Indian Institute of Science, Bangalore ME 243: Midsemester Test

Date: 24/9/09. Duration: 11.30 a.m.–1.00 p.m. Maximum Marks: 100

- 1. Answer the following:
 - (a) If $ST_1 = ST_2 \ \forall S \in Sym$, does this imply $T_1 = T_2$. If not, give a counterexample.
 - (b) If $QT_1 = QT_2 \ \forall Q \in \text{Orth}^-$, does this imply $T_1 = T_2$. If not, give a counterexample.
 - (c) If $WT_1 = WT_2 \forall W \in Skw$, does this imply $T_1 = T_2$. If not, give a counterexample. (Hint: You can prove it in your own way, but one of the ways could be to see if equality of tensors can be invoked.)
- 2. A tensor \boldsymbol{P}_i is a projection if it satisfies the relation $\boldsymbol{P}_i \boldsymbol{P}_j = \delta_{ij} \boldsymbol{P}_j$ (no sum on j). Let (25) $\boldsymbol{S} = \sum_{i=1}^2 \lambda_i \boldsymbol{e}_i^* \otimes \boldsymbol{e}_i^*$ be the spectral resolution in dimension 2, and let the λ_i be distinct.
 - (a) Evaluate if $P_i := e_i^* \otimes e_i^*$, i = 1, 2 are projections.
 - (b) Find an explicit expression for P_i , i = 1, 2 in terms of S, I, and the (distinct) eigenvalues λ_i of S.
 - (c) Let a sequence be defined by the recurrence relation $S_{n+1} = 2S_n + S_{n-1}$. Assuming $S_1 = S_2 = 1$, the first few members of this sequence are $1, 1, 3, 7, 17, 41, \ldots$ Our goal is to find an explicit formula for S_n . First write

$$\begin{bmatrix} S_{n+1} \\ S_n \end{bmatrix} = \boldsymbol{M} \begin{bmatrix} S_n \\ S_{n-1} \end{bmatrix},$$

where M is a matrix you have to determine using the recurrence relation. Then using the fact that $\begin{bmatrix} S_n \\ S_{n-1} \end{bmatrix}$ depends on $\begin{bmatrix} S_{n-1} \\ S_{n-2} \end{bmatrix}$, and so on, find a relation between $\begin{bmatrix} S_{n+1} \\ S_n \end{bmatrix}$ and $\begin{bmatrix} S_2 \\ S_1 \end{bmatrix}$, where $S_1 = S_2 = 1$. Use this relation to find an explicit formula for S_n .

3. Let $C \in$ Sym be invertible, let $I_i \equiv I_i(C)$, and let

$$W(\mathbf{C}) = c_1(\bar{I}_1 - 3) + \frac{\kappa}{2}(J - 1)^2, \quad J := \det \mathbf{F}$$

where $\bar{I}_1 = (I_3)^{-1/3}I_1$, and $\kappa = \lambda + 2\mu/3$ is the bulk modulus. Using $S(C) = 2\partial W/\partial C$, find an expression for S(C). Next, find S(I) + DS(I)[2E] (first find S(I) + DS(I)[U], and then put U = 2E), and using the fact that this should match with $\lambda(\operatorname{tr} E)I + 2\mu E$, find a relation between c_1 and μ .

4. Given that $\operatorname{cof} \boldsymbol{F} : \boldsymbol{\nabla}_X \tilde{\boldsymbol{v}} = 0$, find the value of det \boldsymbol{F} as a function of time. (Hint: Try to (20) express $\boldsymbol{\nabla}_X \tilde{\boldsymbol{v}}$ in terms of \boldsymbol{F}).

Some relevant formulae

$$egin{aligned} oldsymbol{u} imes (oldsymbol{v} imes oldsymbol{w}) &= (oldsymbol{u} \cdot oldsymbol{w}) oldsymbol{v} - (oldsymbol{u} \cdot oldsymbol{v}) oldsymbol{w}, \ & (oldsymbol{a} \otimes oldsymbol{b}) (oldsymbol{c} \otimes oldsymbol{d}) &= (oldsymbol{b} \cdot oldsymbol{c}) oldsymbol{a} \otimes oldsymbol{d}, \ & \det(oldsymbol{T} + oldsymbol{U}) &= \det oldsymbol{T} + \operatorname{cof} oldsymbol{T} : oldsymbol{U} + \operatorname{cof} oldsymbol{U} : oldsymbol{T} + \det oldsymbol{U}, \ & \det(oldsymbol{T} + oldsymbol{U})) &= \det oldsymbol{T} + \operatorname{cof} oldsymbol{T} : oldsymbol{U} + \operatorname{cof} oldsymbol{U} : oldsymbol{T} + \det oldsymbol{U}, \end{aligned}$$

(30)

(25)