Indian Institute of Science, Bangalore ME 243: Midsemester Test

Date: 27/9/11. Duration: 7.30 a.m.–9.30 a.m. Maximum Marks: 100

1. Is Skw a linear subspace of Lin? Does the set

ſ	0	1	0		0	0	0		0	0	1		0	0	0		0	0	0		0	0	0	
	0	0	0	,	-1	0	0	,	0	0	0	,	0	0	0	,	0	0	1	,	0	0	0	,
	0	0	0		0	0	0		0	0	0		-1	0	0		0	0	0		0	-1	0	

constitute a basis for Skw? Justify all your answers.

- 2. We have seen that $\partial I_1 / \partial T = I$ for $T \in \text{Lin.}$ However, if $T = W \in \text{Skw}$, then $I_1(W) = 0$ (8) for all W, so that $\partial I_1 / \partial W = 0$. How do you resolve this paradox?
- Let {e₁, e₂,..., e_n} be a basis for an n-dimensional vector space V. Let {f₁, f₂,..., f_m}, (30) where m > n be a subset of V. Is the set {f₁, f₂,..., f_m} (i) linearly dependent (ii) linearly independent or (iii) cannot say, i.e., can be linearly dependent or linearly independent. Prove your assertion.
- 4. For the velocity field $v_1 = \gamma x_2$, $v_2 = -\gamma x_1$, where γ is a constant, find the deformation (30) gradient. Treat as a two-dimensional problem, and *derive* any results that you may need along the way. Your final answer should be computable using an electronic calculator, given the numerical value of γ (Hint: Find ∇v , and then proceed).
- 5. Let \boldsymbol{w} be the axial vector of $\boldsymbol{W} \in \text{Skw}$. Find $De^{\boldsymbol{W}}(\boldsymbol{W})[\boldsymbol{U}]$ (again by deriving any results (20) that you need), where

$$e^{oldsymbol{W}} = oldsymbol{I} + rac{\sin(|oldsymbol{w}|)}{|oldsymbol{w}|}oldsymbol{W} + rac{[1-\cos(|oldsymbol{w}|)]}{|oldsymbol{w}|^2}oldsymbol{W}^2.$$

Specialize to the case where $\boldsymbol{U} = \boldsymbol{S} \in \text{Sym}$.

Some relevant formulae

$$W_{ij} = -\epsilon_{ijk}w_k,$$

$$w_i = -\frac{1}{2}\epsilon_{ijk}W_{jk},$$

$$e^{T} = I + T + \frac{1}{2!}T^2 + \cdots,$$

$$\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} + \cdots,$$

$$\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} + \cdots,$$

(12)