Indian Institute of Science, Bangalore

ME 243: Endsemester Exam

Date: 1/12/25.

Duration: 9.00 a.m.–12.00 noon

Maximum Marks: 100

Instructions:

You may directly use the formulae at the back.

1. If
$$[\mathbf{T}\mathbf{u}, \mathbf{T}\mathbf{v}, \mathbf{w}] = [\mathbf{u}, \mathbf{v}, \mathbf{T}^T \mathbf{w}] \quad \forall \mathbf{u}, \mathbf{v}, \mathbf{w} \in V,$$
 (20)

and if $T \neq 0$, then find the most general form of T. Justify each step.

- 2. A small rigid body of mass M slides along a frictionless circular wire of radius R which rotates with angular velocity ωe_y (which is equal to Ω) and angular acceleration $\dot{\omega} e_y$ (which is equal to $\dot{\Omega}$) as shown in Fig. 1. The gravitational body force with respect to a fixed frame of reference is $-ge_y$. Assuming that the body force is a constant over the material volume occupied by the body (so that $\int_V \rho \mathbf{b} \, dV = M \mathbf{b}$), and starting from any of the balance laws of your choice for a material volume, derive the governing equation for the angular position $\theta(t)$ of the center of mass of the body. The initial conditions are given by $\theta(0) = \theta_0$ and $\dot{\theta}(0) = \alpha$. Multiply your governing equation by $\dot{\theta}$ and integrate once, with the integration constant determined using the initial conditions.
- 3. A circular hole of radius b in an unbounded domain is subjected to a shear (25) traction $t_{\theta} = s_0$. Assume that the deformation is independent of Z. Further assume $r = \alpha R$, z = Z, and assume a suitable mapping for θ in terms of an unknown function. The material is incompressible, and the constitutive equation is given by $\tau = -p\mathbf{I} + \mu\mathbf{B}$.
 - (a) Find the constant α , and the governing differential equation for your unknown function and any other unknown field.
 - (b) State the boundary conditions for your unknown function and the other unknown field.
 - (c) Solve for your unknown function and any other unknown field.
- 4. With ψ denoting the free energy, and τ denoting the Cauchy stress tensor, (30) the constitutive relations for a homogeneous, isotropic solid are given by

$$\psi = \hat{\psi}(\mathbf{F}, \mathbf{L}),$$
 $\boldsymbol{\tau} = \hat{\boldsymbol{\tau}}(\mathbf{F}, \mathbf{L}),$

where $\boldsymbol{\tau}$ is a continuous function of \boldsymbol{L} .

- (a) If $S \in \text{Sym}$, $T \in \text{Lin and } T_s = (T + T^T)/2$, then show that $S : T = S : T_s$.
- (b) Starting from $\dot{F} = LF$, and with $B = FF^T$, derive an expression for \dot{B} in terms of F and L. Similarly, derive an expression for D as a function of \dot{F} and F.
- (c) Using $F^* = QF$, derive an expression for L^* in terms of L.
- (d) Successively applying material frame-indifference and the condition for isotropy, carry out appropriate reductions in the form for $\hat{\psi}$. (e.g., dependence on \boldsymbol{F} reduces to a dependence on \boldsymbol{U} or \boldsymbol{V} .). Provide detailed arguments for each such reduction. If you are using any theorem covered in class, cite the theorem (Hint: You can express functions of \boldsymbol{U} and \boldsymbol{V} as functions of \boldsymbol{C} and \boldsymbol{B} , respectively, to simplify your analysis).
- (e) Using the isothermal version of the Clausius-Duhem inequality given by

$$\dot{\psi} - \frac{1}{\rho} \boldsymbol{\tau} : \boldsymbol{L} \le 0,$$

find the equalities and inequalities (necessary and sufficient conditions) that result. In the proof for this part, do not attempt to construct an admissible thermodynamic process; assume that such a process can be constructed for arbitrary values of your kinematical variables. Justify all steps.

Some relevant formulae

$$\frac{\partial I_1}{\partial \boldsymbol{T}} = \boldsymbol{I},$$

$$\frac{\partial I_2}{\partial \boldsymbol{T}} = (\operatorname{tr} \boldsymbol{T}) \boldsymbol{I} - \boldsymbol{T}^T,$$

$$\frac{\partial I_3}{\partial \boldsymbol{T}} = \operatorname{cof} \boldsymbol{T},$$

$$\boldsymbol{b} = \boldsymbol{Q}^T (\boldsymbol{b}^* - \ddot{\boldsymbol{c}}) - \dot{\boldsymbol{\Omega}} \times \boldsymbol{x} - \boldsymbol{\Omega} \times (\boldsymbol{\Omega} \times \boldsymbol{x}) - 2\boldsymbol{\Omega} \times \boldsymbol{v},$$

$$Q_{ij} = \boldsymbol{e}_i^* \cdot \boldsymbol{e}_j,$$

$$\boldsymbol{R} : (\boldsymbol{S}\boldsymbol{T}) = (\boldsymbol{S}^T \boldsymbol{R}) : \boldsymbol{T} = (\boldsymbol{R}\boldsymbol{T}^T) : \boldsymbol{S} = (\boldsymbol{T}\boldsymbol{R}^T) : \boldsymbol{S}^T,$$

$$F_{iJ} = \frac{h_i}{h_J} \frac{\partial \hat{\chi}_i}{\partial n_J}, \quad \text{no sum on } i, J, \quad h_i \equiv (1, r, 1), \quad h_J \equiv (1, R, 1).$$

If τ is symmetric tensor-valued field, then the components of $\nabla_x \cdot \tau$ with respect to a cylindrical coordinate system are

$$(\nabla \cdot \boldsymbol{\tau})_{r} = \frac{\partial \tau_{rr}}{\partial r} + \frac{1}{r} \frac{\partial \tau_{r\theta}}{\partial \theta} + \frac{\partial \tau_{rz}}{\partial z} + \frac{\tau_{rr} - \tau_{\theta\theta}}{r},$$

$$(\nabla \cdot \boldsymbol{\tau})_{\theta} = \frac{\partial \tau_{\theta r}}{\partial r} + \frac{1}{r} \frac{\partial \tau_{\theta\theta}}{\partial \theta} + \frac{\partial \tau_{\theta z}}{\partial z} + \frac{2\tau_{r\theta}}{r},$$

$$(\nabla \cdot \boldsymbol{\tau})_{z} = \frac{\partial \tau_{zr}}{\partial r} + \frac{1}{r} \frac{\partial \tau_{z\theta}}{\partial \theta} + \frac{\partial \tau_{zz}}{\partial z} + \frac{\tau_{zr}}{r}.$$

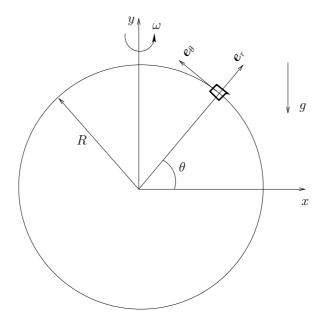


Figure 1: A small body sliding on a frictionless wire.