Indian Institute of Science, Bangalore ME 243: Midsemester Test

Date: 2/10/19. Duration: 9.30 a.m.-11.00 a.m. Maximum Marks: 100

- 1. Given two vectors \boldsymbol{u} and \boldsymbol{v} having the same magnitude, find a tensor transformation \boldsymbol{T} (30) that transforms \boldsymbol{u} to \boldsymbol{v} , i.e., $\boldsymbol{v} = \boldsymbol{T}\boldsymbol{u}$ (obviously \boldsymbol{T} is a function of \boldsymbol{u} , \boldsymbol{v} , and any other vectors that you may wish to introduce), and such that
 - (a) det T = 0.
 - (b) det T = 1.
 - (c) $T \in \text{Sym}$ (Hint: Try spectral resolution).

Show that the tensor T that you construct in each case satisfies the given properties. This problem shows that a tensor transformation that maps a given vector u to another given vector v is not unique.

- 2. The disc shown in Fig. 1 rotates with a constant angular speed ω about e_3 , and simultaneously 'pulsates', i.e., each point on a circle of radius R moves radially with respect to a coordinate system fixed to the rotating disc so as to lie on a circle of radius $r = R[1 + \epsilon(t)]$, where $\epsilon(0) = 0$. The angular speed ω is a constant. Find the velocities $\boldsymbol{v}, \tilde{\boldsymbol{v}}$, accelerations $\boldsymbol{a}, \tilde{\boldsymbol{a}}$, deformation gradient \boldsymbol{F} along with its polar decomposition factors $\boldsymbol{U}, \boldsymbol{V}$ and \boldsymbol{R} , and the strain tensor $\boldsymbol{E}(\boldsymbol{X}, t)$, all with respect to the fixed $\boldsymbol{e}_1 \boldsymbol{e}_2$ coordinate system; assume the problem to be two-dimensional so that matrices are 2×2 etc. You may write your answers in terms of matrices which you need not multiply, but whose individual expressions should be given.
- 3. Let $\boldsymbol{W} \in \text{Skw}$, and let \boldsymbol{w} be its axial vector. Find a relation for $\operatorname{cof} \boldsymbol{W}$ in terms of \boldsymbol{w} . (35) Next find $e^{\operatorname{cof} \boldsymbol{W}}$ in terms of \boldsymbol{w} ; this expression should have a finite number of terms (Hint: See if you can express it as $\boldsymbol{I} + \alpha \boldsymbol{w} \otimes \boldsymbol{w}$, where α is a coefficient you have to determine). Lastly, find $De^{\operatorname{cof} \boldsymbol{W}}(\boldsymbol{w})[\boldsymbol{u}]$ where \boldsymbol{u} is a perturbation on \boldsymbol{w} .

Some relevant formulae

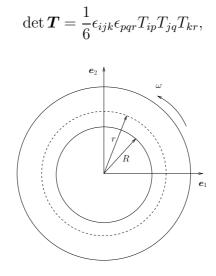


Figure 1: Pulsating spinning disc.

$$(\mathbf{cof} \, \mathbf{T})^T = I_2 \mathbf{I} - (\mathrm{tr} \, \mathbf{T}) \mathbf{T} + \mathbf{T}^2,$$

$$W_{ij} = -\epsilon_{ijk} w_k,$$

$$w_i = -\frac{1}{2} \epsilon_{ijk} W_{jk},$$

$$\mathbf{R}(\mathbf{w}, \alpha) = \mathbf{I} + \frac{1}{|\mathbf{w}|} \sin \alpha \, \mathbf{W} + \frac{1}{|\mathbf{w}|^2} (1 - \cos \alpha) \mathbf{W}^2,$$

$$\mathbf{R} = \bar{\mathbf{e}}_k \otimes \mathbf{e}_k^*,$$

$$(\mathbf{cof} \, \mathbf{T})_{ij} = \frac{1}{2} \epsilon_{imn} \epsilon_{jpq} T_{mp} T_{nq},$$

$$\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} + \cdots,$$

$$\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} + \cdots,$$

$$\frac{e^x - 1}{x} = 1 + \frac{x}{2!} + \frac{x^2}{3!} + \cdots.$$