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1. Given two vectors u and v having the same magnitude, find a tensor transformation T (30)
that transforms u to v, i.e., v = Tu (obviously T is a function of u, v, and any other
vectors that you may wish to introduce), and such that

(a) detT = 0.

(b) detT = 1.

(c) T ∈ Sym (Hint: Try spectral resolution).

Show that the tensor T that you construct in each case satisfies the given properties. This
problem shows that a tensor transformation that maps a given vector u to another given
vector v is not unique.

2. The disc shown in Fig. 1 rotates with a constant angular speed ω about e3, and simulta- (35)
neously ‘pulsates’, i.e., each point on a circle of radius R moves radially with respect to a
coordinate system fixed to the rotating disc so as to lie on a circle of radius r = R[1+ ǫ(t)],
where ǫ(0) = 0. The angular speed ω is a constant. Find the velocities v, ṽ, accelerations
a, ã, deformation gradient F along with its polar decomposition factors U , V and R, and
the strain tensor E(X, t), all with respect to the fixed e1–e2 coordinate system; assume the
problem to be two-dimensional so that matrices are 2× 2 etc. You may write your answers
in terms of matrices which you need not multiply, but whose individual expressions should
be given.

3. Let W ∈ Skw, and let w be its axial vector. Find a relation for cof W in terms of w. (35)
Next find ecof W in terms of w; this expression should have a finite number of terms (Hint:
See if you can express it as I + αw ⊗w, where α is a coefficient you have to determine).
Lastly, find Decof W (w)[u] where u is a perturbation on w.
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Figure 1: Pulsating spinning disc.
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