Indian Institute of Science, Bangalore ME 243: Midsemester Test

Date: 6/10/01. Duration: 9.30 a.m.–11.00 a.m. Maximum Marks: 100

 Which of the spaces Sym, Psym, Skw, Orth⁺ are linear subspaces of Lin? Justify. Evaluate if the matrices
(20)

[1	1	0		[1	0	1		Γ0	0	0	
1	1	0	,	0	0	0	,	0	1	1	,
$\begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}$	0	0		1	0 0 0	1		$\begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$	1	1	

constitute a basis for Sym. If not, then give a 'canonical' basis for Sym.

- 2. Using the representation $\boldsymbol{W} = |\boldsymbol{w}| (\boldsymbol{r} \otimes \boldsymbol{q} \boldsymbol{q} \otimes \boldsymbol{r})$, where $\{\boldsymbol{w}/|\boldsymbol{w}|, \boldsymbol{q}, \boldsymbol{r}\}$ (20) form an orthonormal basis, find the axial vector of $\boldsymbol{Q}^t \boldsymbol{W} \boldsymbol{Q}$, where \boldsymbol{Q} is a proper orthogonal tensor.
- 3. Let $\{e_1, e_2, e_3\}$ be the usual canonical basis for \Re^3 , and $\{a, b, c\}$ be a set of (25) vectors.

(a) Show that

$$oldsymbol{e}_1\otimesoldsymbol{a}+oldsymbol{e}_2\otimesoldsymbol{b}+oldsymbol{e}_3\otimesoldsymbol{c}=egin{bmatrix}a_1&a_2&a_3\b_1&b_2&b_3\c_1&c_2&c_3\end{bmatrix}.$$

(b) Using the above result, show that

 $\det [\boldsymbol{a} \otimes \boldsymbol{x} + \boldsymbol{b} \otimes \boldsymbol{y} + \boldsymbol{c} \otimes \boldsymbol{z}] = [\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}] [\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z}].$

(c) If $\{e_1, e_2, e_3\}$ and $\{e_{1'}, e_{2'}, e_{3'}\}$ are two sets of orthonormal bases, show that

 $oldsymbol{Q} = oldsymbol{e}_{1'} \otimes oldsymbol{e}_1 + oldsymbol{e}_{2'} \otimes oldsymbol{e}_2 + oldsymbol{e}_{3'} \otimes oldsymbol{e}_3,$

is a proper orthogonal tensor. Also show that $e_{i'} = Qe_i$.

4. If \boldsymbol{x} is the position vector of a point, and \boldsymbol{t} is the axial vector of $(\boldsymbol{T} - \boldsymbol{T}^t)$, (15) show that

$$\int_{V} [\boldsymbol{x} \times (\boldsymbol{\nabla} \cdot \boldsymbol{T}) + \boldsymbol{t}] \, dV = \int_{S} \boldsymbol{x} \times (\boldsymbol{T}\boldsymbol{n}) \, dS.$$

(Hint: $w_i = -\frac{1}{2}\epsilon_{ijk}W_{jk}$.)

5. Starting from the relation

$$J = \epsilon_{ijk} \frac{\partial \chi_1}{\partial X_i} \frac{\partial \chi_2}{\partial X_j} \frac{\partial \chi_3}{\partial X_k}.$$

show that $DJ/Dt = J(\nabla \cdot \boldsymbol{v})$. (Hint: Use the relation $\epsilon_{pqr}(\det \boldsymbol{T}) = \epsilon_{ijk}T_{pi}T_{qj}T_{rk}$.)

(20)