Indian Institute of Science, Bangalore ME 243: Midsemester Test

Date: 5/10/24. Duration: 10.00 a.m.-12.00 noon. Maximum Marks: 100

- 1. Let \boldsymbol{w} be the axial vector of $\boldsymbol{W} \in \text{Skw}$, and let $\boldsymbol{u}, \boldsymbol{v} \in V$.
 - (a) Using indicial notation or otherwise, find an expression for cof W in terms of w.
 - (b) Using the above result or otherwise, find a necessary and sufficient condition for the linear independence of $\{Wu, Wv, w\}$ in terms of the linear independence of $\{u, v, w\}$.
- 2. Let \boldsymbol{n} represent a unit normal to a plane.
 - (a) Find an expression for the tensor \boldsymbol{P} that projects a vector \boldsymbol{u} onto the plane with unit normal \boldsymbol{n} (thus, $\boldsymbol{P}\boldsymbol{u}$ is a vector that lies in the plane with unit normal \boldsymbol{n}) in terms of $\boldsymbol{n}\otimes\boldsymbol{n}$.
 - (b) Find an explicit expression for $e^{\mathbf{P}}$ in terms of \mathbf{P} which has a finite number of terms (Hint: $e^{\alpha} = \sum_{n=0}^{\infty} \alpha^n / n!$)
 - (c) Using the above results, find $De^{\mathbf{P}}(\mathbf{P})[\mathbf{U}]$.
- 3. Let \boldsymbol{v} denote the velocity vector, and let \boldsymbol{D} and \boldsymbol{W} denote the rate of deformation and (30) vorticity tensors, respectively. Let V denote a closed volume, and S its surface.
 - (a) Using indicial notation, find a relation between $\nabla \cdot [(\nabla v)v (\nabla \cdot v)v]$, $\nabla v : (\nabla v)^T$, and a term that is a function of $\nabla \cdot v$.
 - (b) Using the expression you obtained in part (a) above, find an expression for $\int_{V} \boldsymbol{D} : \boldsymbol{D} \, dV$ in terms of $\int_{V} \boldsymbol{W} : \boldsymbol{W} \, dV$ and other terms (Hint: Use the relation between $\boldsymbol{D}, \boldsymbol{W}$, and the velocity gradient).
 - (c) One of the volume integrals in the expression you obtained in part (b) above can be converted to a surface integral using the divergence theorem. Carry out this conversion.
 - (d) If $\boldsymbol{\omega}$ denotes the vorticity vector, in one of the homeworks, we saw that $\boldsymbol{\omega}$ is twice the axial vector of \boldsymbol{W} . Use this information to find a relation between $\boldsymbol{W}: \boldsymbol{W}$ and $\boldsymbol{\omega} \cdot \boldsymbol{\omega}$.

Some relevant formulae

$$\begin{split} \boldsymbol{W} &= |\boldsymbol{w}| \left(\boldsymbol{r} \otimes \boldsymbol{q} - \boldsymbol{q} \otimes \boldsymbol{r} \right), \quad (\boldsymbol{w} / |\boldsymbol{w}|, \boldsymbol{q}, \boldsymbol{r} \text{ orthonormal}), \\ W_{ij} &= -\epsilon_{ijk} w_k, \\ w_i &= -\frac{1}{2} \epsilon_{ijk} W_{jk}, \\ (\mathbf{cof} \, \boldsymbol{T})_{ij} &= \frac{1}{2} \epsilon_{imn} \epsilon_{jpq} T_{mp} T_{nq}, \end{split}$$

(35)

(35)