Indian Institute of Science, Bangalore ME 243: Midsemester Test

Date: 5/10/02. Duration: 9.30 a.m.–11.00 a.m. Maximum Marks: 100

1. Prove that if T : S = 0 for every symmetric tensor S, then $T \in Skw$. (15)

(25)

2. Deriving any results that you might need on the way, show that

$$\boldsymbol{R}(\boldsymbol{w},\alpha) = \boldsymbol{I} + \frac{1}{|\boldsymbol{w}|} \sin \alpha \, \boldsymbol{W} + \frac{1}{|\boldsymbol{w}|^2} (1 - \cos \alpha) \boldsymbol{W}^2,$$

where \boldsymbol{W} is the skew-symmetric tensor with \boldsymbol{w} as the axis, rotates any vector in the plane perpendicular to \boldsymbol{w} through an angle α .

- 3. Our goal in this problem is to find explicit expressions for \mathbf{R} and \mathbf{U} in the polar decompostion $\mathbf{S} = \mathbf{R}\mathbf{U}$, where \mathbf{S} is a *nonsingular* symmetric tensor, in terms of powers of \mathbf{S} .
 - (a) Let V be an n-dimensional vector space with $\{e_1, e_2, \ldots, e_n\}$ as a basis, and let $\{f_1, f_2, \ldots, f_n\}$ be given by

$$\boldsymbol{f}_i = \beta_{ij} \boldsymbol{e}_j, \quad \beta_{ij} \in \Re, \ i, j = 1, n,$$

where β_{ij} are such that det $[\beta_{ij}] \neq 0$. We have shown in class that under such conditions, $\{f_1, f_2, \ldots, f_n\}$ is a basis. Hence, we can express the basis vectors $\{e_1, e_2, \ldots, e_n\}$ in terms of the basis vectors $\{f_1, f_2, \ldots, f_n\}$ as

$$\boldsymbol{e}_i = \gamma_{ij} \boldsymbol{f}_j, \quad \gamma_{ij} \in \Re, \ i, j = 1, n.$$

Show that $\gamma_{ij}\beta_{jm} = \delta_{im}$, i.e., the matrix of coefficients $[\gamma_{ij}]$ is the inverse of the matrix of coefficients $[\beta_{ij}]$.

(b) Starting with the spectral resolution of $\boldsymbol{S} \in \text{Sym}$, namely,

$$oldsymbol{S} = \lambda_1 oldsymbol{e}_1^st \otimes oldsymbol{e}_1^st + \lambda_2 oldsymbol{e}_2^st \otimes oldsymbol{e}_2^st + \lambda_3 oldsymbol{e}_3^st \otimes oldsymbol{e}_3^st,$$

find the spectral resolutions of R and U (Hint: Look for tensors of the form

$$|\lambda_1| e_1^* \otimes e_1^* + |\lambda_2| e_2^* \otimes e_2^* + |\lambda_3| e_3^* \otimes e_3^*.$$

- (c) Consider the case when the two eigenvalues are repeated, say, $\lambda_2 = \lambda_3$. Express $\{I, S\}$ in terms of $\{e_1^* \otimes e_1^*, (e_2^* \otimes e_2^* + e_3^* \otimes e_3^*)\}$, in the form $f_i = \beta_{ij}e_j$, and show that det $[\beta_{ij}] \neq 0$. Now using the result of (a), express $\{e_1^* \otimes e_1^*, (e_2^* \otimes e_2^* + e_3^* \otimes e_3^*)\}$ in terms of $\{I, S\}$.
- (d) Substitute these expressions in the polar resolutions of \mathbf{R} and \mathbf{U} (for the case $\lambda_2 = \lambda_3$), and find explicit expressions for \mathbf{R} and \mathbf{U} as a polynomial expression involving powers of \mathbf{S} .
- 4. Using the relations $DJ/Dt = J(\nabla \cdot v)$, DF/Dt = LF, and $C = F^t F$, show that (25)

$$\frac{DJ}{Dt} = \frac{1}{2}J\boldsymbol{C}^{-1}: \dot{\boldsymbol{C}}$$