Indian Institute of Science, Bangalore ME 243: Midsemester Test

Date: 25/9/08. Duration: 3.30 p.m.–5.00 p.m. Maximum Marks: 100

- 1. Let $W \in \text{Skw}$, and let w be its axial vector. Using the representation $W = |w| (r \otimes q (20) q \otimes r)$, where w/|w|, q and r form an orthonormal basis, determine if $\{I, W, W^2\}$ is a linearly independent set. Next determine if $\{I, W, W^2, W^3\}$ is a linearly independent set.
- 2. Let $S \in \text{Sym}$, and let $\{e_k\}$ and $\{e_k^*\}$ denote the canonical basis of V and the principal (25) basis of S, respectively. If Q is the matrix with the eigenvectors of S along the rows, i.e., $Q = e_k \otimes e_k^*$, then show that $Q \in \text{Orth}^+$, and that QSQ^T is diagonal.

Conversely, if $Q \in \text{Orth}^+$ diagonalizes S, i.e., $QSQ^T = \Lambda$, where Λ is a diagonal matrix, then show that

- (a) $\boldsymbol{S} \in \text{Sym},$
- (b) $\boldsymbol{\Lambda}$ is comprised of the eigenvalues of \boldsymbol{S} , and
- (c) the rows of \boldsymbol{Q} are the eigenvectors of \boldsymbol{S} .
- 3. Let \mathbf{F} denote the deformation gradient. If $u(\mathbf{X})$ and $v(\mathbf{x})$ are related by (20)

$$\boldsymbol{u}(\boldsymbol{X}) := \boldsymbol{F}^T \boldsymbol{v}(\boldsymbol{x}),$$

then find a relation between $\boldsymbol{F}[\boldsymbol{\nabla}_X \times \boldsymbol{u}(\boldsymbol{X})]$ and $\boldsymbol{\nabla}_x \times \boldsymbol{v}(\boldsymbol{x})$.

4. Let $\boldsymbol{C} = \boldsymbol{F}^T \boldsymbol{F} \in \text{Sym}$ be invertible, and let

$$W(\boldsymbol{C}) = \frac{\kappa}{2}(J-1)^2 + \frac{\mu}{2}(\operatorname{tr}\hat{\boldsymbol{C}} - 3),$$

(35)

where $J = \det \mathbf{F}$ and $\hat{\mathbf{C}} = (\det \mathbf{C})^{-1/3} \mathbf{C}$. Using $\mathbf{S}(\mathbf{C}) = 2\partial W/\partial \mathbf{C}$, find an expression for $\mathbf{S}(\mathbf{C})$. Next, find $\mathbf{S}(\mathbf{I}) + D\mathbf{S}(\mathbf{I})[2\mathbf{E}]$. (You may first find $\mathbf{S}(\mathbf{I}) + D\mathbf{S}(\mathbf{I})[\mathbf{U}]$, and then put $\mathbf{U} = 2\mathbf{E}$).

Some relevant formulae

$$(\boldsymbol{a} \otimes \boldsymbol{b})(\boldsymbol{c} \otimes \boldsymbol{d}) = (\boldsymbol{b} \cdot \boldsymbol{c})\boldsymbol{a} \otimes \boldsymbol{d},$$
$$\det(\boldsymbol{T} + \boldsymbol{U}) = \det \boldsymbol{T} + \operatorname{cof} \boldsymbol{T} : \boldsymbol{U} + \operatorname{cof} \boldsymbol{U} : \boldsymbol{T} + \det \boldsymbol{U},$$
$$\det \boldsymbol{T} = \frac{1}{6} \epsilon_{ijk} \epsilon_{pqr} T_{ip} T_{jq} T_{kr},$$
$$\epsilon_{pqr} (\det \boldsymbol{T}) = \epsilon_{ijk} T_{ip} T_{jq} T_{kr} = \epsilon_{ijk} T_{pi} T_{qj} T_{rk}.$$