(t).
Derive the required formulae for other kinematical variables.

(b) Using the Clausius-Duhem inequality given by

(

∂ψ0

∂t

)

X

+ η0

(

∂θ0

∂t

)

X

−
1

ρ0
T : Ḟ +

q0 · g0

ρ0θ0
≤ 0,

where T = FS is the first Piola-Kirchhoff stress tensor, find the equal-
ities and inequalities (necessary and sufficient conditions) that result.
In the proof for this part, do not attempt to construct an admissible
thermodynamic process; assume that such a process can be constructed
for arbitrary values of your kinematical variables (Hint: Split the stress
S into an equilibrium part (defined as the stress when an appropriate
kinematical variable is set to zero), and a nonequilibrium part). Justify
all steps.

Some relevant formulae

R(w, α) = I +
1

|w|
sinαW +

1

|w|2
(1− cosα)W 2,

R : (ST ) = (STR) : T = (RT T ) : S = (TRT ) : ST ,

FiJ =
hi

hJ

∂χ̂i

∂ηJ
, no sum on i, J, hi ≡ (1, r, 1), hJ ≡ (1, R, 1).
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If τ is symmetric tensor-valued field, then the components of ∇x · τ with
respect to a cylindrical coordinate system are

(∇ · τ )r =
∂τrr

∂r
+

1

r

∂τrθ

∂θ
+
∂τrz

∂z
+
τrr − τθθ

r
,

(∇ · τ )θ =
∂τθr

∂r
+

1

r

∂τθθ

∂θ
+
∂τθz

∂z
+

2τrθ
r
,

(∇ · τ )z =
∂τzr

∂r
+

1

r

∂τzθ

∂θ
+
∂τzz

∂z
+
τzr

r
.

The balance laws are

d

dt

∫

V (t)

ρv dV =

∫

S(t)

t dS +

∫

V (t)

ρb dV,

d

dt

∫

V (t)

ρx× v dV =

∫

S(t)

x× t dS +

∫

V (t)

ρx× b dV,

d

dt

∫

V (t)

ρv · v

2
dV =

∫

S(t)

t · v dS +

∫

V (t)

[−τ : D + ρb · v] dV.
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Figure 1: Hollow cylinder of length L fixed at the inner boundary r = a, and
subjected to a shear force T (t) at the outer boundary r = b.
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Figure 2: Slider-crank mechanism.
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