Indian Institute of Science, Bangalore ME 243: Midsemester Test

Date: 7/10/22.
Duration: 9.30 a.m. -11.30 noon
Maximum Marks: 100

1. Let the underlying vector space be two-dimensional. Let $\{\boldsymbol{u}, \boldsymbol{v}\}$ be a given set of orthonormal vectors in this two-dimensional plane (say the $x-y$ plane). It is clear that $\boldsymbol{u} \otimes \boldsymbol{u}+\boldsymbol{v} \otimes \boldsymbol{v} \in$ Sym. Is the converse true? That is, can every $\boldsymbol{S} \in$ Sym be represented as $\alpha \boldsymbol{u} \otimes \boldsymbol{u}+\beta \boldsymbol{v} \otimes \boldsymbol{v}$? If not, then determine an appropriate basis for Sym in terms of ($\boldsymbol{u}, \boldsymbol{v}$), and show that every $\boldsymbol{S} \in$ Sym can be written in terms of your proposed basis. (Hint: Dimensionality of the spaces involved).
2. Let $\boldsymbol{W} \in \operatorname{Skw}$, and let \boldsymbol{w} be its axial vector.
(a) Using the relation $(\operatorname{cof} \boldsymbol{T})(\boldsymbol{u} \times \boldsymbol{v})=(\boldsymbol{T u}) \times(\boldsymbol{T v})$ (and using no other method), find an expression for $\operatorname{cof} \boldsymbol{W}$ in terms of \boldsymbol{w}; justify all your steps.
(b) Let $\boldsymbol{H}:=\boldsymbol{\operatorname { c o f }}\left(\boldsymbol{W}-\alpha \boldsymbol{W}^{3}\right)$, where $\alpha>0$, and \boldsymbol{W} is a skew-symmetric tensor whose axial vector \boldsymbol{w} is of unit magnitude. Find \boldsymbol{H} in terms of the axial vector of \boldsymbol{w} and α. Find the factors $\boldsymbol{R}, \boldsymbol{U}$ and \boldsymbol{V} in the polar decomposition of $-(\boldsymbol{I}+\boldsymbol{H})^{-1}$ in terms of \boldsymbol{w} and α without 'guesswork'.
3. If $\boldsymbol{\lambda}=\boldsymbol{d} \boldsymbol{x} / d s$ represents the unit tangent to a curve, find its material derivative $D \boldsymbol{\lambda} / D t$ in terms of $\boldsymbol{\lambda}$ and the velocity gradient \boldsymbol{L}. You may directly use the relation $\dot{\boldsymbol{F}}=\boldsymbol{L} \boldsymbol{F}$, but need to derive any other relation that you need. Using the expression that you have derived, deduce necessary and sufficient conditions on $D \boldsymbol{\lambda} / D t$ in terms of the angular velocity vector $\boldsymbol{w}(t)$ for the motion to be rigid (you may directly use the results for rigid motion that we have derived).

Some relevant formulae

$$
\begin{gathered}
\boldsymbol{W}=|\boldsymbol{w}|(\boldsymbol{r} \otimes \boldsymbol{q}-\boldsymbol{q} \otimes \boldsymbol{r}), \quad(\boldsymbol{w} /|\boldsymbol{w}|, \boldsymbol{q}, \boldsymbol{r} \text { orthonormal }), \\
W_{i j}=-\epsilon_{i j k} w_{k}, \\
w_{i}=-\frac{1}{2} \epsilon_{i j k} W_{j k}, \\
(\operatorname{cof} \boldsymbol{T})_{i j}=\frac{1}{2} \epsilon_{i m n} \epsilon_{j p q} T_{m p} T_{n q},
\end{gathered}
$$

