Indian Institute of Science, Bangalore ME 243: Midsemester Test

Date: 7/10/10. Duration: 11.30 a.m.–1.00 p.m. Maximum Marks: 100

- 1. Answer the following (*justify* all your steps):
 - (a) If $(\boldsymbol{u}, \boldsymbol{T}_1 \boldsymbol{v}) = (\boldsymbol{u}, \boldsymbol{T}_2 \boldsymbol{v})$ for all $\boldsymbol{u}, \boldsymbol{v}$ which are linearly dependent, then is $\boldsymbol{T}_1 \boldsymbol{T}_2$ equal (15) to zero? If not, what is the most general form that $\boldsymbol{T}_1 \boldsymbol{T}_2$ can have?
 - (b) If $(\boldsymbol{u}, \boldsymbol{T}_1 \boldsymbol{v}) = (\boldsymbol{u}, \boldsymbol{T}_2 \boldsymbol{v})$ for all $\boldsymbol{u}, \boldsymbol{v}$ which are mutually orthogonal, then is $\boldsymbol{T}_1 \boldsymbol{T}_2$ (25) equal to zero? If not, what is the most general form that $\boldsymbol{T}_1 \boldsymbol{T}_2$ can have?
- 2. Let $\{p, q, r\}$ be an orthonormal basis. Find the factors \mathbf{R} and \mathbf{U} in the polar decomposition (20) of $\mathbf{F} = \mathbf{p} \otimes \mathbf{p} + \gamma (\mathbf{q} \otimes \mathbf{r} \mathbf{r} \otimes \mathbf{q})$, where γ is a nonzero number. Then determine the eigenvalues and the axis of \mathbf{R} .
- 3. Let $\{\lambda_1, \lambda_2, \lambda_3\}$ be the distinct (not necessarily nonzero) eigenvalues of a tensor T. (25)
 - (a) Using $(\mathbf{cof} \mathbf{T})^T = I_2 \mathbf{I} (\mathrm{tr} \mathbf{T}) \mathbf{T} + \mathbf{T}^2$, find the eigenvalues of $\mathbf{cof} \mathbf{T}$.
 - (b) Using the above result, and the eigenvalues of $T \lambda_1 I$, find the eigenvalues of $cof (T \lambda_1 I)$.
 - (c) Using the fact that λ_1 satisfies the characteristic equation of \boldsymbol{T} , i.e., $\det(\boldsymbol{T} \lambda_1 \boldsymbol{I}) = 0$, find $\partial \lambda_1 / \partial \boldsymbol{T}$. The denominator in your expression should be an explicit function of the eigenvalues. By a permutation of indices, find $\partial \lambda_2 / \partial \boldsymbol{T}$ and $\partial \lambda_3 / \partial \boldsymbol{T}$.
 - (d) Let $\{\lambda_1, \lambda_2, \lambda_3\}$ denote the eigenvalues of $\boldsymbol{U} := \sqrt{\boldsymbol{C}} = \sqrt{\boldsymbol{F}^T \boldsymbol{F}}$. If

$$W(\boldsymbol{C}) = \sum_{i=1}^{3} \frac{\mu_i}{\alpha_i} \left[\lambda_1^{\alpha_i} + \lambda_2^{\alpha_i} + \lambda_3^{\alpha_i} - 3 \right] + k_1 \log(\det \boldsymbol{C}),$$

where μ_i , α_i , i = 1, 2, 3, and k_1 are constants, find $\mathbf{S} = 2\partial W / \partial \mathbf{C}$.

4. We have defined the velocity vector $\tilde{\boldsymbol{v}}$ in the Lagrangian setting as $\tilde{\boldsymbol{v}}(\boldsymbol{X},t) = (\partial \boldsymbol{\chi}/\partial t)_X$. Is (15) the velocity in the Eulerian setting $\boldsymbol{v}(\boldsymbol{x},t)$ equal to $\partial \boldsymbol{\chi}^{-1}/\partial t)_x$. If yes, provide a proof, if not, provide a counterexample. Similarly, is $(\boldsymbol{F}^{-1})_{ij} = \partial \chi_i^{-1}/\partial x_j$? If yes, provide a proof, if not, provide the correct expression with proof.

Some relevant formulae

$$det(\boldsymbol{T} + \boldsymbol{U}) = det \, \boldsymbol{T} + cof \, \boldsymbol{T} : \boldsymbol{U} + cof \, \boldsymbol{U} : \boldsymbol{T} + det \, \boldsymbol{U},$$
$$I_2(\boldsymbol{T}) = \frac{1}{2} \left[(tr \, \boldsymbol{T})^2 - tr \, (\boldsymbol{T}^2) \right].$$