Indian Institute of Science, Bangalore ME 243: Midsemester Test

Date: 28/11/20. Duration: 2.00 p.m.–5.00 p.m. Maximum Marks: 100

1. Let $\boldsymbol{W} \in \text{Skw}$, and let \boldsymbol{w} be its axial vector. Find the dimension of $\text{Lsp}\left\{\boldsymbol{I}, \frac{\boldsymbol{W}}{|\boldsymbol{w}|}, \frac{\operatorname{cof} \boldsymbol{W}}{|\boldsymbol{w}|^2}\right\}$ (40) (Hint: Find $\operatorname{cof} \boldsymbol{W}$ in terms of \boldsymbol{w}). Using this result (and without using some other method), find the dimension of $\text{Lsp}\{\boldsymbol{I}, \boldsymbol{R}, \boldsymbol{R}^T\}$ for all possible values of α , where

$$oldsymbol{R} = oldsymbol{I} + rac{\sinlpha}{|oldsymbol{w}|}oldsymbol{W} + rac{(1-\coslpha)}{|oldsymbol{w}|^2}oldsymbol{W}^2$$

In case, the dimension of Lsp{ I, R, R^T } for some particular value $\alpha = \alpha_0$ is different than for other values of α , find the dimension corresponding to $\alpha = \alpha_0$.

- 2. Consider the following problem :
 - (a) Starting from the equation for rigid motion $\chi = Q(t)X + c(t)$, find the expressions for the velocity and acceleration fields in the Eulerian setting.
 - (b) The rigid rod AB of length L shown in Fig. 1 slides against a wall as shown. The angle $\theta(t)$ as a function of time t is given. You may assume the axial vector of $\dot{Q}Q^T$ to be given by $-\dot{\theta}(t)e_z$ (with a superposed dot denoting a derivative with respect to time), where $e_z = e_x \times e_y$. Using the results of part (a) above, find the velocity and acceleration of the center point of the rod C as a function of L, $\theta(t)$ and its derivatives with respect to time. If you make any assumptions about the accelerations of points A and B, kindly justify. You may treat this as a two-dimensional problem, i.e., the motion is in the x-y plane.
- 3. Let $\boldsymbol{W} \in \text{Skw}$, and let \boldsymbol{w} be its axial vector.
 - (a) Does $W^2 \in \text{Sym}$?
 - (b) Assuming $\mathbf{W} = |\mathbf{w}| (\mathbf{r} \otimes \mathbf{q} \mathbf{q} \otimes \mathbf{r}), (\mathbf{w}/|\mathbf{w}|, \mathbf{q}, \mathbf{r} \text{ orthonormal})$, and using the result of part (a), find the eigenvalues and eigenvectors of $e^{(\mathbf{W}^2)}$. If the eigenvectors are not unique, *choose* an orthonormal set of eigenvectors in terms of \mathbf{w}, \mathbf{q} and \mathbf{r} , and state your choice.
 - (c) Let I_i , i = 1, 2, 3, be the principal invariants of $e^{(\mathbf{W}^2)}$. Find the gradients $\partial I_i / \partial \mathbf{W}$, i = 1, 2, 3, in terms of \mathbf{W} .

Some relevant formulae

$$\begin{split} \boldsymbol{W} &= |\boldsymbol{w}| \left(\boldsymbol{r} \otimes \boldsymbol{q} - \boldsymbol{q} \otimes \boldsymbol{r}\right), \quad (\boldsymbol{w}/|\boldsymbol{w}|, \boldsymbol{q}, \boldsymbol{r} \text{ orthonormal}), \\ &(\mathbf{cof} \, \boldsymbol{T})^T = I_2 \boldsymbol{I} - (\operatorname{tr} \boldsymbol{T}) \boldsymbol{T} + \boldsymbol{T}^2, \\ &W_{ij} = -\epsilon_{ijk} w_k, \\ &w_i = -\frac{1}{2} \epsilon_{ijk} W_{jk}, \\ \boldsymbol{R}(\boldsymbol{w}, \alpha) &= \boldsymbol{I} + \frac{1}{|\boldsymbol{w}|} \sin \alpha \, \boldsymbol{W} + \frac{1}{|\boldsymbol{w}|^2} (1 - \cos \alpha) \boldsymbol{W}^2, \\ &(\mathbf{cof} \, \boldsymbol{T})_{ij} = \frac{1}{2} \epsilon_{imn} \epsilon_{jpq} T_{mp} T_{nq}, \end{split}$$

(35)

(25)

Figure 1: Rigid rod sliding against a wall.