Indian Institute of Science, Bangalore

ME 243: Midsemester Test

Date: 2/10/98. Duration: 9.30 a.m.-11.45 a.m. Maximum Marks: 100

1. Using the relation

$$(\mathbf{cof} \, \boldsymbol{T})_{ij} = \frac{1}{2} \epsilon_{mni} \epsilon_{pqj} T_{mp} T_{nq},$$

(15)

(15)

prove that $\operatorname{cof}(RS) = \operatorname{cof}(R)\operatorname{cof}(S)$.

- 2. Show that a (not necessarily symmetric) tensor T commutes with every or- (15) thogonal tensor Q if and only if $T = \lambda I$.
- 3. A scalar function $\phi : V \to \Re$ is isotropic if $\phi(\boldsymbol{v}) = \phi(\boldsymbol{Q}\boldsymbol{v})$ for all $\boldsymbol{v} \in V$. (20) Show that ϕ is isotropic if and only if there exist a function $\hat{\phi}$ such that

$$\phi(\boldsymbol{v}) = \hat{\phi}(|\boldsymbol{v}|) \quad \forall \boldsymbol{v} \in V.$$

- 4. Find the gradient, $\partial \phi / \partial \mathbf{T}$ of the function $\phi(\mathbf{T}) = \det \mathbf{T}^{-1}$. Derive any results (15) that you may need to find the final result.
- 5. Show that the rate of deformation tensor is given by (15)

$$\boldsymbol{D} = \frac{1}{2} \boldsymbol{R} \left(\frac{D \boldsymbol{U}}{D t} \boldsymbol{U}^{-1} + \boldsymbol{U}^{-1} \frac{D \boldsymbol{U}}{D t} \right) \boldsymbol{R}^{t},$$

where \boldsymbol{R} and \boldsymbol{U} are the tensors in the polar decomposition of \boldsymbol{F} .

6. Given the velocity field

$$\boldsymbol{u} = \frac{y}{1+t^3}\boldsymbol{e}_1 + t\boldsymbol{e}_2,$$

do the following:

- (a) using the Lagrangian approach calculate the acceleration of a fluid particle having an initial position $\mathbf{X} = (0, 0, 0)$.
- (b) using the Eulerian definition of acceleration (i.e., the material derivative of the velocity), calculate the acceleration of the fluid.
- (c) determine the streamline that passes through the point (0,0,0).
- 7. Finally, a 'fun' question. The Cayley-Hamilton theorem states that a symmetric tensor satisfies its own characteristic equation. If λ_1 , λ_2 and λ_3 are the eigenvalues of $\mathbf{S} \in \text{Sym}$, then we can write $\mathbf{S}^3 I_1 \mathbf{S}^2 + I_2 \mathbf{S} I_3 = \mathbf{0}$ as $(\mathbf{S} \lambda_1 \mathbf{I})(\mathbf{S} \lambda_2 \mathbf{I})(\mathbf{S} \lambda_3 \mathbf{I}) = \mathbf{0}$, which in turn implies that $\mathbf{S} = \lambda_1 \mathbf{I}$ or $\mathbf{S} = \lambda_2 \mathbf{I}$ or $\mathbf{S} = \lambda_3 \mathbf{I}$. But this is clearly not true, since \mathbf{S} can be any symmetric tensor. Where is the catch?