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ME 243: Endsemester Exam
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Maximum Marks: 100

Instructions:

You may directly use the formulae at the back.

1. If T : (I + u ⊗ v − v ⊗ u) = 0, where u and v are arbitrary vectors, (25)
find the most general form of T . Your answer should be in the form of a
single expression. For example, if your answer is that T should be such that
detT = 1, you should write it as (detT )−1/3T , so that any ‘constraints’ are
automatically satisfied by your solution.

2. An elastic rod is constrained within a rigid sleeve which oscillates with a (25)
given θ(t) in the e∗

1
-e∗

2
plane, and hence with a given angular velocity θ̇e3

(see Fig. 1) The elastic rod can slide frictionlessly within the sleeve along
the e1 direction. The (undeformed) length of the rod is L before the start
of the motion. The gravitational body force g acts along the e∗

1
direction.

We are interested in finding the governing equation of motion along the e1

direction along with the appropriate boundary conditions (you do not need
to state the initial conditions). Assume x2 = X2, x3 = X3 and x1 = χ(X, t),
so that this problem is effectively a ‘1-D’ problem along the e1 direction.
Let S := S11(E) = λE11 be the constitutive relation, where λ is a constant.
Find the governing equation for χ(X, t) along with the boundary conditions
at X = 0 and at X = L. Do not attempt to solve this equation.

3. A rigid cylindrical container of radius a containing an incompressible New- (20)
tonian fluid is rotated about the ez axis with constant angular velocity
ωez as shown in Fig. 2. Let the constitutive equation be given by τ =
−p(x, t)I + 2µD. Let the coordinate frame be the fixed r-θ-z frame shown
in the figure; thus, the only body force in this stationary frame of reference is
−gez (you should solve this problem with respect to this fixed frame of refer-
ence). The velocity field that automatically satisfies the continuity equation
∇ · v = 0 is given by vr = 0,

vθ = c1r +
c2
r
,

vz = c3,

where c1, c2 and c3 are constants.

(a) Using the appropriate boundary and symmetry conditions, determine
the constants in the velocity field

(b) Assuming that the top surface of the fluid is traction free, find the
equation of the free surface.



4. Let the free energy, second-Piola Kirchhoff stress, entropy and heat flux (30)
vectors be given by

ρ0ψ̂ = c1(trE)2 + c2tr (E
2)− c3α(trE)(θ0 − θR) + c4g0

· g
0

+ ρ0c

(

θ0 − θR − θ0 log
θ0
θR

)

,

S = S0(E, θ0) + c5Ė,

η0 = η̂(E, θ0, g0),

q0 = (c6C
−1 + c7E)g0,

where θ0 denotes the actual temperature, θR is the reference temperature,
g0 = ∇Xθ0 and c1-c7 are constants. Starting from

(

∂ψ0

∂t

)

X

+ η0

(

∂θ0
∂t

)

X

−
1

ρ0
S : Ė +

q0 · g0

ρ0θ0
≤ 0,

and assuming that a suitable thermodynamically admissible process can be
constructed, find

(a) Expressions for S0(E, θ0) and η.

(b) Using the fact that S0(E, θ0) should agree with the constitutive relation
for a St Venant-Kirchhoff material S = λ(trE)I + 2µE when θ0 = θR,
and that S = 0 when E = α(θ0−θR)I and Ė = 0, find either the values
of the constants c1-c7, or restrictions to be imposed on them (e.g., some
constant has to be greater than, or less than, or equal to zero). For
those constants that are expressed in terms of (λ, µ), no restrictions
need be found.

(c) Determine whether the final constitutive relations for S, η and q0 that
you have obtained are frame-indifferent.

Some relevant formulae

∇X · (FS) + ρ0b0 = ρ0
∂2χ

∂t2
,

t0 = Tn0,

n =
(cof F )n0

|(cof F )n0|
,

dS = |(cof F )n0| dS0,

t0(X , t,n0) = |(cof F )n0| t(χ(X, t), t,n),

b0(X, t) = b(χ(X, t), t),

b = QT (b∗ − c̈)− Ω̇× x−Ω× (Ω× x)− 2Ω× v.

Qij = e∗

i · ej,

Ω =





ė2 · e3

ė3 · e1

ė1 · e2



 ,

2



W = |w| (r ⊗ q − q ⊗ r),

Drr =
∂vr
∂r

, Drθ =
1

2

[

1

r

∂vr
∂θ

+ r
∂

∂r

(vθ
r

)

]

,

Dθθ =
1

r

(

∂vθ
∂θ

+ vr

)

, Dθz =
1

2

(

∂vθ
∂z

+
1

r

∂vz
∂θ

)

,

Dzz =
∂vz
∂z

, Drz =
1

2

(

∂vr
∂z

+
∂vz
∂r

)

.

The momentum equations in r, θ and z directions:

∂vr
∂t

+ (v ·∇)vr −
v2θ
r

= −
1

ρ

∂p

∂r
+ ν

[

∇
2vr −

vr
r2

−
2

r2
∂vθ
∂θ

]

+ br,

∂vθ
∂t

+ (v ·∇)vθ +
vrvθ
r

= −
1

ρr

∂p

∂θ
+ ν

[

∇
2vθ −

vθ
r2

+
2

r2
∂vr
∂θ

]

+ bθ,

∂vz
∂t

+ (v ·∇)vz = −
1

ρ

∂p

∂z
+ ν∇2vz + bz.

where ν = µ/ρ, and

v ·∇ ≡ vr
∂

∂r
+
vθ
r

∂

∂θ
+ vz

∂

∂z

∇
2 ≡

1

r

∂

∂r

(

r
∂

∂r

)

+
1

r2
∂2

∂θ2
+

∂2

∂z2
.
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Figure 1: An elastic rod constrained in a rigid oscillating sleeve.
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Figure 2: Fluid-filled cylinder rotating at constant speed.
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