Indian Institute of Science, Bangalore ME 243: Midsemester Test

Date: 27/9/14. Duration: 2.30 p.m.–4.00 p.m. Maximum Marks: 100

- 1. Let $\{\mathbf{p}_i\}$ and $\{\mathbf{q}_i\}$, i = 1, 2, 3, be sets of vectors in \Re^3 . Determine if the set $\{\mathbf{p}_i \otimes \mathbf{q}_i\}$, (25) i = 1, 2, 3, is linearly dependent or independent if
 - (a) $\{\boldsymbol{p}_i\}$ is linearly independent, and $\{\boldsymbol{q}_i\}$ is linearly independent;
 - (b) $\{\boldsymbol{p}_i\}$ is linearly independent, but $\{\boldsymbol{q}_i\}$ is not;
 - (c) $\{\boldsymbol{q}_i\}$ is linearly independent, but $\{\boldsymbol{p}_i\}$ is not;
 - (d) $\{\boldsymbol{p}_i\}$ is linearly dependent, and $\{\boldsymbol{q}_i\}$ is also linearly dependent.
- 2. Let $W \in \text{Skw}$ and let w be its axial vector. Find the polar decomposition of I + W (25) *explicitly*, i.e., the factors R, U and V should be explicit functions of w and/or W, which one can compute using a calculator if W is given in numerical form.
- 3. Let the underlying vector space dimension be 2, and let $W \in Skw$ in this case, i.e., (25)

$$oldsymbol{W} = egin{bmatrix} 0 & lpha \ -lpha & 0 \end{bmatrix}.$$

- (a) Given that the first and last invariants are the trace and the determinant, find an explicit expression for e^{W} , which one can compute using a calculator if α is given.
- (b) Using this explicit expression, find $De^{W}(W)[U]$.
- 4. Superposed dots denote material time derivatives, and (\mathbf{F}, \mathbf{L}) denote the deformation and (25) velocity gradients.
 - (a) Derive a relation between \dot{F} and F.
 - (b) Derive a relation between \ddot{F} and $\nabla_x a$, where a is the acceleration.
 - (c) Using the above relations or independently, find the material derivative of $\nabla_x \cdot v$ in terms of \boldsymbol{a} , and possibly \boldsymbol{L} and \boldsymbol{F} .

Some relevant formulae

$$W = |w| (r \otimes q - q \otimes r), \quad (w/|w|, q, r \text{ orthonormal}),$$
$$W_{ij} = -\epsilon_{ijk}w_k, \quad w_i = -\frac{1}{2}\epsilon_{ijk}W_{jk},$$
$$e^T = I + T + \frac{1}{2!}T^2 + \cdots,$$
$$\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} + \cdots,$$
$$\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} + \cdots.$$