Indian Institute of Science, Bangalore

ME 243: Endsemester Exam

Date: 8/12/23.
Duration: 9.00 a.m. -12.00 noon
Maximum Marks: 100

Instructions:

You may directly use the formulae at the back.

1. Let $\boldsymbol{W} \in \mathrm{Skw}$. Determine if
(a) $\left\{\boldsymbol{I}, \boldsymbol{W}, \boldsymbol{W}^{2}\right\}$ is a linearly independent set.
(b) $\mathrm{Orth}^{+} \subset \operatorname{Lsp}\left\{\boldsymbol{I}, \boldsymbol{W}, \boldsymbol{W}^{2}\right\}$.
(c) $\operatorname{Sym} \subset \operatorname{Lsp}\left\{\boldsymbol{I}, \boldsymbol{W}, \boldsymbol{W}^{2}\right\}$.
(d) $\operatorname{Orth}^{+} \cap \operatorname{Sym}-\{\boldsymbol{I}\} \subset \operatorname{Lsp}\left\{\boldsymbol{I}, \boldsymbol{W}, \boldsymbol{W}^{2}\right\}$.
2. Let $\boldsymbol{F}=\boldsymbol{\nabla}_{X} \boldsymbol{\chi}$ denote the deformation gradient.
(a) Using indicial notation, evaluate $\boldsymbol{\nabla} \times \boldsymbol{F}$.
(b) By taking into account all possible constraints on the deformation gradient, determine if the following expressions are valid deformation gradients

- $\boldsymbol{F}=\boldsymbol{c} \otimes \boldsymbol{X}$, where \boldsymbol{c} is a constant vector.
- The deformation gradient corresponding to the motion $\boldsymbol{\chi}=[\boldsymbol{I}-$ $2 \boldsymbol{e} \otimes \boldsymbol{e}] \boldsymbol{X}+\boldsymbol{c}(t)$, where \boldsymbol{e} is a unit vector.
- $\boldsymbol{F}=\operatorname{diag}\left[Z^{2}, X^{2}, Y^{2}\right]$.

3. Assume isothermal conditions throughout this problem, and the material to be homogeneous. Let the constitutive equation for the first Piola-Kirchhoff stress be given by

$$
\begin{equation*}
\boldsymbol{T}=\gamma_{-1} \boldsymbol{F}^{-T}+\gamma_{0} \boldsymbol{F}+\gamma_{1} \boldsymbol{F} \boldsymbol{C} \tag{1}
\end{equation*}
$$

where γ_{-1}, γ_{0} and γ_{1} are constants. Let the material be internally constrained such that $\operatorname{det} \boldsymbol{V}=1$, where $\boldsymbol{V}=\sqrt{\boldsymbol{B}}$, and assume that the free energy ψ_{0} depends only on \boldsymbol{F}.
(a) Starting from the isothermal version of the Clausius-Duhem inequality

$$
\left(\frac{\partial \psi_{0}}{\partial t}\right)_{\boldsymbol{X}}-\frac{1}{\rho_{0}} \boldsymbol{T}: \dot{\boldsymbol{F}} \leq 0
$$

show how the constitutive equation in Eqn. (1) would need to be modified to account for the internal constraint (you may assume that an admissible process with arbitrary $\dot{\boldsymbol{F}}$ can be constructed).
(b) Does the modified constitutive relation satisfy material frame-indifference?
(c) Assume that $\gamma_{1}=0$ in your modified constitutive relation in the remaining part of this problem, and assume body forces to be zero. The base of a circular cylinder of radius a and length L is fixed, while its top surface is subjected to tractions that result in a torque T and a normal force F_{z}. The lateral surface is traction free.
i. With α denoting a constant, if $\boldsymbol{\chi}(\boldsymbol{X}, t)$ is given by

$$
\begin{aligned}
& x=X \cos (\alpha Z)-Y \sin (\alpha Z), \\
& y=X \sin (\alpha Z)+Y \cos (\alpha Z), \\
& z=d Z,
\end{aligned}
$$

then determine d such that the internal constraint is obeyed.
ii. If the deformation gradient is of the form

$$
\boldsymbol{F}=\left[\begin{array}{ccc}
\cos (\alpha Z) & -\sin (\alpha Z) & \ldots \\
\sin (\alpha Z) & \cos (\alpha Z) & \ldots \\
0 & 0 & d
\end{array}\right],
$$

then

$$
\boldsymbol{F}^{-T}=\left[\begin{array}{ccc}
\cos (\alpha Z) & -\sin (\alpha Z) & 0 \\
\sin (\alpha Z) & \cos (\alpha Z) & 0 \\
\alpha Y & -\alpha X & \frac{1}{d}
\end{array}\right] .
$$

Using the above results, and the governing equation and boundary conditions, determine the unknown fields in your stress field.
iii. Find an explicit expression for the total normal force F_{z} on the top surface of the cylinder.
iv. Give a systematic procedure for finding the relation between the total torque T and the twist per unit length α. Do not attempt to carry out the detailed calculations, but all details (including limits of integration) must be precisely laid out.

Some relevant formulae

$$
\begin{gathered}
\boldsymbol{T}=\boldsymbol{\tau}(\mathbf{c o f} \boldsymbol{F}), \\
\nabla_{X} \cdot \boldsymbol{T}=\mathbf{0}, \\
\boldsymbol{t}_{0}=\boldsymbol{T} \boldsymbol{n}_{0}, \\
\boldsymbol{n}=\frac{(\operatorname{cof} \boldsymbol{F}) \boldsymbol{n}_{0}}{\left|(\operatorname{cof} \boldsymbol{F}) \boldsymbol{n}_{0}\right|}, \\
d S=\left|(\operatorname{cof} \boldsymbol{F}) \boldsymbol{n}_{0}\right| d S_{0}, \\
\boldsymbol{t}_{0}\left(\boldsymbol{X}, t, \boldsymbol{n}_{0}\right)=\left|(\operatorname{cof} \boldsymbol{F}) \boldsymbol{n}_{0}\right| \boldsymbol{t}(\boldsymbol{\chi}(\boldsymbol{X}, t), t, \boldsymbol{n}), \\
\boldsymbol{R}(\boldsymbol{w}, \alpha)=\boldsymbol{I}+\frac{1}{|\boldsymbol{w}|} \sin \alpha \boldsymbol{W}+\frac{1}{|\boldsymbol{w}|^{2}}(1-\cos \alpha) \boldsymbol{W}^{2}, \\
\boldsymbol{W}=|\boldsymbol{w}|(\boldsymbol{r} \otimes \boldsymbol{q}-\boldsymbol{q} \otimes \boldsymbol{r}), \\
(\boldsymbol{\nabla} \times \boldsymbol{T})_{i j}=\epsilon_{i r s} \frac{\partial T_{j s}}{\partial x_{r}} .
\end{gathered}
$$

